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1. Introduction

Program transformation is a methodology that allows the programmer to separate the correctness concern
and the efficiency concern when developing programs [4]. An initial, maybe inefficient, program whose
correctness with respect to a given specification can easilybe proved, is transformed, possibly in several
steps, into an efficient program by applying correctness preserving transformations.

Although its main objective is the improvement of efficiency, it has long been recognized that pro-
gram transformation can also be used as a methodology for proving program properties and, more in
general, for proving theorems. Indeed, in the case of functional or logic programming, programs can
be regarded as theories consisting of sets of equations and logical implications, respectively, which are
associated with models defined by a suitable program semantics (either least or greatest models). Thus,
transforming programs can be regarded as an activity by which one deduces consequences of theories,
that is, theorems which hold in the models defined by the givensemantics. In this setting, the elementary
transformation steps, often calledtransformation rules, can be regarded as inference rules, and composite
transformations, often calledtransformation strategies, can be regarded as theorem proving tactics.

The view of program transformation as a theorem proving activity was first suggested in the seminal
paper by Burstall and Darlington [4], where some equivalences between functions defined by recursive
equations are proved by applyingunfolding and folding transformations. Given a function definition
f(x)=D[x], the unfolding rule consists in replacing a function callf(t) occurring in the right hand side
of a program equation by the expressionD[t]. The folding rule is the inverse of the unfolding rule, and
consists in replacing an occurrence of the expressionD[t] by the function callf(t). In order to prove
the equivalence of two functions, sayf andg, Burstall and Darlington proposed a method, which we
will call the unfold/fold proof method, based on program transformations: by applying the unfolding
and folding rules, the definitions off and g are transformed into two syntactically identical sets of
equations (modulo the function and variable names) and, additionally, theterminationof the derived set
of equations is proved, to avoid thatf(x) andg(x) differ for values ofx where the function defined by
the new set of equations fails to terminate. (Essentially, this proof method is a transformational version
of McCarthy’s induction principle [21].)

Burstall and Darlington’s unfold/fold proof method for functional programs has been further refined
in several papers (see, for instance, [6, 17]). In particular, Kott [17] proposed a method to avoid the
termination check, which is hard to automate in general. Kott’s method guarantees the soundness of
the unfold/fold method by a suitable bookkeeping of the applications of the unfolding and folding rules
performed during the proof. Obviously, since program equivalence is undecidable and not even semide-
cidable, the unfold/fold proof method is necessarily incomplete. However, completeness results for some
classes of programs (including equational definitions of regular sets of trees) were presented in [6].

Tamaki and Sato extended the unfold/fold transformation methodology to logic programs in [38].
After their landmark paper, a lot of work has been done to prove the correctness of the transformation
rules with respect to the various semantics of logic programs, and to devise strategies of application of
the rules which have the objective of improving program efficiency (see [25] for a survey of early work
in the area).

Also the unfold/fold proof method has been extended to logicprogramming to prove equivalences of
predicates, instead of functions, that is, first order formulas of the form∀X(p(X) ↔ q(X)) [26]. This
method has been shown to be effective for several verification tasks, such as the verification of properties
of parameterized concurrent systems [33]. Moreover, by using the Lloyd-Topor transformation [19],
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any first order logic formula can be translated into a logic program with negation, thereby extending the
applicability of the unfold/fold proof method to prove any first order formula, not only equivalences [27].

In the context of first order theorem proving, for reasons of efficiency it is often useful to employ
specialized theorem provers for specific theories. This is why Constraint Logic Programming(CLP) is
a very attractive paradigm [15], as it combines general purpose, resolution-based logical reasoning, with
dedicated theorem provers (calledsolversin this framework) for restricted theories ofconstraints(for
instance, linear equalities and inequalities over the integers, or the rationals, or the reals, and formulas
over the booleans or finite domains). The unfold/fold proof method has also been developed in the case
of CLP programs, thereby combining rules and strategies fortransforming logic programs with theorem
proving techniques that exploit properties of the specific constraint domain [28].

Many non-classical logics, such as temporal logics, can be encoded into (constraint) logic program-
ming and, by this encoding, the unfold/fold proof method canbe used for proving theorems in those
logics. This observation has lead to the design of transformational techniques for proving temporal prop-
erties of infinite state concurrent systems [10, 13, 18, 23].

The large variety of contexts where the unfold/fold proof method can be applied witnesses its great
generality and flexibility. Besides this, we would like to stress the main technical point that motivates
exploring the connections between program transformationand theorem proving: many automated trans-
formation strategies which have been developed with the goal of improving program efficiency can be
turned into proof tactics. One notable example is the strategy for eliminating existential variables, whose
initial motivation was to avoid the construction of unnecessary data structures when computing with
logic programs [31]. The same strategy can also be regarded as a technique for proving theorems by
quantifier elimination(see, for instance, [32]).

In this paper we overview the unfold/fold proof method in thecase of constraint logic programming,
and we illustrate the method by means of examples.

2. Transformation Rules for Constraint Logic Programs

In this section we briefly recall the basic notions about constraint logic programs [15] and we present the
rules we use for transforming those programs (see also [9, 12, 29, 34, 35]).

2.1. Constraint Logic Programs

We will consider constraint logic programs with linear constraints over the setR of the real numbers.
Note, however, that most of the notions and techniques extend to other constraint domains in a straight-
forward way.

Constraints are defined as follows. Ifp1 and p2 are linear polynomials with real variables, then
p1≥p2 andp1>p2 areatomic constraints. We will also use the equality ‘=’ and the inequalities ‘≤’ and
‘<’ defined in terms of ‘≥’ and ‘>’ as usual. Aconstraintis eithertrue, or false, or an atomic constraint,
or aconjunctionof constraints.

An atomis an atomic formula of the formp(t1, . . . , tm), wherep is a predicate symbol not in{≥, >}
andt1, . . . , tm, withm≥0, are terms. Aliteral is either an atom or a negated atom. Agoal is a (possibly
empty) conjunction of literals. Aconstrained goalc ∧∧G is a conjunction of a constraintc and a goalG.
A CLP program is a finite set ofclausesof the formA ← c ∧∧G, whereA is an atom andc ∧∧G is a
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constrained goal. Given a clauseA ← c ∧∧G, A is theheadof the clause andc ∧∧G is thebodyof the
clause. Without loss of generality, we assume that all termsdenoting real numbers and occurring in the
head of a clause are distinct variables.

Thedefinition Defs(p, P ) of a predicatep in a programP is the set of all clauses ofP whose head
predicate isp. A predicatep depends ona predicateq in a programP if either in P there is a clause
p(. . .) ← c ∧∧G such thatq occurs inG, or there exists a predicater such thatp depends onr in P
andr depends onq in P . Theextended definition Defs∗(p, P ) of a predicatep in a programP is the set
containing the definition ofp and the definitions of all those predicates on whichp depends inP .

Given a constraint (or a goal or a constrained goal)ϕ, by vars(ϕ) we denote the set of variables
occurring inϕ. Given a clauseγ : H ← c ∧∧G, by evars(γ) we denote the set of theexistential variables
of γ, that is,vars(c ∧∧G) − vars(H). By ∀(ϕ) we denote the universal closure∀X1 . . . ∀Xn ϕ, where
vars(ϕ) = {X1, . . . ,Xn}. Similarly, by∃(ϕ) we denote the existential closure∃X1 . . . ∃Xn ϕ.

A stratificationis a functionσ from the set of predicate symbols to the non-negative integers. A strat-
ification σ extends to literals by takingσ(p(. . .)) =def σ(p) and σ(¬A) =def σ(A) + 1. A clause
A ← c ∧∧G is stratified with respect toσ if for every literalL in G, σ(A) ≥ σ(L). A programP is
stratified with respect toσ if every clause ofP is. Finally, a program isstratified if it is stratified with
respect to some stratification function.

Let TR denote the set of ground terms built fromR and from the function symbols in the language of
P . AnR-interpretationis an interpretation which: (i) has universeTR, (ii) assigns to+,×, >,≥ the usual
meaning inR, and (iii) is the standard Herbrand interpretation [19] forfunction and predicate symbols
different from+,×, >,≥. We can identify anR-interpretationI with the set of ground atoms (with
arguments inTR) which are true inI. We writeR |= ϕ if ϕ is true in everyR-interpretation. A constraint
c is satisfiableif R |= ∃(c). A constraintc entailsa constraintd, denotedc ⊑ d, if R |= ∀(c→ d).

