Fundamenta Informaticae 127 (2013) 1-20
DOI 10.3233/FI-2013-890
10S Press

Proving Theorems by Program Transformation

Fabio Fioravanti*
University of Chieti-Pescara, Pescara, Italy
fioravanti@unich.it

Alberto Pettorossi
University of Rome Tor Vergata, Via del Politecnico 1, 00R28ne, Italy
pettorossi@disp.uniroma2.it

Maurizio Proietti
IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy
maurizio.proietti@iasi.cnr.it

Valerio Senni
IMT, Institute for Advanced Studies, Lucca, Italy
valerio.senni@imtlucca.it

Abstract. In this paper we present an overview of tigold/fold proof methoca method for prov-
ing theorems about programs, based on program transfammais a metalanguage for specifying
programs and program properties we adopt constraint lagigremming (CLP), and we present a
set of transformation rules (including the familianfoldingandfolding rules) which preserve the
semantics of CLP programs. Then, we show how program tremsfton strategies can be used,
similarly to theorem proving tactics, for guiding the ajgplion of the transformation rules and
inferring the properties to be proved. We work out three gxasa (i) the proof of predicate equiv-
alences, applied to the verification of equality between @@®esses, (ii) the proof of first order
formulas via an extension of the quantifier elimination neetrand (iii) the proof of temporal prop-
erties of infinite state concurrent systems, by using a toamstion strategy that performs program
specialization.

Keywords: Automated theorem proving, program transformation, gairgtlogic programming,
program specialization, bisimilarity, quantifier elimiiwa, temporal logics.

*Address for correspondence: DEC, University of Chietid@es, Viale Pindaro 42, 65127 Pescara, ltaly

2 F. Fioravanti et al./ Proving Theorems by Program Transfation

1. Introduction

Program transformation is a methodology that allows thgfmmer to separate the correctness concern
and the efficiency concern when developing programs [4].mtral, maybe inefficient, program whose
correctness with respect to a given specification can ebsifyroved, is transformed, possibly in several
steps, into an efficient program by applying correctnessgmng transformations.

Although its main objective is the improvement of efficienityhas long been recognized that pro-
gram transformation can also be used as a methodology femgr@rogram properties and, more in
general, for proving theorems. Indeed, in the case of fanatior logic programming, programs can
be regarded as theories consisting of sets of equationsogitdl implications, respectively, which are
associated with models defined by a suitable program secsdgither least or greatest models). Thus,
transforming programs can be regarded as an activity byhwme deduces consequences of theories,
that is, theorems which hold in the models defined by the ghegnantics. In this setting, the elementary
transformation steps, often callednsformation rulescan be regarded as inference rules, and composite
transformations, often calladansformation strategiesan be regarded as theorem proving tactics.

The view of program transformation as a theorem proving/igtivas first suggested in the seminal
paper by Burstall and Darlington [4], where some equivagsrioetween functions defined by recursive
equations are proved by applyinmfolding and folding transformations. Given a function definition
f(xz)=D]|x], the unfolding rule consists in replacing a function gglt) occurring in the right hand side
of a program equation by the expressibf]. The folding rule is the inverse of the unfolding rule, and
consists in replacing an occurrence of the expressign by the function callf(¢). In order to prove
the equivalence of two functions, sgyand g, Burstall and Darlington proposed a method, which we
will call the unfold/fold proof methodbased on program transformations: by applying the urigldi
and folding rules, the definitions gf and g are transformed into two syntactically identical sets of
equations (modulo the function and variable names) andtiawially, theterminationof the derived set
of equations is proved, to avoid thAftz) andg(x) differ for values ofz where the function defined by
the new set of equations fails to terminate. (Essentidiig, proof method is a transformational version
of McCarthy’s induction principle [21].)

Burstall and Darlington’s unfold/fold proof method for fttional programs has been further refined
in several papers (see, for instance, [6, 17]). In particidatt [17] proposed a method to avoid the
termination check, which is hard to automate in general.totethod guarantees the soundness of
the unfold/fold method by a suitable bookkeeping of the i@pgibns of the unfolding and folding rules
performed during the proof. Obviously, since program egjeice is undecidable and not even semide-
cidable, the unfold/fold proof method is necessarily inptete. However, completeness results for some
classes of programs (including equational definitions géil&r sets of trees) were presented in [6].

Tamaki and Sato extended the unfold/fold transformatiothodology to logic programs in [38].
After their landmark paper, a lot of work has been done to @it correctness of the transformation
rules with respect to the various semantics of logic prograand to devise strategies of application of
the rules which have the objective of improving program &fficy (see [25] for a survey of early work
in the area).

Also the unfold/fold proof method has been extended to lpgigramming to prove equivalences of
predicates, instead of functions, that is, first order fdeswf the formv.X (p(X) < ¢(X)) [26]. This
method has been shown to be effective for several verificatisks, such as the verification of properties
of parameterized concurrent systems [33]. Moreover, bgoustie Lloyd-Topor transformation [19],

F. Fioravanti et al./ Proving Theorems by Program Transfation 3

any first order logic formula can be translated into a logmgpoam with negation, thereby extending the
applicability of the unfold/fold proof method to prove anssfiorder formula, not only equivalences [27].

In the context of first order theorem proving, for reasonsffi€iency it is often useful to employ
specialized theorem provers for specific theories. Thishg @Gonstraint Logic Programmin§CLP) is
a very attractive paradigm [15], as it combines general gagpresolution-based logical reasoning, with
dedicated theorem provers (callsdlversin this framework) for restricted theories obnstraints(for
instance, linear equalities and inequalities over thegiertg or the rationals, or the reals, and formulas
over the booleans or finite domains). The unfold/fold proetmod has also been developed in the case
of CLP programs, thereby combining rules and strategiegdasforming logic programs with theorem
proving techniques that exploit properties of the specifiastraint domain [28].

Many non-classical logicssuch as temporal logics, can be encoded into (constraigity program-
ming and, by this encoding, the unfold/fold proof method banused for proving theorems in those
logics. This observation has lead to the design of transdtional techniques for proving temporal prop-
erties of infinite state concurrent systems [10, 13, 18, 23].

The large variety of contexts where the unfold/fold prootinoel can be applied witnesses its great
generality and flexibility. Besides this, we would like toests the main technical point that motivates
exploring the connections between program transformatimhtheorem proving: many automated trans-
formation strategies which have been developed with thé @faenproving program efficiency can be
turned into proof tactics. One notable example is the giyafer eliminating existential variables, whose
initial motivation was to avoid the construction of unnesggy data structures when computing with
logic programs [31]. The same strategy can also be regamsledtechnique for proving theorems by
quantifier elimination(see, for instance, [32]).

In this paper we overview the unfold/fold proof method in tdase of constraint logic programming,
and we illustrate the method by means of examples.

2. Transformation Rules for Constraint Logic Programs

In this section we briefly recall the basic notions about trai® logic programs [15] and we present the
rules we use for transforming those programs (see also [29,234, 35]).

2.1. Constraint Logic Programs

We will consider constraint logic programs with linear cwamts over the seR of the real numbers.
Note, however, that most of the notions and techniques ehttenther constraint domains in a straight-
forward way.

Constraints are defined as follows. gf andp, are linear polynomials with real variables, then
p1 > p2 andpy > po areatomic constraintsWe will also use the equality=" and the inequalities<’ and
‘<’ defined in terms of >’ and ‘>’ as usual. Aconstraintis eithertrue, or false or an atomic constraint,
or aconjunctionof constraints.

An atomis an atomic formula of the form(¢4, . . ., t,,), wherep is a predicate symbol not if>, >}
andtq, ..., t,, withm>0, are terms. Aiteral is either an atom or a negated atomgdalis a (possibly
empty) conjunction of literals. &Aonstrained goat A G is a conjunction of a constraimtand a goal.

A CLP programis a finite set ofclausesof the form A <~ cA GG, where A is an atom and A G is a

4 F. Fioravanti et al./ Proving Theorems by Program Transfation

constrained goal. Given a clauge<+ ca G, A is theheadof the clause and A G is thebody of the
clause. Without loss of generality, we assume that all tetemoting real numbers and occurring in the
head of a clause are distinct variables.

The definition Defép, P) of a predicatep in a programP is the set of all clauses d@? whose head
predicate is. A predicatep depends o predicatey in a programP if either in P there is a clause
p(...) + ¢aG such thatg occurs inG, or there exists a predicatesuch thatp depends on in P
andr depends om in P. Theextended definition Def&p, P) of a predicatey in a programP is the set
containing the definition g and the definitions of all those predicates on whiadepends inP.

Given a constraint (or a goal or a constrained goalpy vars(¢) we denote the set of variables
occurring ing. Given a clause : H < ¢ A G, by evargy) we denote the set of thexistential variables
of v, that is,vars(cA G) — vars(H). By V(y) we denote the universal closuve; ...VX,, ¢, where
vars(p) = {X1,..., X, }. Similarly, by3(¢) we denote the existential closuf&; ... 3X,, .