An R-modelof a CLP programP is anR-interpretation that makes true every clause ofP . Every
stratified CLP programP has a uniqueperfect model, denotedM(P ), which is constructed as follows
(see [3] for a similar definition). Let us consider any stratification σ such thatP is stratified with re-
spect toσ. Let S0, . . . , Sn be a sequence of programs such that: (i)

⋃
0≤k≤n Sk = P , and (ii) for

k = 0, . . . , n, Sk is the set of clausesA ← c ∧∧G in P such thatσ(A) = k. We define a sequence of
R-interpretations as follows: (i)M0 is the leastR-model ofS0 (note that no negative literals occur in
S0), and (ii) for0≤k<n,Mk+1 is the leastR-model ofSk+1 which containsMk. TheR-interpretation
Mn is the perfect model ofP .

2.2. Transformation Rules for CLP Programs

A transformation sequenceis a sequenceP0, . . . , Pn of programs constructed by applying the transfor-
mation rules defined below. Without loss of generality, whenapplying the transformation rules we will
feel free to rewrite clauses by: (i) renaming their variables apart (so that distinct clauses have no variables
in common), and (ii) rearranging the order and removing repeated occurrences of literals in their bodies.
Suppose that we have constructed the transformation sequenceP0, . . . , Pk, for 0≤ k≤n−1. Then the
next programPk+1 in the sequence is derived from programPk by the application of one the following
rules R1–R7.

Rule R1 is applied for introducing a new predicate definition.

R1. Definition Introduction. Let us consider a clause of the form:δ: newp(X1, . . . ,Xh) ← c ∧∧G,
where: (i) newp is a predicate symbol not occurring in{P0, . . . , Pk}, (ii) X1, . . . ,Xh are distinct
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variables occurring inc ∧∧G, (iii) every predicate symbol occurring inG also occurs inP0. Clauseδ
is called thedefinition of newp. By definition introductionfrom programPk we derive the program
Pk+1=Pk ∪ {δ}. Fork≥0, Defsk denotes the set of clauses introduced by the definition rule during the
transformation sequenceP0, . . . , Pk. In particular,Defs0=∅.

The (positiveor negative) unfoldingrules consist in: (i) replacing an atomA occurring in the body of
a clause by the corresponding instance of the disjunction ofthe bodies of the clauses whose heads unify
with A, and (ii) applying suitable boolean laws for deriving clauses.

R2. Positive Unfolding. Let γ: H ← c ∧∧GL ∧∧A ∧∧GR be a clause in programPk and letγ1: K1 ←
d1 ∧∧B1 . . . , γm: Km ← dm ∧∧Bm (m ≥ 0) be all (renamed apart) clauses ofPk such that, fori =
1, . . . ,m, A is unifiable withKi, with most general unifierϑi. By unfoldingγ w.r.t. A we derive the
clausesη1, . . . , ηm (m≥0), where fori = 1, . . . ,m, ηi is (H ← c ∧∧ di ∧∧GL ∧∧Bi ∧∧GR)ϑi. FromPk we
derive the programPk+1 = (Pk − {γ}) ∪ {η1, . . . , ηm}.

R3. Negative Unfolding.Let γ: H ← c ∧∧GL ∧∧¬A ∧∧GR be a clause in programPk and letγ1: K1 ←
d1 ∧∧B1, . . . , γm: Km ← dm ∧∧Bm (m ≥ 0) be all (renamed apart) clauses inPk such thatA is unifiable
with K1, . . . ,Km, with most general unifiersϑ1, . . . , ϑm, respectively. Assume that: (i)A = K1ϑ1 =
. . .= Kmϑm, that is, fori=1, . . . ,m, A is an instance ofKi, and (ii) for i=1, . . . ,m, evars(γi) = ∅.
FromGL ∧∧¬((d1 ∧∧B1)ϑ1 ∨∨ . . . ∨∨ (dm ∧∧Bm)ϑm) ∧∧GR we get an equivalent disjunctionQ1 ∨∨ . . . ∨∨Qr

of constrained goals, withr ≥ 0, by first moving¬ inward using De Morgan’s law, then replacing
every negated atomic constraint of the form¬(p1≥ p2) by p1<p2 and replacing every negated atomic
constraint of the form¬(p1 < p2) by p1 ≥ p2, and finally moving∨∨ outward using distributivity. By
unfoldingγ w.r.t.¬A we derive the clausesη1, . . . , ηr, where fori = 1, . . . , r, ηi isH ← Qi. FromPk

we derive the new programPk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

The folding rule consists in replacing an instance of the body of the definition of a predicate by the
corresponding head.

R4. Positive Folding.Letγ be a clause inPk and letδ: K ← d ∧∧B, whereB is a non-empty conjunction
of literals, be a (renamed apart) definition inDefsk. Suppose that there exists a substitutionϑ such
that: (i) γ is of the formH ← c ∧∧ dϑ ∧∧GL ∧∧Bϑ ∧∧GR, and (ii) for every variableX ∈ evars(δ), the
following conditions hold: (ii.1)Xϑ is a variable not occurring in{H, c,GL, GR}, and (ii.2)Xϑ does
not occur in the termY ϑ, for any variableY occurring ind ∧∧B and different fromX. By folding γ
using the definitionδ we derive the clauseη: H ← c ∧∧GL ∧∧Kϑ ∧∧GR. FromPk we derive the program
Pk+1 = (Pk − {γ}) ∪ {η}.

R5. Negative Folding. Let γ be a clause inPk and letδ: K ← d ∧∧A, whereA is an atom, be a
(renamed apart) definition inDefsk. Suppose also that there exists a substitutionϑ such that: (i)γ is of
the form: H ← c ∧∧GL ∧∧¬Aϑ ∧∧GR, (ii) c ⊑ dϑ, and (iii) vars(A) = vars(K). By folding γ using
the definitionδ we derive the clauseη: H ← c ∧∧GL ∧∧¬Kϑ ∧∧GR. FromPk we derive the program
Pk+1 = (Pk−{γ}) ∪ {η}.

Thegoal replacement ruleallows us to replace aconstrained goalc1 ∧∧G1 in the body of a clause by
a constrained goalc2 ∧∧G2, such thatc1 ∧∧G1 andc2 ∧∧G2 are equivalent in the perfect model ofPk.

R6. Goal Replacement. Let γ: H ← c ∧∧ c1 ∧∧GL ∧∧G1 ∧∧GR be a clause in programPk and as-
sume we have thatM(Pk) |= ∀X (∃Y c1 ∧∧G1 ↔ ∃Z c2 ∧∧G2), whereX = vars({H, c,GL, GR}),
Y = vars(c1 ∧∧G1)−X , andZ = vars(c2 ∧∧G2)−X. By replacing c1 ∧∧G1 with c2 ∧∧G2, from γ we
deriveδ: H ← c ∧∧ c2 ∧∧GL ∧∧G2 ∧∧GR, and fromPk we derivePk+1 = (Pk − {γ}) ∪ {δ}.
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Theclause deletionrule R7 allows us to remove fromPk a redundant clauseγ, that is, a clauseγ such
thatM(Pk) =M(Pk−{γ}). In Rule R7 we use the following notions. A clauseγ is subsumedby a
clause of the formH ← c ∧∧G1 if γ is of the form(H ← d ∧∧G1 ∧∧G2)ϑ, for some substitutionϑ, and
dϑ ⊑ c. A clausehas a false bodyif it is of the formH ← c ∧∧G and eitherR |= ¬∃(c) or G has a
subconjunction of the formA ∧∧¬A. The set ofuseless predicatesin a programP is the maximal setU
of predicates occurring inP such thatp is in U iff every clauseγ with head predicatedp is of the form
p(. . .)← c ∧∧G1 ∧∧ q(. . .) ∧∧G2 for someq in U . A clause in a programP is uselessif the predicate of its
head is useless inP .