A stratificationis a functiono from the set of predicate symbols to the non-negative imgegfestrat-
ification o extends to literals by taking (p(...)) =4ef o(p) ando(—A) =4 0(A) + 1. A clause
A « caG is stratified with respect t@ if for every literal L in G, 0(A) > o(L). A programP is
stratified with respect te if every clause ofP is. Finally, a program istratifiedif it is stratified with
respect to some stratification function.

Let Tk denote the set of ground terms built frdkrand from the function symbols in the language of
P. AnR-interpretationis an interpretation which: (i) has universg, (ii) assigns to+, x, >, > the usual
meaning inR, and (iii) is the standard Herbrand interpretation [19]fianction and predicate symbols
different from+, x, >, >. We can identify arR-interpretation/ with the set of ground atoms (with
arguments irfr) which are true inf. We writeR = ¢ if ¢ is true in everyR-interpretation. A constraint
c is satisfiableif R = 3(c). A constraintc entailsa constraint/, denoted: C d, if R = V(¢ — d).

An R-modelof a CLP programP is anR-interpretation that makes true every clausePofEvery
stratified CLP progran® has a uniqueerfect modeldenoted) (P), which is constructed as follows
(see [3] for a similar definition). Let us consider any sfredition o such thatP is stratified with re-
spect too. LetSy,...,S, be a sequence of programs such that:| {j.,, Sr = P, and (ii) for
k=0,...,n,Sy is the set of claused + cAG in P such thatr(A) = k. We define a sequence of
R-interpretations as follows: (i}/, is the leasfR-model of Sy (note that no negative literals occur in
Sp), and (ii) for0 <k <n, My is the leasiR-model of Sy, which contains)M.. TheR-interpretation
M, is the perfect model aoP.

2.2. Transformation Rules for CLP Programs

A transformation sequends a sequencé, . .., P, of programs constructed by applying the transfor-
mation rules defined below. Without loss of generality, whapplying the transformation rules we will
feel free to rewrite clauses by: (i) renaming their varigldgart (so that distinct clauses have no variables
in common), and (ii) rearranging the order and removing aggukoccurrences of literals in their bodies.
Suppose that we have constructed the transformation seggn. . ., P, for 0 <k <n—1. Then the
next programP, 1 in the sequence is derived from progrdtp by the application of one the following
rules R1-R7.

Rule R1 is applied for introducing a new predicate definition

R1. Definition Introduction. Let us consider a clause of the formi: newg Xy,...,X;) < caG,
where: (i) newpis a predicate symbol not occurring §¥,..., P}, (i) Xi,..., X}, are distinct

F. Fioravanti et al./ Proving Theorems by Program Transfation 5

variables occurring i A G, (iii) every predicate symbol occurring i also occurs inP,. Claused
is called thedefinition of newp By definition introductionfrom programpP, we derive the program
Piy1=P, U {d}. Fork >0, Defs, denotes the set of clauses introduced by the definition wiagl the
transformation sequend®, . . ., P.. In particular,Defs) = (.

The (positiveor negativg unfoldingrules consist in: (i) replacing an atomoccurring in the body of
a clause by the corresponding instance of the disjunctidheobodies of the clauses whose heads unify
with A, and (ii) applying suitable boolean laws for deriving clesis

R2. Positive Unfolding. Let~: H + ¢aGp A AAGpr be a clause in program, and lety;: K1 +

diAB1 ..., Ym: Ky < dm By (m > 0) be all (renamed apart) clauses Bf such that, fori =
1,...,m, A is unifiable with K;, with most general unifiet);. By unfolding~ w.r.t. A we derive the
clausesy, ..., nm, (m>0), where fori = 1,...,m, n;is (H < cad; AG A B; AGRr)v;. From P, we

derive the progranP, 1 = (P — {7v}) U{m, ..., 7m}.
R3. Negative Unfolding.Let~v: H < ¢A G A—AAGpg be a clause in programR, and lety,: K <

diAB1, ..., Ym: Kp < dpm A By, (m > 0) be all (renamed apart) clausesip such thatA is unifiable
with K4, ..., K,,, with most general unifierg,, ..., ¢,,, respectively. Assume that: (A = K ¢ =
...= K0, thatis, fori=1,...,m, Ais an instance of;, and (ii) fori=1,...,m, evargy;) = 0.

FromGp A—((di AB1)Y1v ... v (dm A Bp)Ydm) A Gr We get an equivalent disjunctiap; v ... vQ,

of constrained goals, with > 0, by first moving— inward using De Morgan’s law, then replacing
every negated atomic constraint of the forrfp; > p2) by p1 < p2 and replacing every negated atomic
constraint of the form-(p; < p2) by p1 > po, and finally movingv outward using distributivity. By
unfolding~y w.r.t. = A we derive the clauses, ... ,n,, where fori = 1,...,r,n; is H + Q;. From P
we derive the new progratf, 1 = (P, — {v}) U{n1,...,mr}.

Thefolding rule consists in replacing an instance of the body of the tiefinof a predicate by the
corresponding head.

R4. Positive Folding.Let~ be a clause i, and lets: K <+ d A B, whereB is a non-empty conjunction
of literals, be a (renamed apart) definitionrefs,. Suppose that there exists a substitutibsuch
that: (i) v is of the formH <« caddAGr A BYAGg, and (i) for every variableX € evargd), the
following conditions hold: (ii.1)X ¥ is a variable not occurring ifH, ¢, G, Gr}, and (ii.2) X9 does
not occur in the ternY ¥, for any variableY” occurring ind A B and different fromX. By folding ~
using the definitiod we derive the clausg: H < cA G A K9 A Gr. From Py, we derive the program
Py = (P — {vH U {n}.
R5. Negative Folding. Let v be a clause inP, and let§: K < da A, whereA is an atom, be a
(renamed apart) definition iDefs,. Suppose also that there exists a substituti@uch that: (i}y is of
the form: H <+ ¢AGpA—AYAGR, (i) ¢ C dd, and (iii) vars(A) = vars(K). By folding v using
the definitioné we derive the clause: H < c¢AGpa—-K9AGgr. From P, we derive the program
Pi1 = (Be—{7}) U{n}.

Thegoal replacement rulallows us to replace eonstrained goat; A G in the body of a clause by
a constrained goakh, A G2, such thaty A G; andcs A G5 are equivalent in the perfect model Bf.

R6. Goal Replacement. Let v: H < caci AGpAG1AGR be a clause in progran®, and as-
sume we have that/(P;) E VX (3Y c1 AGy < FZcanGy), where X = vars({H,c,Gr,GRr}),
Y =vars(c; AGy)—X, and Z = vars(co A G2)— X. By replacing ¢; A G; with ¢; A Go, from ~ we
derived: H < caca AG AGa AGpR, and fromP;, we derivePy, 1 = (P, — {v}) U{d}.

6 F. Fioravanti et al./ Proving Theorems by Program Transfation

Theclause deletiomule R7 allows us to remove frofl, a redundant clausg, that is, a clause such
that M (P,) = M (P, —{~}). In Rule R7 we use the following notions. A claugds subsumedy a
clause of the formH < cA Gy if «y is of the form(H «+ da Gy A Gs)9, for some substitution), and

d9y C c. A clausehas a false bodyf it is of the form H <+ ¢a G and eitherR = —3(c¢) or G has a
subconjunction of the forml A —~A. The set ofuseless predicatés a programpP is the maximal set/

of predicates occurring i? such thatp is in U iff every clausey with head predicated is of the form
p(...) < canGraq(...)AGy forsomegin U. A clause in a progran® is uselessf the predicate of its
head is useless iR.

R7. Clause Deletion. Let v be a clause inP;,. By clause deletiorwe derive the progranf,,; =
P, — {~} if one of the following three cases occurs:
R7s ~ is subsumed by a clause iy — {~}; R7f. v has a false body; R7u. v is useless irf;.

A transformation sequendg, .. ., P, is correctif the following conditions hold: (i), U Defs, and P,

are stratified, and (ii/ (P UDefs,) = M(P,). Transformation sequences constructed by an unre-
stricted use of the transformation rules may be not corfdoty we present a correctness result for the
class of the so-calleddmissibleransformation sequences.

Definition 2.1. (Admissible Transformation Sequence)

1. An atomA in a conjunctionG is o-maximalif, for every literal L in G, we haves(A) > o (L).

2. Aclaused: H < ca G iso-tightif G is of the formG1 A A A G4, for somes-maximal atomA and

subgoals=; andGq, ando(H)=0c(A).

3. A clausey is said to be alescendanof a clausey if eitherr is «y itself or there exists a clausesuch

that is derived fromd by using a rule infR2, R3, R4, R5, R6}, and¢ is a descendant of.