R7. Clause Deletion. Let γ be a clause inPk. By clause deletionwe derive the programPk+1 =
Pk − {γ} if one of the following three cases occurs:
R7s. γ is subsumed by a clause inPk − {γ}; R7f. γ has a false body; R7u. γ is useless inPk.

A transformation sequenceP0, . . . , Pn is correct if the following conditions hold: (i)P0 ∪Defsn andPn

are stratified, and (ii)M(P0 ∪Defsn) = M(Pn). Transformation sequences constructed by an unre-
stricted use of the transformation rules may be not correct.Now we present a correctness result for the
class of the so-calledadmissibletransformation sequences.

Definition 2.1. (Admissible Transformation Sequence)
1. An atomA in a conjunctionG is σ-maximalif, for every literalL in G, we haveσ(A)≥σ(L).
2. A clauseδ: H ← c ∧∧G is σ-tight if G is of the formG1 ∧∧A ∧∧G2, for someσ-maximal atomA and
subgoalsG1 andG2, andσ(H)=σ(A).
3. A clauseη is said to be adescendantof a clauseγ if eitherη is γ itself or there exists a clauseδ such
thatη is derived fromδ by using a rule in{R2,R3,R4,R5,R6}, andδ is a descendant ofγ.
4. Let P0 be a stratified program and letσ be a stratification forP0. A transformation sequence
P0, . . . , Pn, with n≥0, is said to beadmissibleif, for k=1, . . . , n:
(a) every clause inDefsk is σ-tight,
(b) if Pk is derived fromPk−1 by goal replacement (R6) andc1 ∧∧G1 is replaced withc2 ∧∧G2 in the

clauseH ← c ∧∧B, thenσ(H) > σ(L) for everyL in G2, and
(c) if Pk is derived fromPk−1 by positive folding (R4) of clauseγ using clauseδ, then:either (c.1) the

head predicate ofγ occurs inP0, or (c.2)γ is a descendant of a clauseβ in Pj , with 0<j≤ k−1,
such thatβ has been derived by positive unfolding of a clauseα in Pj−1 w.r.t. an atom which is
σ-maximal in the body ofα and whose predicate occurs inP0.

Theorem 2.2. Every admissible transformation sequence is correct.

This theorem extends to CLP programs the result presented in[29] for locally stratifiedlogic programs
over the domain of infinite lists. Recall that a program is locally stratified if there exists a functionσ
from the set of ground atoms to the set of non-negative integers such that, for all ground instances
H ← c ∧∧B of a program clause, for all literalsL in B, σ(H)≥ σ(L) (where for all ground atomsA,
σ(¬A)=def σ(A)+1) [3]. For the sake of conciseness, here we have made the more restrictive assumption
that programs are stratified. However, Theorem 2.2 can be extended to locally stratified CLP programs
in a straightforward way.

Example 2.3. Let us consider the programP0 made out of the following clauses:
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1. prop←even(X) ∧∧¬odd(X+1)

2. even(X)←X=0 4. odd(X)← X=1

3. even(X)←X≥2 ∧∧ even(X−2) 5. odd(X)←X≥2 ∧∧ odd(X−2)

We take the stratification functionσ such thatσ(prop)=σ(even)>σ(odd). Predicatepropholds iff there
exists an even number whose successor is not odd. We will now prove thatprop is false by constructing
a suitable transformation sequence starting fromP0. By rule R1 we introduce the clause:

6. newp(X)← even(X) ∧∧¬ odd(X+1)

and we deriveP1 = P0 ∪ {6}. We takeσ(newp) = σ(even). Thus, clause6 is σ-tight andeven(X)
is aσ-maximal atom in its body. By using rule R2, we unfold clause6 w.r.t. even(X) and we derive
P2 = P0 ∪ {7, 8}, where:

7. newp(X)← X=0 ∧∧¬ odd(X+1) 8. newp(X)← X≥2 ∧∧ even(X−2) ∧∧¬ odd(X+1)

By applying rule R3, we unfold clause7 w.r.t. ¬ odd(X+1), and we getP3 = P0 ∪ {8, 9, 10, 11, 12},
where:

9. newp(X)← X=0 ∧∧X+1<1 ∧∧X+1<2

10. newp(X)← X=0 ∧∧X+1<1 ∧∧¬ odd((X+1)−2)

11. newp(X)← X=0 ∧∧X+1>1 ∧∧X+1<2

12. newp(X)← X=0 ∧∧X+1>1 ∧∧¬ odd((X+1)−2)

Now, clauses 9–12 all have an unsatisfiable conjunction of constraints in their body. Thus, by applying
the clause deletion rule R7f, we remove them all and we deriveP4 = P0 ∪ {8}. Then, by unfolding
clause8 w.r.t. ¬ odd(X+1) and deleting the clauses with unsatisfiable constraints, wederiveP4 =
P0 ∪ {13}, where:

13. newp(X)← X≥2 ∧∧X+1>1 ∧∧ even(X−2) ∧∧¬ odd((X+1)−2)

By rule R6, we replace the constrained goalX ≥ 2 ∧∧X+1> 1 ∧∧¬ odd((X+1)−2) by the constrained
goalX≥2 ∧∧¬ odd((X−2)+1), and we deriveP5 = P0 ∪ {14}, where:

14. newp(X)← X≥2 ∧∧ even(X−2) ∧∧¬ odd((X−2)+1)

By applying rule R4 twice, we fold clauses1 and 14 using definition6 and we derive the program
P6 = {2, 3, 4, 5, 15, 16}, where:

15. prop← newp(X) 16. newp(X)← X≥2 ∧∧ newp(X−2)

Finally, clauses15 and 16 are useless and, by applying rule R7u, can be deleted. Thus, we derive
P7 = {2, 3, 4, 5}.

The transformation sequenceP0, . . . , P7 is admissible, and hence by Theorem 2.2 it is correct. In par-
ticular, the two applications of rule R4 satisfy Condition (4) of Definition 2.1 because: (i) clause6 is
σ-tight, (ii.1) the head predicate of clause1 occurs inP0, and (ii.2) clause14 is a descendant of clause8
which has been derived by unfolding w.r.t. aσ-maximal atom whose predicate occurs inP0. Since the
definition ofprop is the empty set of clauses, we have thatprop is false inM(P7). By the correctness of
the transformation sequence, we have proved thatprop is false inM(P0).

Variants of the above rules have been presented in several papers and correctness results have been
proved with respect to various semantics of logic programs and constraint logic programs (see [25] for a
survey of early results, and [9, 30, 35] for more recent work). In this section we have presented only the
rules that are used in the examples presented in the following sections.
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3. Proving Equivalence of CCS Terms

In this section we show the correctness of a mutual exclusionprotocol by using the unfold/fold proof
method. First, we formalize the operational semantics of the protocol within the Calculus for Commu-
nicating Systems (CCS) [22] and we express that semantics using a logic program. Then, we show that
the protocol satisfies the mutual exclusion property by showing the equivalence of two predicates.

Let us start by introducing the basic notions of the fragmentof CCS we need. For the notions not
presented here the reader may refer to [22]. We consider the following sets.
(i) The infinite setA of names.For every nameℓ ∈A we assume that there exists aco-name, denoted

by ℓ. The set of all co-names is denoted byA. We assume that for anyℓ∈A, ℓ = ℓ. (ii) The setAct of
actions, which isA∪A∪{τ}, whereτ is a distinguished element.α, β, . . . range overAct. (iii) The set
Id of identifierswhich are introduced bydefinitions(see Point (v) below). (iv) The setP of processes,
also calledterms, ranged over byp, q, p′, q′, . . ., possibly with subscripts, whose syntax is as follows:

p ∈ P p ::= 0 | α.p | p1+ p2 | p1 | p2 | p\L | P

where:0 is a distinguished process,α is an action inAct, L⊆A is a set of names, andP is a process
identifier in Id. (v) The set ofdefinitionsof the form:P =def p, where every occurrence of an identifier
in p is within a subterm of the formα.p′, with α different fromτ . We will write

∑
i∈I pi to denote the

termp1 + (p2 + (. . .+ pn). . .), for I={1, . . . , n}. Every subtermpi is called asummand.

We define the operational semantics of processes by introducing the binary relation
α
−→ ⊆ P×P,

for everyα∈Act. That relation is defined by the following rules of inference.

Prefix: α.p
α
−→ p Sum:

pj
α
−→ q

∑
i∈I pi

α
−→ q

if j∈I

Parallel Composition:
p1

α
−→ p′1

p1 | p2
α
−→ p′1 | p2

p2
α
−→ p′2

p1 | p2
α
−→ p1 | p′2

(†)
p1

ℓ
−→ p′1 p2

ℓ
−→ p′2

p1 | p2
τ
−→ p′1 | p

′

2

for anyℓ∈A

Restriction:
p

α
−→ q

p\B
α
−→ q\B

if α /∈B∪B, for any setB⊆A of names

Identifier:
p

α
−→ q

P
α
−→ q

whereP =def p

From these rules it follows that the parallel composition ‘|’ is associative and commutative. Ifp
α
−→ q,

we say thatq is anα-derivativeof p. We have that: (i)α.p |α.q
α
−→p |α.q, (ii) α.p |α.q

α
−→ α.p | q, and

(iii) α.p |α.q
τ
−→ p | q. However, due to the restriction ‘\{α}’, we have that:(α.p |α.q)\{α}

τ
−→ p | q,

and neither anα-derivative nor anα-derivative exists for(α.p |α.q)\{α}.
Now we will define the relation=⊆ P×P, calledequality. It requires the definition of the relation≈

⊆ P × P, calledbisimilarity, which in turn requires the definition of the relations
α

=⇒ and
α̂

=⇒, for any
actionα ∈ Act. Let (

τ
−→)∗ denote the reflexive, transitive closure of

τ
−→. Let ε denote the empty

sequence of actions inAct∗. We definêτ to beε, and for any actionα different fromτ , we defineα̂ to
beα itself. Then, we define the following two relations which aresubsets ofP×P:
(i) p

ε
=⇒ q iff p (

τ
−→)∗ q (in particular, for every processp, p

ε
=⇒ p), and

(ii) p
α

=⇒ q iff p (
τ
−→)∗

α
−→ (

τ
−→)∗ q.
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For any actionα∈Act, the definition of
α̂

=⇒ follows from Points (i) and (ii) and the definition of̂α.

Definition 3.1. The relation≈ is thelargestrelation such that, for all processesp andq,

p ≈ q iff ∀α∈Act (i) ∀p′ if p
α
−→ p′ then (∃q′ q

α̂
=⇒ q′ andp′ ≈ q′) and

(ii) ∀q′ if q
α
−→ q′ then (∃p′ p

α̂
=⇒ p′ andp′ ≈ q′).

If p ≈ q, we say thatp andq arebisimilar. The relation= is the relation such that, for all processesp
andq,

p = q iff ∀α∈Act (i) ∀p′ if p
α
−→ p′ then (∃q′ q

α
=⇒ q′ andp′ ≈ q′) and

(ii) ∀q′ if q
α
−→ q′ then (∃p′ p

α
=⇒ p′ andp′ ≈ q′).

If p = q, we say thatp andq areequal.

Let acontextC[−] be a CCS termC without a subterm. For instance,([−] | p)+ q is a context. In general,
given any equivalence relation∼, we say that it is acongruenceiff for all p, q, if p ∼ q, then for all
contextsC[−], C[p] ∼ C[q]. We have the following result [22].

Fact 3.1. The relation≈ is an equivalence relation and it is not a congruence. The relation = is an
equivalence relation and it is the largest congruence contained in≈.

The following are sound axioms for establishing equality between processes: for allp, q, r ∈ P, for
all actionsα, αi, βj , for all setsB⊆Act−{τ},

1. p+ (q + r) = (p+ q) + r 2. p+ q = q + p 3. p+ p = p 4. p+ 0 = p

5. α.τ.p = α.p 6. p+ τ.p = τ.p 7. α.(p + τ.q) = α.(p + τ.q) + α.q

8. 0\B = 0 9. (p+ q)\B = p\B + q\B 10. (α.p)\B = if α∈B∪B then 0 else α.(p\B)

Let p be
∑

i∈I αi.pi andq be
∑

j∈J βj .qj. Then,

11. p | q =
∑

i∈I αi.(pi | q) +
∑

j∈J βj .(p | qj) +
∑

i∈I, j∈J, αi=βj
τ.(pi | qj).

As a consequence of Axioms 8–11, we get the following equality, called Expansion Theorem. For
i = 1, . . . ,m, let pi be a process of the form

∑
j∈J αij.p

′
ij . Then,

(p1| . . . |pm)\B =
∑

αij .(p1| . . . |p
′
ij | . . . |pm)\B +

∑
τ.(p1| . . . |p

′
rh| . . . |p

′
sk| . . . |pm)\B

where: (i) the left summation is over alli∈{1, . . . ,m} and all summandsαij .p
′
ij of pi with αij 6∈B∪B,

and (ii) the right summation is over all distinctr, s ∈ {1, . . . ,m}, all summandsα.p′rh of pr, and all
summandsα.p′sk of ps with α∈B∪B.

We define the semantics of any given processp to be a (finite or infinite) treet, called abehaviour
tree, which has the following syntax: t ::= 0 | α.t | t1+t2 | ⊥

where: (i)0 is theempty behaviour tree, (ii) for everyα∈Act, α.− is a unary constructor, (iii)−+− is
a binary constructor, which is assumed to be associative, commutative, idempotent, with identity0, and
(iv) ⊥ is theundefined behaviour tree. The semantics of a processp of the form either0, or α.p′, or
p1+p2, is the process itself, when viewed as a behaviour tree. The semantics of a processp involving
parallel composition and restriction is the semantics of the process obtained fromp by applying the
Expansion Theorem (which replaces| in favour of+). The semantics of a process identifierP, defined
by P =def p, is the semantics ofp, and thus the semantics of a recursively defined process is, in general,
an infinite, ‘periodic’ behaviour tree. For instance, (i) the semantics ofα.0 isα.0, (ii) the semantics ofP
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defined byP =def α.Q andQ=def β.0, isα.β.0, and (iii) the semantics ofR defined byR =def α.β.R,
is the infinite treeα.β.α.β. . . .

The behaviour tree⊥ has been introduced to avoid the explicit reference to infinite behaviour trees,
as we now explain. First, we need the following definition. Anapproximationof a behaviour treet is
eithert itself or a tree obtained fromt by replacing one or more of its subtrees by⊥.

Then, for any processp and any behaviour treet, we introduce the predicateb(p, t) which holds if
and only ift is afiniteapproximation of the behaviour tree of processp. We list below (see clauses 1–5.6)
some of the clauses that defineb(p, t). Clauses 1–3 refer to processes involving0, α.−, and−+− only.
Clauses 4.1–4.3 refer to parallel composition of processes. Clauses 5.1–5.6 refer to process identifiers.
In clauses 1–5.6 we assume that: (i)B is any subset ofAct−{τ} and

∼
B denotes the setB∪B, (ii) actions

α, β, andγ are pairwise distinct, and (iii) processid(P ) is defined byP =def p and, for i = 1, 2, 3,
processid(Pi) is defined byPi=def pi.

1. b(0, 0) ← 2. b(α.P, α.T )← b(P, T ) 3. b(P1+P2, T1+T2)← b(P1, T1) ∧∧ b(P2, T2)
4.1 b((α.P1 |α.P2 |α.P3)\B, τ.T1+τ.T2)←

b((P1 |α.P2 |P3)\B, T1) ∧∧ b((α.P1 |P2 |P3)\B, T2) for all α∈
∼
B

4.2 b((γ.P1 |α.P2 |β.P3)\B, γ.T ) ← b((P1 |α.P2 |β.P3)\B, T ) for all α, β∈
∼
B andγ 6∈

∼
B

4.3 b((α.P1 | γ.P2 |β.P3)\B, γ.T ) ← b((α.P1 |P2 |β.P3)\B, T ) for all α, β∈
∼
B andγ 6∈

∼
B

5.1 b(id(P ),⊥)← 5.2 b(id(P ), T )← b(p, T )
5.3 b((id(P1) |P2 | id(P3))\B, ⊥)← 5.4 b((id(P1) |P2 | id(P3))\B, T )← b((p1 |P2 | p3)\B, T )
5.5 b((P1 | id(P2) | id(P3))\B, ⊥)← 5.6 b((P1 | id(P2) | id(P3))\B, T )← b((P1 | p2 | p3)\B, T )

Note that Clauses 4.1–4.3 and Clauses 5.3–5.6 are particular instances of more general clauses that one
can introduce for defining the semantics of parallel composition of processes and process identifiers. We
considered these instances because they allow a shorter proof in the example we will present below.