4. Let Py be a stratified program and let be a stratification forP,. A transformation sequence

Py,...,P,, withn>0, is said to beadmissiblgf, for k=1,..., n:

(a) every clause iDefs, is o-tight,

(b) if Py is derived fromP,_; by goal replacement (R6) and A GG; is replaced withey A G in the
clauseH <« ca B, theno(H) > o(L) for everyL in G2, and

(c) if P, is derived fromP,_1 by positive folding (R4) of clause using claus@, then:either(c.1) the
head predicate of occurs inFy, or (c.2) v is a descendant of a claugen P;, with 0 < j <k —1,
such that3 has been derived by positive unfolding of a clausen P;_; w.r.t. an atom which is
o-maximal in the body ofv and whose predicate occursiy.

Theorem 2.2. Every admissible transformation sequence is correct.

This theorem extends to CLP programs the result present@®jrior locally stratifiedlogic programs
over the domain of infinite lists. Recall that a program isalbcstratified if there exists a function
from the set of ground atoms to the set of non-negative insegech that, for all ground instances
H < ca B of a program clause, for all literals in B, o(H) > o(L) (where for all ground atom4,
o(—A) =4 0(A)+1) [3]. Forthe sake of conciseness, here we have made the gstrietive assumption
that programs are stratified. However, Theorem 2.2 can leneéat to locally stratified CLP programs
in a straightforward way.

Example 2.3. Let us consider the prograiy made out of the following clauses:

F. Fioravanti et al./ Proving Theorems by Program Transfation 7

1. prop«ever{X)—-odd X +1)

2. everfX)« X =0 4. odd X))« X=1

3. even{X)+ X >2aeverfX —2) 5. odd X)« X >2A0dd X —2)

We take the stratification functionsuch that (prop) = o (ever > o(odd). Predicatgrop holds iff there
exists an even number whose successor is not odd. We will nove phatprop is false by constructing
a suitable transformation sequence starting figgmBYy rule R1 we introduce the clause:

6. newdX) < everfX)a—-odd X+1)
and we deriveP;, = Py U {6}. We takeo(newp = o(ever). Thus, clausé is o-tight andever{.X)
is ac-maximal atom in its body. By using rule R2, we unfold clagse.r.t. ever{X) and we derive
P, = Py U{7,8}, where:

7. newgX) + X=0A-o0dd X+1) 8. newgdX) < X>2neverfX—2)a-odd X +1)
By applying rule R3, we unfold clausew.r.t. modd(X +1), and we getP; = P, U {8,9,10, 11,12},
where:

9. newgX) « X=0AX+1<1aX+1<2
10. newgX) <+ X=0AX+1<1la-odd(X+1)—2)

11. newgX) <+ X=0AX+1>1aX+1<2

12. newgX) <~ X=0AX+1>1a-0dd(X+1)—2)

Now, clauses 9-12 all have an unsatisfiable conjunction w$tcaints in their body. Thus, by applying
the clause deletion rule R7f, we remove them all and we ddpive= P, U {8}. Then, by unfolding
clause8 w.r.t. modd(X + 1) and deleting the clauses with unsatisfiable constraintsgevive P, =
Py U {13}, where:

13. newgX) <~ X >2aX+1>1nrevertX —2)a—-odd(X+1)—2)

By rule R6, we replace the constrained géak 2 X +1>1a—-o0dd((X +1)—2) by the constrained
goal X >2 A —odd (X —2)+1), and we deriveP; = Py U {14}, where:

14. newg X) «+ X >2aeverfX —2) a—-odd (X —2)+1)

By applying rule R4 twice, we fold clausdsand 14 using definition6 and we derive the program
Ps ={2,3,4,5,15,16}, where:

15. prop < newgX) 16. newgX) < X >2anewgX —2)

Finally, clausesl5 and 16 are useless and, by applying rule R7u, can be deleted. Theiglewve
P; ={2,3,4,5}.

The transformation sequenég, . .., P; is admissible, and hence by Theorem 2.2 it is correct. In par-
ticular, the two applications of rule R4 satisfy Conditiof) of Definition 2.1 because: (i) clauseis
o-tight, (ii.1) the head predicate of claus@ccurs inF, and (ii.2) clausd 4 is a descendant of clause
which has been derived by unfolding w.r.tcamaximal atom whose predicate occursff Since the
definition ofpropis the empty set of clauses, we have thaip is false inM (P;). By the correctness of
the transformation sequence, we have provedgrais false inM (FP).

Variants of the above rules have been presented in sevgraigpand correctness results have been
proved with respect to various semantics of logic prograntscnstraint logic programs (see [25] for a
survey of early results, and [9, 30, 35] for more recent woltkthis section we have presented only the
rules that are used in the examples presented in the folipsgations.

8 F. Fioravanti et al./ Proving Theorems by Program Transfation

3. Proving Equivalence of CCS Terms

In this section we show the correctness of a mutual exclugiotocol by using the unfold/fold proof
method. First, we formalize the operational semantics efptotocol within the Calculus for Commu-
nicating Systems (CCS) [22] and we express that semanticg adogic program. Then, we show that
the protocol satisfies the mutual exclusion property by shgwhe equivalence of two predicates.
Let us start by introducing the basic notions of the fragn@r€CS we need. For the notions not
presented here the reader may refer to [22]. We considepliogvfng sets.
(i) The infinite setA of names.For every namé € A we assume that there existe@name denoted
by ¢. The set of all co-names is denoted Ay We assume that for arfyc A, ¢ = ¢. (i) The setAct of
actions which isAUAU{7}, wherer is a distinguished element, 3, . .. range oveAct (i) The set
Id of identifierswhich are introduced byefinitions(see Point (v) below). (iv) The s@& of processes
also callederms ranged over by, q,p’, ¢, . . ., possibly with subscripts, whose syntax is as follows:
peP pu= 01 ap | pitpe | pilp2 | P\L | P
where: 0 is a distinguished process,is an action inAct, L C A is a set of names, anil is a process
identifier inld. (v) The set odefinitionsof the form: P =,4.; p, where every occurrence of an identifier
in p is within a subterm of the form..p’, with o different from=. We will write } . _; p; to denote the
termpy + (p2 + (... + pn)...), for I={1,...,n}. Every subternp; is called asummand

We define the operational semantics of processes by intiragltize binary relation—— CPxP,
for everya € Act. That relation is defined by the following rules of inference

(0%
. o pi—q¢
Prefix.: ap —p Sum: ——————(— ifjel
Zie[pi — q
[P2~ 1} pﬁp’ pr’
.- 1 2 1 2
Parallel Composition: - - - 2 lT 2 foranyle A
p1|p2—>p’l|p2 p1|p2—>p1|p£ p1|p2—>p/1|p’2
(0%
. p—q . —
Restriction: — if ¢ BUB, for any setB C A of names
p\B — ¢\B
(6%
- p—4q
Identifier: > whereP = . p
P —q

From these rules it follows that the parallel compositifris associative and commutative. p#f—" ¢,
we say that is ana-derivativeof p. We have that: (iyv.p |a.¢ — p|a@.q, (i) a.p|a@.g — a.p|q, and
(i) a.p|@.q — p|q. However, due to the restriction{a}’, we have that{a.p |@.q)\{a} — p|4q,
and neither amw-derivative nor ariv-derivative exists fofa.p | @.q)\{a}.

Now we will define the relatios= C P x P, calledequality. It requires the definition of the relatica

C P x P, calledbisimilarity, which in turn requires the definition of the relatiosd> and==, for any
actiona € Act Let (—)* denote the reflexive, transitive closure €f+. Let ¢ denote the empty
sequence of actions ixct®. We definer to bee, and for any actionv different fromr, we definea to
be « itself. Then, we define the following two relations which atdsets ofP x P:

() p=q iff p(—)*q¢ (in particular, for every process p = p), and

[} T

(i) p==q iff p(—=)" = (—)"a.

F. Fioravanti et al./ Proving Theorems by Program Transfation 9

For any actiom € Act, the definition o2 follows from Points () and (ii) and the definition af.

Definition 3.1. The relation=: is thelargestrelation such that, for all processgsndg,
p~q iff YacAct (i) Vp'if p—= p/ then B¢’ ¢ == ¢’ andp’ ~ ¢/) and
(i) V¢’ if ¢ == ¢’ then @p’ p == p/ andp’ =~ ¢').
If p =~ ¢, we say thap andq arebisimilar. The relation= is the relation such that, for all processes
andg,
p=q iff YacAct (i) Vp'if p—= p/ then B¢’ ¢ == ¢’ andp’ ~ ¢/) and
(i) V¢ if ¢ == ¢’ then @p’' p == p’ andp’ ~ ¢).
If p = ¢, we say thap andq areequal

Let acontextC[_] be a CCS terng without a subterm. For instancg,] | p) + ¢ is a context. In general,
given any equivalence relatior, we say that it is aongruenceff for all p,q, if p ~ ¢, then for all
contextsC[_], C[p] ~ C[q]. We have the following result [22].

Fact 3.1. The relation~ is an equivalence relation and it is not a congruence. Tlaioal= is an
equivalence relation and it is the largest congruence owdadn ~.