We also introduce, for any two behaviour treest1 andt2, the predicateeq(t1, t2) which holds iff the
equalityt1= t2 follows from Axioms 1–7 (which, among Axioms 1–11, are the ones involvingα.− and

−+− only) by considering behaviour trees rather than processes. (Note that for our unfold/fold proof,
when applying the goal replacement rule, we need to know onlysome valid equivalences holding for
eq, not the clauses definingeq.) We have the following Fact (A): for all processesp andq, if for all
finite behaviour treest, ∃t1(b(p, t1) ∧∧ eq(t1, t)) iff ∃t2(b(q, t2) ∧∧ eq(t2, t)), thenp = q (in the sense of
Definition 3.1).

Now, by using the unfold/fold proof method, we will prove thecorrectness of a simple locking
protocol for mutual exclusion [14]. We consider the predicate b(Sys, T1) that defines the operational
semantics of the protocol (denoted by the CCS termSys), and the predicateb(Mutex, T2) that de-
fines the mutual exclusion property (denoted by the CCS termMutex). Then, we consider the predi-
catesnew1(T ) andnew2(T ) defined by the clausesnew1(T )← b(Sys, T1) ∧∧ eq(T1, T ) andnew2(T )←
b(Mutex, T2) ∧∧ eq(T2, T ), respectively. By constructing an admissible transformation sequence using
the program transformation rules of Section 2, we will derive for new1 andnew2 two identical sets of
clauses (modulo the name of the predicates), and henceM(Beq) |= ∃T1(b(Sys, T1) ∧∧ eq(T1, T )) ↔
∃T2(b(Mutex, T2) ∧∧ eq(T2, T )), whereM(Beq) is the perfect model of the programBeqmade out of
the clauses forb andeq. Thus, by Fact (A) above, we have thatSys= Mutex, and this proves mutual
exclusion.

In the protocol we consider, we have two processes, a reader processR and a writer processW, which
want to access a common store. They are defined as follows:R =def r1.r2.R and W =def w1.w2.W .
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The purpose of the protocol is to ensure mutual exclusion, that is, in every sequence of actions neither
actionw1 nor actionw2 should occur in between the two actionsr1 andr2, and symmetrically, neither
r1 nor r2 should occur in betweenw1 andw2. The parallel composition(R |W ) doesnot ensure mutual
exclusion. Indeed, for instance, we have that:(R |W ) r1−→

w1−→
r2−→ (R |W ). In order to ensure mutual

exclusion, (i) we consider the extra process:L =def l.u.L, (wherel stands forlock andu for unlock),
and (ii) we modify the processesR andW by requiring that they should get the lock fromL before their
actions (by performing the actionl) and should release it toL afterwards (by performing the actionu).
Thus, we get the following two modified processes:R′ =def l.r1.r2.u.R

′ andW ′ =def l.w1.w2.u.W
′.

Now, processesR′ andW ′, when composed in parallel with processL, can access the common store
in a mutually exclusive way only. Indeed, in particular, if the processL wants to perform the actionl,
then by the parallel composition rule(†), only oneof the two processesR′ andW ′ can engage in that
action with processL by performingl. We will formally prove that mutual exclusion is ensured by
showing that the process, calledSys, which is the term(l.r1.r2.u.R′ | l.w1.w2.u.W

′ | l.u.L)\{l, u} is
equal (in the sense of the equality relation= of Definition 3.1) to the following process specifying the
desired mutually exclusive access to the store:Mutex=def τ.r1.r2.Mutex+ τ.w1.w2.Mutex. Note that,
in contrast to the processMutex1 defined as:Mutex1 =def r1.r2.Mutex1 + w1.w2.Mutex1, our process
Mutexgives to the store the extra possibility of deciding ‘of its own volition’ to give access either to the
reader or to the writer.

The unfold/fold proof starts off by introducing, using ruleR1, the following two predicatesnew1(T )
andnew2(T ):
1. new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\{l, u}, T1) ∧∧ eq(T1, T )
2. new2(T )← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T2) ∧∧ eq(T2, T )
The bodies of clauses 1 and 2 define, indeed, the systemSysand the propertyMutex, respectively. As a
consequence of its definition, the predicateeqsatisfies the following equivalences, which we need below
in the unfold/fold proof (free variables are assumed to be universally quantified at the front):
E1. for allα∈Act, eq(α.τ.T1, T )↔ eq(α.T1, T ) (see Axiom 5 above)
E2. for allu, v∈Act+, eq(u.T1+v.T2, T )↔ ∃U1∃U2 (eq(T1, U1) ∧∧ eq(T2, U2) ∧∧ eq(u.U1+v.U2, T ))

together with the equivalences which axiomatize the fact thateq is a congruence. We deal with predicate
new1 first. By applying rule R2 we unfold clause 1 using the definitions ofR′,W ′, andL. We get:
1.1 new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T1) ∧∧ eq(T1, T )
whereC denotes the set{l, u}. By unfolding clause 1.1 using clause 4.1, we get:
1.2 new1(T )← b((r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | u.id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | w1.w2.u.id(W ′) | u.id(L))\C, T12) ∧∧ eq(τ.T11+τ.T12, T )
After a few unfolding steps using clauses 4.1, 4.2, and 4.3, from clause 1.2 we get:
1.3 new1(T )← b((id(R′) | l.w1.w2.u.id(W ′) | id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | id(W ′) | id(L))\C, T12) ∧∧ eq(τ.r1.r2.τ.T11+τ.w1.w2.τ.T12, T )

By applying the goal replacement rule R6 based on (E1) and on the congruence axioms foreq, we get:
1.4 new1(T )← b((id(R′) | l.w1.w2.u.id(W ′) | id(L))\C, T11)

∧∧ b((l.r1.r2.u.id(R′) | id(W ′) | id(L))\C, T12) ∧∧ eq(τ.r1.r2.T11+τ.w1.w2.T12, T )

Then, by a few more unfolding steps from clause 1.4 using clauses 5.3–5.6, we get:
1.5 new1(T )← eq(τ.r1.r2.⊥+τ.w1.w2.⊥, T ) (∗)

1.6 new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12)
∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.T12, T )
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1.7 new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11)
∧∧ eq(τ.r1.r2.T11+τ.w1.w2.⊥, T )

1.8 new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11)
∧∧ b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12)
∧∧ eq(τ.r1.r2.T11+τ.w1.w2.T12, T )

By applying the goal replacement rule based on (E2) (and instances of it) to clauses 1.6–1.8, we get:
1.6r new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12) ∧∧ eq(T12, U12)

∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U12, T )

1.7r new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11) ∧∧ eq(T11, U11)

∧∧ eq(τ.r1.r2.U11+τ.w1.w2.⊥, T )

1.8r new1(T )← b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T11) ∧∧ eq(T11, U11)

∧∧ b((l.r1.r2.u.id(R′) | l.w1.w2.u.id(W ′) | l.u.id(L))\C, T12) ∧∧ eq(T12, U12)

∧∧ eq(τ.r1.r2.U11+τ.w1.w2.U12, T )

By applying rule R4 and folding clauses 1.6r–1.8r using clause 1, we get:
1.6f new1(T )← new1(U12) ∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U12, T ) (∗)

1.7f new1(T )← new1(U11) ∧∧ eq(τ.r1.r2.U11+τ.w1.w2.⊥, T ) (∗)

1.8f new1(T )← new1(U11) ∧∧ new1(U12) ∧∧ eq(τ.r1.r2.U11+τ.w1.w2.U12, T ) (∗)

Now we deal with predicatenew2. Starting from clause 2 we perform a derivation similar to the one
we have performed starting from clause 1. By unfolding clause 2, we get:
2.1 new2(T )← b(τ.r1.r2.id(Mutex), T21) ∧∧ b(τ.w1.w2.id(Mutex), T22) ∧∧ eq(T21+T22, T )
After a few unfolding steps, from clause 2.1 we get the following clauses:
2.2 new2(T )← eq(τ.r1.r2.⊥+τ.w1.w2.⊥, T ) (∗∗)

2.3 new2(T )← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T22) ∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.T22, T )

2.4 new2(T )← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T21) ∧∧ eq(τ.r1.r2.T21+τ.w1.w2.⊥, T )

2.5 new2(T )← b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T21)
∧∧ b(τ.r1.r2.id(Mutex) + τ.w1.w2.id(Mutex), T22) ∧∧ eq(τ.r1.r2.T21+τ.w1.w2.T22, T )

Then, by applying the goal replacement rule based on (E2) (and instances of it) to clauses 2.3–2.5, and
by folding the derived clauses using clause 2, we get:
2.3f new2(T )← new2(U22) ∧∧ eq(τ.r1.r2.⊥+τ.w1.w2.U22, T ) (∗∗)

2.4f new2(T )← new2(U21) ∧∧ eq(τ.r1.r2.U21+τ.w1.w2.⊥, T ) (∗∗)

2.5f new2(T )← new2(U21) ∧∧ new2(U22) ∧∧ eq(τ.r1.r2.U21+τ.w1.w2.U22, T ) (∗∗)

The transformation sequence from clause 1 to the clauses marked with (∗) and the transformation se-
quence from clause 2 to the clauses marked with(∗∗), constructed by applying the transformation rules
of Section 2, are admissible. Indeed, by takingσ(new1) = σ(new2) = σ(b) > σ(eq), Condition 4 of
Definition 2.1 is satisfied. Thus, those sequences are correct.

Since the clauses marked with(∗) are equal (modulo the namesnew1 and new2) to the clauses
marked with(∗∗), we conclude that the given systemSyssatisfies the mutual exclusion property.

4. Proving First-Order Formulas

In this section we illustrate a transformation technique for checking whether or not a first order propertyϕ
holds in the perfect modelM(P ) of a stratified CLP programP , that is, whether or notM(P ) |=ϕ holds.
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In particular, we show how unfold/fold program transformations can be used to extend to CLP programs
the quantifier elimination technique used for proving theorems in first order logic [32].

The basic idea of our technique is to transform a given formula ϕ with quantified variables into
CLP clauses with existential variables (that is, variablesoccurring in the body of a clause and not in its
head), and then to apply the Existential Variable Elimination strategy (EVE) [28, 31] to eliminate those
variables, hence deriving a propositional programQ. Then we can check whether or notM(P ) |=ϕ holds
by constructing the perfect model ofQ. SinceM(P ) |= ϕ is in general undecidable, the EVE strategy
may not terminate. The EVE strategy requires that the theoryof constraints occurring in a stratified CLP
program admits quantifier elimination and, indeed, this is the case for the theory of constraints introduced
in Section 2, also known as the theory of Linear Real Arithmetic (LRA) [20].

Given a stratified programP with no existential variables and a closed first order formula ϕ, our
method for proving whether or notM(P ) |=ϕ holds consists of the following two steps.
Step1. We transform the formulap← ϕ, wherep is a predicate symbol not occurring inP andϕ, into a

setD(p, ϕ) of clauses such thatM(P ) |=ϕ iff M(P ∪D(p, ϕ)) |=p. This step is done by applying a
variant of the Lloyd-Topor transformation [19].

Step2. We derive fromP ∪ D(p, ϕ) a propositional, stratified logic programQ such that M(P ∪
D(p, ϕ)) |= p iff M(Q) |= p. This step is done by applying the transformation rules of Section 2
according to the EVE strategy.

If Step 2 terminates, the perfect model ofQ is a finite set that can be constructed in finite time, and thus
in finite time we can check whether or notM(Q) |=p holds by checking whether or notp∈M(Q).

The EVE strategy is an extension to CLP programs of the UDF strategy for logic programs [31] (fur-
ther details can be found in [28]). The setD(p, ϕ) constructed at the end of Step 1 is a set{D1, . . . ,Dn}
of clauses such that, fori=1, . . . , n, (i) the head predicate ofDi does not occur inP ∪{D1, . . . ,Di−1},
and (ii) every predicate symbol in the body ofDi occurs inP ∪ {D1, . . . ,Di−1}.

The Existential Variable Elimination StrategyEVE.
Input: A stratified programP and the setD(p, ϕ) = {D1, . . . ,Dn} of definitions generated by the

Lloyd-Topor transformation fromp← ϕ.
Output: A propositional programQ such thatM(P ∪D(p, ϕ)) |=p iff M(Q) |=p.

T := P ;
FOR i = 1, . . . , n DO

Defs:= {Di}; InDefs:= {Di};
WHILE InDefs 6= ∅ DO LET D∈ InDefs IN

IF evars(D) 6= ∅ THEN Unfold(D,T,Us); Simplify(Us,Ss); Define-Fold(Ss,Defs,NewDefs,Fs)
ELSE Fs := {D}; NewDefs= ∅ FI;

T := T∪ Fs; Defs:= Defs∪NewDefs; InDefs:= (InDefs−{D}) ∪ NewDefs
OD

OD;
Q = Defs∗(p,T)

For each definitionDi, the strategy iteratively applies the following three procedures:Unfold, Simplify,
andDefine-Fold.
� Unfold. A definition clauseD containing existential variables is unfolded w.r.t. each (positive or
negative) literal in the body using programT (initially T is the input programP ), thereby deriving a set
Usof clauses. When unfolding, we use the rules R2 and R3. Note that, as indicated in [28], Condition (i)
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of rule R3 (requiring a suitable instantiation of negative literals) can be satisfied by imposing syntactic
restrictions on programs and by using a specific unfolding strategy. Condition (ii) of rule R3 (requiring
the absence of existential variables in the body of the clauses used for unfolding) is satisfied because the
initial programP has no existential variables and the programT derived at the end of each iteration of
theWHILE-loop has no existential variables either.
� Simplify. The setUs of clauses obtained by unfolding is simplified, thereby deriving a new setSsof
clauses as follows: (1) we apply rule R6 and exploit the fact that LRA admits quantifier elimination, for
removing implied subconstraints and existential variables occurring in constraints only, and (2) we apply
rules R7s and R7f for deleting subsumed clauses and clauses with a false body.
� Define-Fold. By using rule R4 each clauseγ∈Ssthat contains an existential variable is folded so that
the derived clause has no existential variables. Folding isperformed by using: (1) either a previously
introduced definition in the setDefs, (2) or a suitable new definition introduced by applying ruleR1. Note
that, in Case (2), Conditions (i) and (ii) of rule R4 are satisfied by introducing a new definition whose
body is the smallest constrained subgoal of the body ofγ containing all occurrences of the existential
variables ofγ (see [28] for details). The new definitions and the folded clauses are collected in the
setsNewDefsandFs, respectively. Note that the new definitions that are introduced by theDefine-Fold
procedure are added to the setInDefs, and thus require further iterations of the body of theWHILE-loop
of the EVE strategy.

Each iteration of the body of theWHILE-loop terminates and produces a programT with no existential
variables, at the expense of possibly introducing new predicate definitions. The strategy terminates when
no new definitions are introduced. It may be the case that an unbounded number of new definitions has
to be introduced and the strategy does not terminate.

Let T 0 be programP and, fori = 1, . . . , n, let T i andDefsi denote, respectively, the programT
and the setDefsat the end of thei-th iteration of theFOR-loop. The proof of correctness of the EVE
strategy is based on the fact that, fori=1, . . . , n, programT i has been obtained from programT i−1 via
an admissible transformation sequence, and hence, by Theorem 2.2,M(T i−1 ∪Defsi)=M(T i).

The last step of the EVE strategy consists in deriving the programQ by taking the clauses in the
extended definitionDefs∗ of p in T .