The following are sound axioms for establishing equalitineen processes: for all ¢, » € P, for
all actionsa, «;, 35, for all setsB C Act— {7},

Lp+@+r)=@+a+r 2.p+qgq=q+p 3.p+tp=p 4p+0=p

5. arp=ap 6.p+Tp="TpD 7. a.(p+71.9) =a.(p+71.9) +aq

8. 0\B=0 9. (p+q\B=p\B+q¢\B 10.(a.p)\B =if a€ BUB then 0 else a.(p\B)
Letpbe) ., a;.p;andgbed ; B;.q;. Then,

1. pla=Yier il @) +25es 501 4) + Licr jes o=, -(0i | 4)-

As a consequence of Axioms 8-11, we get the following equatialled Expansion Theorem For
i=1,...,m, letp; be a process of the fordn_ ;. ; a;.p};. Then,

(Pr]- - [pm)\B =32 aijo(pr] .- [Pyl - Ipm)\B + 32 7.(pa| - [Pl - - (PG| - [pm)\B

where: (i) the left summation is over ak {1,...,m} and all summands; .p;; of p; with o;; ¢ BUB,
and (i) the right summation is over all distinets € {1,...,m}, all summandsy.p/,, of p,, and all
summands.p’,. of ps with « € BUB.

We define the semantics of any given process be a (finite or infinite) tree, called abehaviour
tree, which has the following syntax: to=0 | at | t1+ty | L
where: (i)0 is theempty behaviour tre€ii) for every a € Act, a._ is a unary constructor, (i) +_ is
a binary constructor, which is assumed to be associativepugative, idempotent, with identity, and
(iv) L is theundefined behaviour treeThe semantics of a procepsof the form either0, or a.p’, or
p1+p2, is the process itself, when viewed as a behaviour tree. @meaustics of a procegsinvolving
parallel composition and restriction is the semantics ef phocess obtained from by applying the
Expansion Theorem (which replacem favour of+). The semantics of a process identifferdefined
by P =g4et p, is the semantics af, and thus the semantics of a recursively defined processggneral,
an infinite, ‘periodic’ behaviour tree. For instance, (i ttemantics ao&.0 is a.0, (ii) the semantics oP

10 F. Fioravanti et al./ Proving Theorems by Program Transfation

defined byP = ¢ o.Q and@ =47 8.0, is «.3.0, and (iii) the semantics ak defined byR =4.r a.8.R,
is the infinite treex.5.«.5. . ..

The behaviour tree. has been introduced to avoid the explicit reference to iefineéhaviour trees,
as we now explain. First, we need the following definition. @&wproximationof a behaviour tree is
eithert itself or a tree obtained fromby replacing one or more of its subtrees_by

Then, for any process and any behaviour trege we introduce the predicatép, t) which holds if
and only ift is afinite approximation of the behaviour tree of proces$Ve list below (see clauses 1-5.6)
some of the clauses that defib@, t). Clauses 1-3 refer to processes involvingv._, and_+_ only.
Clauses 4.1-4.3 refer to parallel composition of procesSémuses 5.1-5.6 refer to process identifiers.
In clauses 1-5.6 we assume that:Ri)s any subset oAct—{7} and B denotes the sdt U B, (i) actions
«, 5, and~ are pairwise distinct, and (i) process(P) is defined byP =, p and, fori = 1,2,3,
processd(F;) is defined byP; = 4. p;.

1. 5(0,0) « 2. b(a.P, a.T) < b(P,T) 3. b(Pi+ Py, T1+T5) < b(P1,T1) A b(P,Th)
4.1 b((aPl | a. Py | Oé.Pg)\B, 7.1} +’7’.T2) —

(Pl]an\Pg)\B Tl)/\b (a P ’PQ‘Pg)\B TQ) for allae§N N
4.2 b(Pllan\ﬁPg)\B *)/T)%b(Pl\anfﬁPg)\B T) foralla,ﬂeBandfygB
4.3 b((@.Py|v.Py | B.Ps)\B, 7.T) « b((@.P, | P> | 8.P3)\B, T) foralla,3€ B andy¢ B
5.1 b(id(P), L) « 5.2 b(id(P),T) « b(p,T)
5.3 b((id(Py) | Py |id(P3)\B, L)« 5.4 b((id(P) | P, |id(P5)\B, T) « b((p1 | P> | ps)\B, T)

5.5 b((Py |id(P) [id(P5)\B, L)« 5.6 b((P1[id(F2) |id(P3))\B, T') = b((P1 |p2 |p3)\B, T)
Note that Clauses 4.1-4.3 and Clauses 5.3-5.6 are partingtances of more general clauses that one
can introduce for defining the semantics of parallel contmrsdf processes and process identifiers. We
considered these instances because they allow a shortériptbe example we will present below.

We also introduce, for any two behaviour trégegndt., the predicateq(t;, t2) which holds iff the
equalityt; =to follows from Axioms 1-7 (which, among Axioms 1-11, are thesmvolvinga._ and
+ only) by considering behaviour trees rather than procesdéste that for our unfold/fold proof,
when applying the goal replacement rule, we need to know saige valid equivalences holding for
eq not the clauses definingg) We have the following Fact (A): for all processgsandg, if for all
finite behaviour trees, 3¢, (b(p,t1) Aeqt1,t)) iff Jta(b(q,t2) neqtse, t)), thenp = g (in the sense of
Definition 3.1).

Now, by using the unfold/fold proof method, we will prove tberrectness of a simple locking
protocol for mutual exclusion [14]. We consider the prethdgSysT;) that defines the operational
semantics of the protocol (denoted by the CCS t&yg, and the predicaté(Mutex 73) that de-
fines the mutual exclusion property (denoted by the CCS tdute®. Then, we consider the predi-
catesnewl (T') andnew2(7") defined by the clausasewl (T") <— b(SysT1) neq Ty, T) andnev2(T') «
b(Mutex Th) neqT», T, respectively. By constructing an admissible transfoiomasequence using
the program transformation rules of Section 2, we will derior newl andnew2 two identical sets of
clauses (modulo the name of the predicates), and héht@eq = 37 (b(SysTi)req11,T)) <
3T, (b(Mutex Th) aeq(T», T)), where M (Beq) is the perfect model of the prograBegmade out of
the clauses fob andeqg Thus, by Fact (A) above, we have tigys= Mutex and this proves mutual
exclusion.

In the protocol we consider, we have two processes, a reanleggsi? and a writer procesi/, which
want to access a common store. They are defined as follBws;.; 71.72.R and W = ;¢ wi.w2.W.

F. Fioravanti et al./ Proving Theorems by Program Transfation 11

The purpose of the protocol is to ensure mutual exclusiat,ishin every sequence of actions neither
actionw; nor actionws should occur in between the two actionsandry, and symmetrically, neither
r1 nor ry should occur in betweem; andw,. The parallel compositioQR | 17') doesnot ensure mutual
exclusion. Indeed, for instance, we have tha:| W) =4 (R|W). In order to ensure mutual
exclusion, (i) we consider the extra proce$s:=,.; l.u.L, (Wherel stands forock andw for unlock),
and (ii) we modify the processdsandV by requiring that they should get the lock frafrbefore their
actions (by performing the actidy and should release it tb afterwards (by performing the actiar).
Thus, we get the following two modified processeR’ = ¢ l.ry.r9.u.R and W’ = def Ly .wy w. W',

Now, processe®’ andWW’, when composed in parallel with processcan access the common store
in a mutually exclusive way only. Indeed, in particular,hittprocesd. wants to perform the actioh
then by the parallel composition rul¢), only oneof the two processe®’ and W’ can engage in that
action with procesd. by performingl. We will formally prove that mutual exclusion is ensured by
showing that the process, call&ys which is the term(l.ry .7 u. R’ | l.wy.wo.w.W' | Lu.L)\{l,u} is
equal (in the sense of the equality relatienof Definition 3.1) to the following process specifying the
desired mutually exclusive access to the staviutex=z.; 7.r1.r2.Mutex+ 7.w;.w2.Mutex Note that,
in contrast to the proceddutexi defined asMutexl = ;. r1.72.Mutexl + w;.wy.Mutext, our process
Mutexgives to the store the extra possibility of deciding ‘of itgrovolition’ to give access either to the
reader or to the writer.