Now we illustrate how the EVE strategy works by means of an example. Let us consider the theory
of finite, ordered lists of real numbers, defined by the following clauses:

1. ord([ ])← 5. nth([A|L], P,E)← P =0 ∧∧ A=E

2. ord([A|L])← ord1(A,L) 6. nth([A|L], P,E)← P >0 ∧∧ nth(L,P−1, E)

3. ord1(A, [ ])← 7. el([ ], [ ]) ←
4. ord1(A, [B|L])← A≤B ∧∧ ord1(B,L) 8. el([A|L], [B|M ]) ← el(L,M)

where: (i)ord(L) holds the listL is ordered, (ii)nth(L,P,E) holds iff in the listL the element at posi-
tionP isE, and (iii)el(L,M) holds iff the listsL andM have equal length. Let us consider the following
propertyϕ: given two ordered listsX andY of equal length, the listZ obtained by element-wise sum of
the elements inX andY, is ordered. Thus,ϕ ≡ ∀X ∀Y ∀Z el(X,Y ) ∧∧ el(X,Z) ∧∧ψ(X,Y,Z) ∧∧ ord(X)
∧∧ ord(Y )→ ord(Z), where the subformulaψ definesZ in terms of element-wise sum ofX andY , that
is,ψ(X,Y,Z) ≡ ∀P ∀E ∀F nth(X,P,E) ∧∧ nth(Y, P, F )→ nth(Z,P,E+F ).
Step1. By Lloyd-Topor transformation from the formulap← ϕ we derive the following setD(p, ϕ) of
definitions:
9. r(X,Y,Z)← nth(X,P,E) ∧∧ nth(Y, P, F ) ∧∧ ¬ nth(Z,P,E+F )
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10. q ← el(X,Y ) ∧∧ el(X,Z) ∧∧ ¬ r(X,Y,Z) ∧∧ ord(X) ∧∧ ord(Y ) ∧∧ ¬ ord(Z)

11. p← ¬ q

Step2. The inputs of the EVE strategy are the programP = {1, 2, 3, 4, 5, 6, 7, 8} and the setD =
{9, 10, 11}. The strategy starts off by applying to clause 9 a single stepof (positive or negative) unfolding
(that is, rule R2 or rule R3) w.r.t. each literal. We get:

12. r([A|B], [C|D], [ ])←

13. r([A|B], [C|D], [E|F ]) ← E 6=A+C

14. r([A|B], [C|D], [ ])← E≥0 ∧∧ nth(B,E,F ) ∧∧ nth(D,E,G)

15. r([A|B], [C|D], [E|F ]) ← G≥0 ∧∧ G<0 ∧∧ nth(B,G,H) ∧∧ nth(D,G, I)

16. r([A|B], [C|D], [E|F ]) ← G≥0 ∧∧ nth(B,G,H) ∧∧ nth(D,G, I) ∧∧ ¬ nth(F,G,H+I)

Clause 13 with6= in its body stands for two different clauses, one with> and one with<. Clause 14 is
deleted by applying rule R7s, because it is subsumed by clause 12. Clause 15 is deleted by applying rule
R7f, sinceR |=¬∃(G≥ 0 ∧∧G< 0). Clause 16 cannot be folded using clause 9, becausetrue 6⊑ G≥ 0.
Thus, the following new definition 17 is introduced and clause 16 is folded using clause 17:

17. n1(A,B,C)← D≥0 ∧∧ nth(A,D,E) ∧∧ nth(B,D,F ) ∧∧ ¬ nth(C,D,E+F )

18. r([A|B], [C|D], [E|F ]) ← n1(B,D,F )

The set{12, 13, 18} of clauses defining predicater has no existential variables. However, the new
definition clause 17 has existential variables. Thus, the strategy proceeds by transforming clause 17. By
unfolding and simplifying, we obtain:

19. n1([A|B], [C|D], [ ]) ←

20. n1([A|B], [C|D], [E|F ]) ← E 6=A+C

21. n1([A|B], [C|D], [E|F ]) ← G≥0 ∧∧ nth(B,G,H) ∧∧ nth(D,G, I) ∧∧ ¬ nth(F,G,H+I)

Now, clause 21 can be folded by using the previously introduced clause 17, thus obtaining:

22. n1([A|B], [C|D], [E|F ]) ← n1(B,D,F )

The clauses 19, 20, and 22 definingn1 in the current program do not contain any existential variable.
The EVE strategy proceeds by processing the next definition inD(p, ϕ), that is, clause 10. Starting from
clause 10 we perform a derivation similar to the one performed starting from clause 9. In particular,
during this derivation we introduce a new predicaten2 and, by unfolding, clause deletion, and folding
steps, we get the following two clauses:

23. q ← n2 24. n2 ← n2

Finally, the EVE strategy takes into consideration the lastclause inD(p, ϕ), that is, clause 11. Since this
clause has no existential variables, it is simply added to the final programT . Thus, the EVE strategy
terminates returning the propositional programQ=Defs∗(p, T )={p←¬q, q←n2, n2←n2}.

The perfect model ofQ isM(Q) = {p}. By the correctness of the EVE strategy, we haveM(P ∪
{9, 10, 11}) |=p, and by the correctness of the Lloyd-Topor transformation,we concludeM(P ) |=ϕ.

Note that the EVE strategy does not depend on the specific theory of constraints and can be applied
to all CLP programs whose theory of constraints admits quantifier elimination (LRA in our example).
For some classes of CLP programs we can prove the terminationof the EVE strategy, and thus the
decidability of the theorem proving problem (for example, in [11] a similar strategy has been applied for
deciding weak monadic second order logic [32]).
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5. Temporal Logics and Verification of Infinite State Systems

In this section we show how to apply the unfold/fold proof method for verifying properties of infinite
state systems specified by using formulas of the temporal logic CTL (Computation Tree Logic[5]).

A concurrent system can be modeled as astate transition systemconsisting of: (i) a (possibly infinite)
setS of states, (ii) a setI⊆S of initial states, and (iii) atransition relation tr⊆S×S. We assume that,
for every states∈S, there exists at least one states′∈S, called asuccessor stateof s, such thattr(s, s′)
holds. Acomputation pathstarting from a states1 is aninfinite sequence of statess1 s2 . . . such that, for
all i≥1, tr(si, si+1) holds, that is, there is a transition fromsi to si+1.

The properties of (the computation paths of) a state transition system can be specified by using
the CTL logic, whose formulas are built from a given set ofelementary properties, by using: (i) the
connectives:not andand, (ii) the quantifiers along a computation path:g (‘for all states on the path’),
f (‘for some state on the path’),x (‘in the successor state’), andu (‘until’), and (iii) the quantifiers over
computation paths:a (‘for all paths’) ande (‘for some path’). For example, the formulaa(f(F )) holds
in a states if on every computation path starting froms there exists a states′ whereF holds. In what
follows, for reasons of readability, we will use a compact notation and, for instance, we will writeaf(F ),
instead ofa(f (F )).

We consider theTicket Protocol[2], which can be used for controlling the behaviour of two processes,
sayAandB, competing for the access to a shared resource. The protocolhas the objective of guaranteeing
both mutual exclusionwhen accessing the resource, andstarvation freedom, which means that every
request will eventually be served. The interaction betweenthe two processes and the resource is realized
by assigning tickets to processes that request access to theresource.

The stateof processA is represented by a pair〈SA,TA〉, whereSA, called thecontrol state, is an
element of the set{t, w, u} (wheret, w, andu stand forthink, wait, anduse, respectively), andTA is a
non-negative number encoding the ticket assigned to process A. Analogously, the state of processB is
encoded by〈SB,TB〉. Thus, the state of the system resulting from the composition of the two processesA
andB is represented by the term〈SA,TA, SB,TB , T,N〉, whereT is a non-negative number which is used
for storing the value of the next ticket to be issued, andN is a non-negative number such that ifTA≤N,
then processA may access the shared resource (and similarly forTB and processB).

A state is initial if and only ifT andN have the same value and both processes are in the control state
think. Thus, the (infinite) set of initial states can be encoded by introducing a predicateinitial , such that
initial (X) holds iffX is an initial state, defined by the following CLP clause:
1. initial (〈t,TA, t,TB, T,N〉)← T=N ∧∧ T≥0

The transition relation is defined by a predicatetr(X,Y ) which holds iffY is a successor state ofX.
The following set of clauses encode the transitions for processA, where, for brevity, we have used non-
distinct variables in the head of clauses and we have omittedto write constraints of the formT ≥ 0 and
N≥0 to ensure that real variables range over non-negative numbers.
2. tr(〈t,TA, SB,TB , T,N〉, 〈w,T, SB,TB , T1,N〉)← T1=T+1
3. tr(〈w,TA, SB,TB , T,N〉, 〈u,TA, SB,TB , T,N〉)← TA ≤ N
4. tr(〈u,TA, SB,TB , T,N〉, 〈t,TA, SB,TB , T,N1〉)← N1=N+1

These clauses correspond to the arcs of the state transitiondiagram shown in Figure 1. The clauses
encoding the transitions for processB are similar and we do not show them here. Note that, since the
values of the numeric variables can increase in an unboundedway, the system has an infinite number of
states.
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Figure 1. The Ticket Protocol: the state transition diagramfor processA.

We define a predicatesat(X,F ) which holds if and only if the CTL formulaF is true at stateX [13] (see
also [10, 18] for similar encodings). For instance, the following clauses define the predicatesat(X,F )
for the cases where the formulaF is: (i) an elementary formula, (ii) a formula of the formnot(F ), (iii) a
formula of the formand(F1, F2), (iv) a formula of the formef(F ), and (v) a formula of the formaf(F ).

5. sat(X,F )← elem(X,F ) 6. sat(X,not(F ))← ¬sat(X,F )
7. sat(X,and(F1, F2))← sat(X,F1) ∧∧ sat(X,F2)

8. sat(X,ef(F ))← sat(X,F ) 9. sat(X,ef(F ))← tr(X,Y ) ∧∧ sat(Y,ef(F ))
10. sat(X,af(F ))← sat(X,F ) 11. sat(X,af(F ))← trs(X,Ys) ∧∧ sat all(Ys,af(F ))
12. sat all([ ], F )← 13. sat all([X|Xs], F )← sat(X,F ) ∧∧ sat all(Xs, F )

whereelem(X,F ) holds iff F is an elementary property which is true at stateX, andtrs(X,Ys) holds
iff Ysis a list of all the successor states ofX. For instance, we have that the elementary propertythinkA
is encoded by the clause:elem(〈t,TA, SB ,TB, T,N 〉, thinkA) ←. Similarly for the other elementary
properties for processesA andB. The clauses for the predicatetrs (when the control state of processB
in the source state isthink) are shown below:

14. trs(〈t,TA, t,TB , T,N〉, [〈w,T, t,TB , T1,N〉, 〈t,TA, w,T, T1,N〉])← T1=T+1

15. trs(〈w,TA, t,TB , T,N〉, [〈u,TA, t,TB , T,N〉, 〈w,TA, w,T, T1,N〉])← TA≤N ∧∧ T1=T+1

16. trs(〈w,TA, t,TB , T,N〉, [〈w,TA, w,T, T1,N〉])← TA>N ∧∧ T1=T+1

17. trs(〈u,TA, t,TB , T,N〉, [〈t,TA, t,TB , T,N1〉, 〈u,TA, w,T, T1,N 〉])← T1=T+1 ∧∧ N1=N+1

For example, the first clause states that when both processesare in thethink control state, there are two
possible successor states where exactly one of them is in thewait control state. For lack of space we
omit the other clauses fortrs.

In order to verify that a CTL formula denoted by a ground termF holds for all initial states, we
define a new predicateprop:

prop≡def ∀X(initial (X)→ sat(X,F ))
By using a variant of the Lloyd-Topor transformation [19] (see Section 4 for a similar transformation)
and by the semantics ofnot defined by clause 7, we encode this definition by the followingtwo clauses:
18. prop← ¬negprop 19. negprop← initial (X) ∧∧ sat(X,not(F ))
Let PF denote the constraint logic program consisting of the clauses defining the predicatesprop,
negprop, initial , sat, sat all, tr, trs, andelem. The programPF is locally stratified and, hence, it has
a unique perfect model, denotedM(PF ). One can show that our CLP encoding of the satisfiability of
CTL formulas for state transition systems is correct [13], that is, for all statess∈I, the formulaF holds
at states iff prop∈M(PF ).

As already mentioned, the Ticket Protocol satisfies both: (i) the mutual exclusionproperty, for-
bidding the processesA andB to be at the same time in the control stateuse, and (ii) thestarvation
freedomproperty stating that, if a process, sayA, has requested access to the resource and is wait-
ing for accessing it (that is, the control state of processA is wait) then, whatever the system does, the
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process will eventually gain access to the resource (that is, the control state of processA will be use).
The latter property is expressed by the CTL formulaSF: ag(waitA → af(useA)), which is equivalent
to not(ef(and(waitA,not(af(useA))))). By using the fact that for every CTL formulaF , the formula
not(not(F )) is equivalent toF , the starvation freedom property is encoded by the following two clauses:

20. prop← ¬negprop 21. negprop← initial (X) ∧∧ sat(X,ef(and(waitA,not(af(useA)))))

Now, let us consider a program, call itPSF, which is like programPF , except that clause 19 fornegprop
has been replaced by clause 21. If we transform programPSF by applying the transformation rules R1–R5
and R7 according to a variant of the EVE strategy presented inSection 4, we derive a program containing
a fact of the form:prop←. Thus, by the correctness of the encoding of the satisfiability relation of CTL
properties and by the correctness of the transformation rules, we conclude that the Ticket Protocol enjoys
the starvation freedom property.

The verification of the starvation freedom property can be performed automatically by using the MAP
system [1]. In [13], we have presented a transformation strategy, also based on the UDF strategy [31], that
works byspecializingprogramPF with respect to any given CTL formulaF and any given definitions
of the predicatesinitial , tr, trs, andelem. In order to guarantee the termination of the transformation
process, the strategy usesgeneralization operators(such aswidening[7]) when introducing the required
new definition clauses. Using that automatic strategy one can verify safety and liveness properties of
several infinite-state concurrent systems, including mutual exclusion, parameterized cache coherence,
and communication protocols (see [13] for details).

6. Further Developments and Conclusions

The techniques and the examples presented in this paper demonstrate that the unfold/fold proof method
is very flexible and has a large variety of applications. Indeed, the method can be used for several
logics (such as classical logic and temporal logic) and induction principles (such as fixpoint induction
and structural induction). Moreover, it can be used for reasoning about programs written using different
programming languages and different formalisms (such as concurrent process algebras, constraint logic
programs, and transition systems).

In recent papers, the ability of the unfold/fold proof method to encode several induction principles
has been exploited to develop techniques for reasoning about infinite structures [29, 36]. In [29] prop-
erties of programs on infinite lists are encoded using logic programs with the perfect model semantics,
and those properties are proved by using transformation rules similar to the ones presented in this pa-
per. In [36] properties of programs on infinite structures are encoded usingcoinductivelogic programs
(CoLP), whose semantics is defined by means of least and greatest models [37]. Then, those properties
are proved by using unfolding and folding transformations that preserve the semantics of CoLP, thereby
encoding a coinductive proof principle.

One key feature of the proof method presented in this paper isthe use of constraint logic program-
ming as ametalanguagefor specifying both the programs and the logics to reason over programs. This
feature makes the proof method suitable for a large number ofdifferent applications. For instance, re-
cent papers (such as [8]) show that the unfold/fold proof method can be used to perform the analysis of
imperative programs (see [16] for a survey of related techniques in the field ofsoftware model checking).
The technique presented in [8] works as follows. Given an imperative programP and a propertyϕ to
be verified, one encodes both the interpreter ofP and the propertyϕ using a CLP programI (see [24]
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for the definition of a CLP interpreter of an imperative language). Then, the propertyϕ is proved by
applying the unfold/fold proof method to programI. In particular, the transformation strategy used in
this case consists in specializingI with respect to the given imperative programP .

We believe that the transformation-based methodology for theorem proving and program verification
we have presented in this paper has a great potential. Some ofthe transformation rules and strategies
presented here have been implemented in the MAP system [1] and we have obtained encouraging results.
Current work is devoted to the mechanization of the verification and theorem proving techniques and to
the improvement of the tools based on the transformation methodology so that they may perform well
also for large scale programs.
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