The unfold/fold proof starts off by introducing, using riRd, the following two predicatesewl (")
andnew2(7):
1.newl(T) « b((I.ry.reamid(R') | Lwy.we aid(W') | Luid(L)\{l,u}, T1) A eqT1,T)

2. neW2(T') < b(r.ry.re.id(MuteX + 7.w;y.we.id(MuteX), Ts) A eq T, T)
The bodies of clauses 1 and 2 define, indeed, the sySimand the propertyiutex respectively. As a
consequence of its definition, the predicatgsatisfies the following equivalences, which we need below
in the unfold/fold proof (free variables are assumed to beansally quantified at the front):
El. forallacAct, eqa.7.71,T) <> eq(a.T1,T) (see Axiom 5 above)
E2. for aIIu,veAct*, eq<u.T1+’U.TQ,T) < 34U, 3AU, (eq(Tl, Ul) A eq(Tg, UQ) A eC](u.U1+v.U2,T))
together with the equivalences which axiomatize the faatetjis a congruence. We deal with predicate
newl first. By applying rule R2 we unfold clause 1 using the defomi§ of R, W/, and L. We get:
1.1 newt (7)) < b((l.r1.roid(R") | Lawy.we.id(W') | Luid(L)\C, T1) A eqTy, T)
whereC' denotes the sdtl, v }. By unfolding clause 1.1 using clause 4.1, we get:
1.2 HEM(T) — b((?"l 7r9.1U. Id(R/) ’ Zwl w9 . U. Id(W/) ‘ U. Id())\C, T11)

A b((Lryraaid(R) | wyawe. wid(W') | w.id(L)\C, Ti2) A eq7.T11+7.T12, T)
After a few unfolding steps using clauses 4.1, 4.2, and #o8) tlause 1.2 we get:
1.3 newl(T) + b((id(R') | l.wy.wo.w.id(W') | id(L)\C, Ti1)

A b((z.rl.rg.ﬂ.id(R’) ‘ Id(W/) ‘ Id(L))\C, Tlg) AGC](T.?"l.?"Q.T.Tn +T.w1.w2.T.T12, T)
By applying the goal replacement rule R6 based on (E1) antd@ndngruence axioms feg, we get:
1.4 newl(T) < b((id(R') | l.wy.wo.aw.id(W') | id(L)\C, Ti1)

A b((Lryrpaid(R) | id(W7) | id(L)\C, Ti2) A eq7.r1.ro. Th1+7.w1.we. Tha, T)
Then, by a few more unfolding steps from clause 1.4 usingselas.3-5.6, we get:
1.5 HEM(T) — eCKT r1.r2. L+T.w.we. L, T) (*)
1.6 newl (7)) < b((I.r1.ro.wid(R") | lawy.we.id(W') | Lau.id(L))\C, T12)

A eqT.ry.ro. L+Tawy.we Tha, T)

12 F. Fioravanti et al./ Proving Theorems by Program Transfation

1.7 newl(T) < b((l.r1.ro id(R') | Lawy.we aid(W') | Laid(L))\C, T11)
A eqT.ry.re. T+ 71w wy. L, T)

1.8 newl (7)) < b((l.r1.ro id(R') | Lawy.we mid(W') | Lau.id(L))\C, T11)
A b((Lryryaid(R) | Ly ws 0. Id(W’) | Luid(L)\C, Ti2)
A eqT.r1.re. T + 71wy we . Tha, T')

By applying the goal replacement rule based on (E2) (andmiesss of it) to clauses 1.6-1.8, we get:

1.6r HEV\ﬂ() — b((l 71.79.U. Id R/) ‘ l w1 . W U. Id) ‘ l.u. Id))\C Tm) A eCI(Tlg, U12)
A GQ(T r1.r9. L+71.w1.w9.Ura,)

1.7r HEV\ﬂ() — b((l 71.79.U. Id) ‘ lw1 w9.U. Id) ‘ l.u. Id))\C T11) A GQ(TH, U11)
A GQ(T r1.72.U11 + 7071 .w2. J_ T)

1.8r HEV\ﬂ() — b((l 71.79.U. Id R/) ‘ l w1 . W . U. Id) ‘ l.u. Id))\C T11) A GQ(TH, U11)
A b((l 71.79.U. Id R/) ‘ l w1 . W U. Id) ‘ l.u. Id))\C Tm) A eCI(Tlg, Ulg)
A eCI(T.Tl.TQ.Un+7‘.’w1.’w2.U12,)

By applying rule R4 and folding clauses 1.6r—1.8r using &#ail, we get:

1.6f neM(T) — ne\Nl(Ulz) A EQ(T.Tl.TQ.J_-I—T.U}l.’wQ.UlQ, T) (*)
1.7f neV\ll(T) — nevvl(Un) A EQ(T.Tl.TQ.UH—I—T.U}l.wQ.J_, T) (*)
1.8f neV\ll(T) — nevvl(Un) A ner(Ulz) A EQ(T.Tl.TQ.UH—I—T.wl.wQ.UlQ, T) (*)

Now we deal with predicateew2. Starting from clause 2 we perform a derivation similath® ¢ne
we have performed starting from clause 1. By unfolding aaisve get:
2.1 new2(T') < b(r.ry.ro.id(Mutex), To1) A b(T.wy.we.id(MuteX, The) A €qTo+Toe, T)
After a few unfolding steps, from clause 2.1 we get the foitaywclauses:
2.2 new(7T) < eq7.r1.ro. L+ 1wy we. L, T) (%)
2.3 new2(7T') < b(r.ry.ro.id(MutexX) + 7.wy.we.id(MuteX), Too) A eq(7.71.r2. L+7T.w1.we. Thg, T)
2.4 HEV\Q(T) — b(T.Tl.Tg.id(MUteX) + T.wl.wg.id(Mute@, Tgl) A eCI(T.Tl.TQ.Tm +T1.w1.we. L, T)
2.5 new2(7T') < b(r.ry.ro.id(MutexX) + 7.wy.we.id(MuteX), T;)

A b(1.ry.rodd(MuteX) + 7wy .we.id(MuteX), Tog) A eq(7.r1.r9.To1 +T.wy.we Tog, T)

Then, by applying the goal replacement rule based on (E2) i(estances of it) to clauses 2.3-2.5, and
by folding the derived clauses using clause 2, we get:

2.3f neWZ(T) — neV\Q(ng) A EQ(T.Tl.TQ.J_-I—T.U}l.’wQ.UQQ, T) (**)
2.4f neWZ(T) — neWZ(Ugl) A EQ(T.Tl.TQ.Ugl—I—T.U}l.wQ.J_, T) (**)
2.5f neWZ(T) — neWZ(Ugl) A neWZ(ng) A EQ(T.Tl.TQ.Ugl—I—T.wl.wQ.UQQ, T) (**)

The transformation sequence from clause 1 to the clausdeetharith () and the transformation se-
quence from clause 2 to the clauses marked wit), constructed by applying the transformation rules
of Section 2, are admissible. Indeed, by takingewl) = o(new2) = o(b) > o(eq), Condition 4 of
Definition 2.1 is satisfied. Thus, those sequences are ¢orrec

Since the clauses marked with) are equal (modulo the namegwl and new2) to the clauses
marked with(xx), we conclude that the given systeSyssatisfies the mutual exclusion property.

4. Proving First-Order Formulas

In this section we illustrate a transformation techniquecfeecking whether or not a first order propegty
holds in the perfect modél/ (P) of a stratified CLP progran®, that is, whether or nat/ (P) = ¢ holds.

F. Fioravanti et al./ Proving Theorems by Program Transfation 13

In particular, we show how unfold/fold program transforimas can be used to extend to CLP programs

the quantifier elimination technique used for proving tleeas in first order logic [32].

The basic idea of our technique is to transform a given foanqulwith quantified variables into
CLP clauses with existential variables (that is, varialdesurring in the body of a clause and not in its
head), and then to apply the Existential Variable Elimmattrategy (EVE) [28, 31] to eliminate those
variables, hence deriving a propositional prog@mrhen we can check whether or nat(P) = ¢ holds
by constructing the perfect model . SinceM (P) = ¢ is in general undecidable, the EVE strategy
may not terminate. The EVE strategy requires that the thebecpnstraints occurring in a stratified CLP
program admits quantifier elimination and, indeed, thikésdase for the theory of constraints introduced
in Section 2, also known as the theory of Linear Real Arithon@tRA) [20].

Given a stratified progran® with no existential variables and a closed first order foanul our
method for proving whether or ndt/ (P) |= ¢ holds consists of the following two steps.

Stepl. We transform the formula +— ¢, wherep is a predicate symbol not occurring ihandy, into a
setD(p,) of clauses such that/ (P) =y iff M (P U D(p,¢))=p. This step is done by applying a
variant of the Lloyd-Topor transformation [19].

Step2. We derive fromP U D(p,) a propositiona) stratified logic program such that M (P U
D(p,p)) Epiff M(Q) = p. This step is done by applying the transformation rules aftiSe 2
according to the EVE strategy.

If Step 2 terminates, the perfect model@fis a finite set that can be constructed in finite time, and thus

in finite time we can check whether or nbf(Q) |=p holds by checking whether or npt M (Q).

The EVE strategy is an extension to CLP programs of the UC#esiy for logic programs [31] (fur-
ther details can be found in [28]). The detp,) constructed at the end of Step 1is afht, ..., D, }
of clauses such that, fér=1, ..., n, (i) the head predicate d?; does not occur ilPU{Dy,...,D;_1},
and (ii) every predicate symbol in the body of occurs inP U {D,...,D;_1}.

The Existential Variable Elimination StrateVE.
Input A stratified programP and the setD(p,) = {D,...,D,} of definitions generated by the
Lloyd-Topor transformation from «+ .

Output A propositional progrand) such thatM (P U D(p, ¢)) Ep iff M(Q)Ep.
T:= P,
FOR?t=1,...,n DO

Defs:= {D;}; InDefs:= {D;,};

WHILE InDefs# () po LET D €InDefs IN

IF evar§ D) # () THEN Unfold(D, T,Us); SimpliffUs, S9; Define-FoldSs Defs NewDefsFs)
ELse Fs:= {D}; NewDefs=(Fi;

T:=TUFs, Defs:= DefsuNewDefs InDefs:= (InDefs—{D}) U NewDefs
oD
oD;
Q = Defs'(p,T)

For each definitiorD;, the strategy iteratively applies the following three mderes:Unfold, Simplify
andDefine-Fold

m Unfold. A definition clauseD containing existential variables is unfolded w.r.t. eapbsftive or
negative) literal in the body using program(initially 7" is the input progran®), thereby deriving a set
Usof clauses. When unfolding, we use the rules R2 and R3. Natedh indicated in [28], Condition (i)

14 F. Fioravanti et al./ Proving Theorems by Program Transfation

of rule R3 (requiring a suitable instantiation of negatiterals) can be satisfied by imposing syntactic
restrictions on programs and by using a specific unfoldirgtesyy. Condition (i) of rule R3 (requiring
the absence of existential variables in the body of the elused for unfolding) is satisfied because the
initial program P has no existential variables and the progrArderived at the end of each iteration of
thewHILE-loop has no existential variables either.

m Simplify The setUs of clauses obtained by unfolding is simplified, therebydeg a new seSsof
clauses as follows: (1) we apply rule R6 and exploit the faat LRA admits quantifier elimination, for
removing implied subconstraints and existential variglolecurring in constraints only, and (2) we apply
rules R7s and R7f for deleting subsumed clauses and clautea false body.

m Define-Fold By using rule R4 each clauses Ssthat contains an existential variable is folded so that
the derived clause has no existential variables. Foldimmeiformed by using: (1) either a previously
introduced definition in the s&efs (2) or a suitable new definition introduced by applying Rk Note
that, in Case (2), Conditions (i) and (ii) of rule R4 are da&t by introducing a new definition whose
body is the smallest constrained subgoal of the body obntaining all occurrences of the existential
variables ofy (see [28] for details). The new definitions and the foldedists are collected in the
setsNewDefsandFs, respectively. Note that the new definitions that are inicedl by theDefine-Fold
procedure are added to the saDefs and thus require further iterations of the body of thaLe-loop

of the EVE strategy.

Each iteration of the body of theHiLE-loop terminates and produces a progrAmwith no existential
variables, at the expense of possibly introducing new pegdidefinitions. The strategy terminates when
no new definitions are introduced. It may be the case that boumded number of new definitions has
to be introduced and the strategy does not terminate.

Let 79 be programP and, fori = 1,...,n, let 7% and Defs denote, respectively, the program
and the seDefsat the end of thé-th iteration of theror-loop. The proof of correctness of the EVE
strategy is based on the fact that, fet1, ..., n, programZ™ has been obtained from prografi—! via
an admissible transformation sequence, and hence, by @inede, M (T'~! U Defd) = M (T?).

The last step of the EVE strategy consists in deriving thg@m (Q by taking the clauses in the
extended definitioefs of pin T.

Now we illustrate how the EVE strategy works by means of amgpta. Let us consider the theory
of finite, ordered lists of real numbers, defined by the foitayclauses:

1.ord([]) + 5.nth([A|L],P,E) + P=0 A A=FE
2.0rd([A|L]) < ord; (A, L) 6.nth([A|L], P,E) < P>0 A nth(L,P—1,FE)
3.ordi(4,[]) + 7.el([],[]) «

4.ordi (A, [B|L]) + A<B a ordy(B, L) 8.el([A|L], [B|M]) + el(L, M)

where: (i)ord(L) holds the listL is ordered, (iinth(L, P, E) holds iff in the listL the element at posi-
tion Pis E, and (iii) el(L, M) holds iff the listsL andM have equal length. Let us consider the following
propertyy: given two ordered listX andY of equal length, the list obtained by element-wise sum of
the elements iX andY, is ordered. Thusy = VX VY VZ el(X,Y)rel(X,Z)ay(X,Y,Z) nord(X)
A ord(Y') — ord(Z), where the subformula definesZ in terms of element-wise sum &f andY’, that
is,(X,Y,Z) =VPVEVF nth(X, P, E) anth(Y, P, F) — nth(Z, P, E+F).
Stepl. By Lloyd-Topor transformation from the formuta« ¢ we derive the following sebD(p, ¢) of
definitions:

9. 7(X,Y,Z) « nth(X, P,E) A nth(Y,P,F) a =nth(Z, P, E+F)

F. Fioravanti et al./ Proving Theorems by Program Transfation 15

10. g+ el(X,Y) nel(X,Z2) A =r(X,Y,Z) A ord(X) A ord(Y) A —ord(Z)

11. p+ —g¢q

Step2. The inputs of the EVE strategy are the progrém= {1,2,3,4,5,6,7,8} and the setD =
{9,10, 11}. The strategy starts off by applying to clause 9 a single stépositive or negative) unfolding
(that is, rule R2 or rule R3) w.r.t. each literal. We get:

12. r([A|B]. [C|DL.[]) +

13. r([A|B], [C|D], [E|F]) + E# A+C

14. r([A|B],[C|D],[]) «+ E>0 A nth(B, E, F') A nth(D, E,G)

15. r([A|B], [C|D], [E|F]) «+ G>0 A G<0 A nth(B,G,H) A nth(D,G,I)

16. r([A|B], [C|D], [E|F]) <+~ G>0 A nth(B,G,H) A nth(D,G,I) A =nth(F,G, H+1)

Clause 13 with# in its body stands for two different clauses, one witland one with<. Clause 14 is
deleted by applying rule R7s, because it is subsumed byectB2isClause 15 is deleted by applying rule
R7f, sinceR =—-3(G>0AG <0). Clause 16 cannot be folded using clause 9, becausdZ G > 0.
Thus, the following new definition 17 is introduced and ckas$ is folded using clause 17:

17. n1(A, B,C) < D>0 A nth(A, D, E) A nth(B,D,F) A ~nth(C, D, E+F)

18. r([A|B], [C|D], [E|F]) <= n1(B, D, F)

The set{12, 13,18} of clauses defining predicate has no existential variables. However, the new
definition clause 17 has existential variables. Thus, ttegegiy proceeds by transforming clause 17. By
unfolding and simplifying, we obtain:

19. n1([A]B], [C1DL,[]) «

20. n1([A|B], [C|D],[E|F]) + E#A+C

21. ny([A|B],[C|D],[E|F]) + G>0 A nth(B,G, H) A nth(D,G,I) A =nth(F,G, H+1)

Now, clause 21 can be folded by using the previously intredudause 17, thus obtaining:

22. ny([A|B], [C|D],[E|F]) + n1(B,D, F)

The clauses 19, 20, and 22 defining in the current program do not contain any existential vagiab
The EVE strategy proceeds by processing the next definitidn(p,), that is, clause 10. Starting from
clause 10 we perform a derivation similar to the one perfarstarting from clause 9. In particular,
during this derivation we introduce a new predicateand, by unfolding, clause deletion, and folding
steps, we get the following two clauses:

23. g < na 24. ng < ny

Finally, the EVE strategy takes into consideration thedtemise inD(p, ¢), that is, clause 11. Since this
clause has no existential variables, it is simply added édfitral programi’. Thus, the EVE strategy
terminates returning the propositional progrgme=Defs (p, T') = {p <+ —q, g < na, na<na}.

The perfect model of) is M (Q) = {p}. By the correctness of the EVE strategy, we hayéP U
{9,10,11}) =p, and by the correctness of the Lloyd-Topor transformatieaconcludelM (P) = .

Note that the EVE strategy does not depend on the specifieytiiéconstraints and can be applied
to all CLP programs whose theory of constraints admits dfi@nelimination (LRA in our example).
For some classes of CLP programs we can prove the terminafitihe EVE strategy, and thus the
decidability of the theorem proving problem (for exampie[11] a similar strategy has been applied for
deciding weak monadic second order logic [32]).

16 F. Fioravanti et al./ Proving Theorems by Program Transfation

5. Temporal Logics and Verification of Infinite State Systems

In this section we show how to apply the unfold/fold proof huet for verifying properties of infinite
state systems specified by using formulas of the tempora ©FL (Computation Tree Logif5]).

A concurrent system can be modeled asade transition systeronsisting of: (i) a (possibly infinite)
setS of states (ii) a set/ C S of initial states and (iii) atransition relation trC .S x .S. We assume that,
for every states € S, there exists at least one state S, called asuccessor statef s, such thatr (s, s)
holds. Acomputation patistarting from a state; is aninfinite sequence of states s, ... such that, for
alli>1, tr(s;, s;+1) holds, that is, there is a transition fromto s; 1.

The properties of (the computation paths of) a state tiansigystem can be specified by using
the CTL logic, whose formulas are built from a given setetdmentary propertiesby using: (i) the
connectives:not andand, (ii) the quantifiers along a computation path(‘for all states on the path’),

f (‘for some state on the path’, (‘in the successor state’), and(‘until’), and (iii) the quantifiers over
computation pathsa (‘for all paths’) ande (‘for some path’). For example, the formuldf(F)) holds
in a states if on every computation path starting frosthere exists a stat€ whereF' holds. In what
follows, for reasons of readability, we will use a compadiation and, for instance, we will writaf(£"),
instead ofa(f (F)).

We consider th&@icket Protoco[2], which can be used for controlling the behaviour of twogasses,
sayAandB, competing for the access to a shared resource. The prétastihe objective of guaranteeing
both mutual exclusionwhen accessing the resource, atdrvation freedomwhich means that every
request will eventually be served. The interaction betwbenwo processes and the resource is realized
by assigning tickets to processes that request access itesigrce.

The stateof processA is represented by a paj4, T4), whereSy, called thecontrol state is an
element of the seft,w,u} (wheret, w, andu stand forthink, wait, anduse respectively), and 4 is a
non-negative humber encoding the ticket assigned to padeesnalogously, the state of proceBss
encoded bySg, Tg). Thus, the state of the system resulting from the compasitidhe two processes
andBis represented by the ter{84, T4, Sg, Tp, T, N), whereT is a non-negative number which is used
for storing the value of the next ticket to be issued, &hd a non-negative number such thaTif <N,
then proces# may access the shared resource (and similarlyy foand process).

A state is initial if and only ifT andN have the same value and both processes are in the conteol stat
think. Thus, the (infinite) set of initial states can be encodedbpducing a predicatmitial, such that
initial (X') holds iff X is an initial state, defined by the following CLP clause:

1. initial ((t,Ta, t,Tp, T,N)) < T=N A T>0

The transition relation is defined by a predicateX, Y) which holds iff Y is a successor state &f.
The following set of clauses encode the transitions for @sed, where, for brevity, we have used non-
distinct variables in the head of clauses and we have ontittedite constraints of the forrid > 0 and

N >0 to ensure that real variables range over non-negative nismbe

2. tr((t,Ta, Sp, T, T,N), (w,T, Sg,Tp, T1,N)) « T1=T+1

3. tr((w,Ta, Sg, Tp, T,N), (u,Ta, S, T, T,N)) < T4 <N

4. tr((u,Ta, Sp,Tp, T,N), (t,Ta, Sp,Tn, T,N;)) < Ny =N+1

These clauses correspond to the arcs of the state trandiignam shown in Figure 1. The clauses
encoding the transitions for proceBsare similar and we do not show them here. Note that, since the
values of the numeric variables can increase in an unbowvdggdthe system has an infinite number of
states.

F. Fioravanti et al./ Proving Theorems by Program Transfation 17

N:= N-+1

Ta =T, \

. = / 2\ Ti<N
t: think T=T+1 > Wi wait A= :{ u: use)

Figure 1. The Ticket Protocol: the state transition diagfanprocessA.

We define a predicatgat X, ') which holds if and only if the CTL formuld’ is true at stateX [13] (see
also [10, 18] for similar encodings). For instance, thedieihg clauses define the predicatat X, F')
for the cases where the formufais: (i) an elementary formula, (ii) a formula of the fomot(F"), (iii) a
formula of the formand(F}, F»), (iv) a formula of the formef(£'), and (v) a formula of the formaf(F).

5. sat(X, F') < elem X, F) 6. sat(X, not(F)) < —sat(X, F')

7. sa X, and(F, F»)) < sat(X, F}) asat X, F»)

8. sat X, ef(F)) « sat(X, F) 9. sat X, ef(F)) < tr(X,Y) A sat(Y,ef(F))
10. sat(X, af(F)) « sat X, F') 11. sat(X, af(F)) <« trs(X, Y9 A satall(Ys af(F'))
12. satall([], F) «+ 13. satall([X|Xd, F))+ sat X, F') a satall(Xs F)

whereelem(X, F') holds iff F' is an elementary property which is true at stAteandtrs(X, Ys) holds
iff Ysis a list of all the successor statesf For instance, we have that the elementary progitk 4
is encoded by the clauselem((t, T4, Sg, Tn, T,N),think,) <. Similarly for the other elementary
properties for processésandB. The clauses for the predicatis (when the control state of proceBs
in the source state think) are shown below:
14. trs((t,Ta, t, T, T,N), [(w,T, t,Tp, T1,N), (t, T4, w, T, T,N)]) + T1 =T+1
15. trs((w, Ta, t, T, T,N), [(u,Ta, t,Tp, T,N), (w, T4, w,T, T{,N)]) < TA<N A T1 =T+1
16. trs((w, T4, t, T, T,N), [(w, T4, w,T, T;,N)]) <~ Ta>N A T; =T+1
17. trs((u, Ta, t,Tp, T,N), [(t,Ta, t,Tn, T,N1), (u,Ta, w, T, T;,N)]) <~ T1=T+1 A Nj=N+1
For example, the first clause states that when both procasses thethink control state, there are two
possible successor states where exactly one of them is waktecontrol state. For lack of space we
omit the other clauses fars.

In order to verify that a CTL formula denoted by a ground tefitholds for all initial states, we
define a new predicatarop:

prop =qef VX (initial (X) — sat(X, F'))
By using a variant of the Lloyd-Topor transformation [19¢€sSection 4 for a similar transformation)
and by the semantics obtdefined by clause 7, we encode this definition by the follovivmg clauses:
18. prop < —negprop 19. negprop+ initial (X) A sat X, not(F"))
Let Pr denote the constraint logic program consisting of the daudefining the predicatgsop,
negprop initial, sat, satall, tr, trs, andelem The programPr is locally stratified and, hence, it has
a unique perfect model, denotéd(Pr). One can show that our CLP encoding of the satisfiability of
CTL formulas for state transition systems is correct [133tts, for all states € I, the formulaF" holds
at states iff prop € M (Pr).

As already mentioned, the Ticket Protocol satisfies bothith@ mutual exclusiorproperty, for-
bidding the processed and B to be at the same time in the control stase and (ii) thestarvation
freedomproperty stating that, if a process, sAy has requested access to the resource and is wait-
ing for accessing it (that is, the control state of proc&ss wait) then, whatever the system does, the

18 F. Fioravanti et al./ Proving Theorems by Program Transfation

process will eventually gain access to the resource (thahéscontrol state of procegswill be use.
The latter property is expressed by the CTL form8R ag(waity — af(uses)), which is equivalent
to not(ef(and(wait4, not(af(usey))))). By using the fact that for every CTL formulR, the formula
not(not(F)) is equivalent ta, the starvation freedom property is encoded by the follgwwo clauses:
20. prop + —negprop 21. negprop< initial (X) A sat(X, ef(and(wait,, not(af(usey)))))
Now, let us consider a program, callig, which is like programPr, except that clause 19 foegprop
has been replaced by clause 21. If we transform prodrany applying the transformation rules R1-R5
and R7 according to a variant of the EVE strategy present8edation 4, we derive a program containing
a fact of the formyprop <. Thus, by the correctness of the encoding of the satisfiabdiation of CTL
properties and by the correctness of the transformati@sywe conclude that the Ticket Protocol enjoys
the starvation freedom property.

The verification of the starvation freedom property can biéopmed automatically by using the MAP
system [1]. In [13], we have presented a transformationesiyaalso based on the UDF strategy [31], that
works byspecializingprogram Pz with respect to any given CTL formulB and any given definitions
of the predicatesnitial, tr, trs, andelem In order to guarantee the termination of the transformatio
process, the strategy usgsneralization operatorésuch asidening[7]) when introducing the required
new definition clauses. Using that automatic strategy omeveafy safety and liveness properties of
several infinite-state concurrent systems, including mdugxclusion, parameterized cache coherence,
and communication protocols (see [13] for details).

6. Further Developments and Conclusions

The techniques and the examples presented in this papemndeate that the unfold/fold proof method
is very flexible and has a large variety of applications. &djethe method can be used for several
logics (such as classical logic and temporal logic) and dtida principles (such as fixpoint induction
and structural induction). Moreover, it can be used foroaas) about programs written using different
programming languages and different formalisms (such asweent process algebras, constraint logic
programs, and transition systems).

In recent papers, the ability of the unfold/fold proof metho encode several induction principles
has been exploited to develop techniques for reasoningt @ffinite structures [29, 36]. In [29] prop-
erties of programs on infinite lists are encoded using logig@ms with the perfect model semantics,
and those properties are proved by using transformatias rsimilar to the ones presented in this pa-
per. In [36] properties of programs on infinite structures encoded usingoinductivelogic programs
(CoLP), whose semantics is defined by means of least ancegtenbdels [37]. Then, those properties
are proved by using unfolding and folding transformatidmet preserve the semantics of CoLP, thereby
encoding a coinductive proof principle.

One key feature of the proof method presented in this papéeisise of constraint logic program-
ming as ametalanguagdor specifying both the programs and the logics to reasom pragrams. This
feature makes the proof method suitable for a large numbdiffefent applications. For instance, re-
cent papers (such as [8]) show that the unfold/fold proothmeican be used to perform the analysis of
imperative programs (see [16] for a survey of related teqles in the field ofoftware model checkihg
The technique presented in [8] works as follows. Given aneirative programP and a propertyp to
be verified, one encodes both the interpretePaind the property using a CLP prograni (see [24]

F. Fioravanti et al./ Proving Theorems by Program Transfation 19

for the definition of a CLP interpreter of an imperative laaga). Then, the property is proved by
applying the unfold/fold proof method to program In particular, the transformation strategy used in
this case consists in specializidgvith respect to the given imperative progrdm

We believe that the transformation-based methodologyhorem proving and program verification
we have presented in this paper has a great potential. Sothe tfansformation rules and strategies
presented here have been implemented in the MAP systemdlyamave obtained encouraging results.
Current work is devoted to the mechanization of the verificednd theorem proving techniques and to
the improvement of the tools based on the transformatiomodeiogy so that they may perform well
also for large scale programs.

Acknowledgments

We would like to thank the anonymous referees for their htlpbmments. We also thank Dominik
Slezak, Hung Son Nguyen, Marcin Szczuka for inviting usdntrbute to this special issue dedicated
to Professor Andrzej Skowron. We hope that Andrzej's endsms and example may give to all his
colleagues strength and joy for many years to come.

References

[1] The MAP transformation systenuttp://www.iasi.cnr.it/~proietti/system.html. Also available
via WEB interfacehttp://www.map.uniroma2.it/mapweb.

[2] G.R. Andrews.Concurrent Programming: Principles and Practicdddison-Wesley, 1991.

[3] K. R. Aptand R. N. Bol. Logic programming and negation: éreey. Journal of Logic Programmingl9,
20:9-71, 1994,

[4] R. M. Burstall and J. Darlington. A transformation systéor developing recursive program¥ournal of the
ACM, 24(1):44—-67, January 1977.

[5] E. M. Clarke, O. Grumberg, and D. Peledodel CheckingMIT Press, 1999.

[6] B. Courcelle. Equivalences and transformations of lfagaystems — Applications to recursive program
schemes and grammarEheoretical Computer Sciencé2:1-122, 1986.

[7] P.Cousotand N. Halbwachs. Automatic discovery of limeatraints among variables of a programPhoc.
5th ACM Symposium on Principles of Programming Languag@fIP78, 84—96. ACM Press, 1978.

[8] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. PtbieVerifying Programs via Iterated Specialization.
In Proc. ACM SIGPLAN Workshop PEPM’183-52, ACM, New York, USA, 2013.

[9] S. Etalle and M. Gabbrielli. Transformations of CLP mdehi Theoretical Comp. S¢i166:101-146, 1996.

[10] F. Fioravanti, A. Pettorossi, and M. Proietti. Verifigf CTL properties of infinite state systems by specializing
constraint logic programs. IRroc. ACM SIGPLAN Workshop VCL'0Technical Report DSSE-TR-2001-3,
85-96. University of Southampton, UK, 2001.

[11] F. Fioravanti, A. Pettorossi, and M. Proietti. Comiigilogic programs and monadic second order logics by
program transformation. In M. Leuschel, eBrpc. LOPSTR’02Lecture Notes in Computer Science 2664,
160-181. Springer, 2003.

[12] F. Fioravanti, A. Pettorossi, and M. Proietti. Tranmsf@ation rules for locally stratified constraint logic pro-
grams. In K.-K. Lau and M. Bruynooghe, ed®rogram Development in Computational Loglaecture
Notes in Computer Science 3049, 292-340. Springer, 2004.

[13] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Sen@eneralization strategies for the verification of infinite
state systemsTheory and Practice of Logic Programming. Special Issué ZBtLP, 13(2):175-199, 2013.

[14] M. C. Hennessy. An Introduction to a Calculus of Comnuaing Systems. SRC Grant GR/A/75125,
University of Edinburgh, Scotland, 1982.

20 F. Fioravanti et al./ Proving Theorems by Program Transfation

[15] J. Jaffar and M. Maher. Constraint logic programmingukvey.Journal of Logic Programmingl9/20:503—
581, 1994.

[16] R. Jhala and R. Majumdar. Software model checkifGM Computing Surveyd1(4):21:1-21:54, 2009.

[17] L. Kott. Unfold/fold program transformation. In M. Nt and J.C. Reynolds, ed#&lgebraic Methods in
SemanticsCambridge University Press, 411-434, 1985.

[18] M. Leuschel and T. Massart. Infinite state model chegkin abstract interpretation and program specializa-
tion. In A. Bossi, ed.Proc. LOPSTR’99LNCS 1817. Springer, 63—82, 2000.

[19] J. W. Lloyd. Foundations of Logic Programmingecond Edition, Springer, Berlin, 1987.

[20] R. Loos and V. Weispfenning. Applying linear quantifgimination.The Comp. Jour36(5):450-462, 1993.

[21] J. McCarthy. Towards a mathematical science of contjmuta In C. M. Popplewell, edInformation Pro-
cessing, Proc. IFIP'6221-28, Amsterdam, North Holland, 1963.

[22] R. Milner. Communication and ConcurrencRrentice Hall, 1989.

[23] J. C. Peralta and J. P. Gallagher. Convex hull abstmasiin specialization of CLP programs. In M. Leuschel,
ed.,Proc. LOPSTR’02Lecture Notes in Computer Science 2664, Springer, 90-20%3.

[24] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysmperative Programs through Analysis of Constraint
Logic Programs. In G. Levi, edBroc. SAS'98LNCS 1503, 246—261. Springer, 1998.

[25] A. Pettorossi and M. Proietti. Transformation of logicograms: Foundations and techniqudsurnal of
Logic Programming19, 20:261-320, 1994.

[26] A. Pettorossi and M. Proietti. Synthesis and transfation of logic programs using unfold/fold proofs.
Journal of Logic Programmingt1(2&3):197-230, 1999.

[27] A. Pettorossi and M. Proietti. Perfect model checkimg wnfold/fold transformations. In J. W. Lloyd, ed.,
Proc. CL 200QLecture Notes in Atrtificial Intelligence 1861, 613—-628ri&ger, 2000.

[28] A. Pettorossi, M. Proietti, and V. Senni. Proving prdpes of constraint logic programs by eliminating
existential variables. In S. Etalle and M. Truszczyhskis.eProc. ICLP’06 Lecture Notes in Computer
Science 4079, 179-195. Springer, 2006.

[29] A. Pettorossi, M. Proietti, and V. Senni. Transforrmas of logic programs on infinite listsTheory and
Practice of Logic Programming, Special Issue ICLP’10, Hulirgh, Scotland10(4-6): 383—-399, 2010.

[30] A. Pettorossi, M. Proietti, and V. Senni. Constraimaisbd correctness proofs for logic program transforma-
tions. Formal Aspects of Computing4:569-594, 2012.

[31] M. Proietti and A. Pettorossi. Unfolding-definitiootéling, in this order, for avoiding unnecessary variables
in logic programsTheoretical Computer Scienc&42(1):89-124, 1995.

[32] M. O. Rabin. Decidable theories. In J. Barwise, éthndbook of Mathematical Logi&95—629. North-
Holland, 1977.

[33] A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishrak, Ramakrishnan, and S. A. Smolka. Verifi-
cation of parameterized systems using logic program toamedtions. InProc. TACAS 2000 ecture Notes
in Computer Science 1785, 172—-187. Springer, 2000.

[34] H. Seki. Unfold/fold transformation of stratified pn@gns.Theoretical Computer Scien@6:107-139,1991.

[35] H. Seki. On inductive and coinductive proofs via unféddd transformations. In D. De Schreye, eBrpc.
LOPSTR’09Lecture Notes in Computer Science 6037, 82—96. Sprin§é0 .2

[36] H. Seki. Proving properties of co-logic programs witkgation by program transformations. In E. Albert,
ed.,Proc. LOPSTR’12Lecture Notes in Computer Science 7844, 213-227. Spriagés.

[37] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinduetlogic programming. In S. Etalle and M. Trusz-
czyhski, eds.Proc. ICLP’06 Lecture Notes in Computer Science 4079, 330-345. Spriages.

[38] H. Tamaki and T. Sato. Unfold/fold transformation oflo programs. In SA. Tarnlund, ed.Proc. ICLP'84
Uppsala University, Uppsala, Sweden, 127-138, 1984.

