
Specialization with Constrained Generalization
for Software Model Checking

Emanuele De Angelis1, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy
maurizio.proietti@iasi.cnr.it

Abstract. We present a method for verifying properties of imperative
programs by using techniques based on constraint logic programming
(CLP). We consider a simple imperative language, called SIMP, extended
with a nondeterministic choice operator and we address the problem of
checking whether or not a safety property ϕ (that specifies that an unsafe
configuration cannot be reached) holds for a SIMP program P . The op-
erational semantics of the language SIMP is specified via an interpreter I
written as a CLP program. The first phase of our verification method
consists in specializing I with respect to P , thereby deriving a specialized
interpreter IP . Then, we specialize IP with respect to the property ϕ and
the input values of P , with the aim of deriving, if possible, a program
whose least model is a finite set of constrained facts. To this purpose we
introduce a novel generalization strategy which, during specialization,
has the objecting of preserving the so called branching behaviour of the
predicate definitions. We have fully automated our method and we have
made its experimental evaluation on some examples taken from the liter-
ature. The evaluation shows that our method is competitive with respect
to state-of-the-art software model checkers.

1 Introduction

Software model checking is a body of formal verification techniques for imperative
programs that combine and extend ideas and techniques developed in the fields
of static program analysis and model checking (see [19] for a recent survey).

In this paper we consider a simple imperative language SIMP acting on
integer variables, with nondeterministic choice, assignment, conditional, and
while-do commands (see, for instance, [29]) and we address the problem of ver-
ifying safety properties. Basically, a safety property states that when executing
a program, an unsafe configuration cannot be reached from any initial configu-
ration. Note that, since we consider programs that act on integer numbers, the
problem of deciding whether or not an unsafe configuration is unreachable is in
general undecidable.

In order to cope with this undecidability limitation, many program analy-
sis techniques have followed approaches based on abstraction [4], by which the
concrete data domain is mapped to an abstract domain so that reachability is
preserved, that is, if a concrete configuration is reachable, then the corresponding
abstract configuration is reachable. By a suitable choice of the abstract domain
one can design reachability algorithms that terminate and, whenever they prove
that an abstract unsafe configuration is unreachable from an abstract initial con-
figuration, then the program is proved to be safe (see [19] for a general abstract
reachability algorithm). Notable abstractions are those based on convex polyhe-
dra, that is, conjunctions of linear inequalities (also called constraints here).

Due to the use of abstraction, the reachability of an abstract unsafe config-
uration does not necessarily imply that the program is indeed unsafe. It may
happen that the abstract reachability algorithm produces a spurious counterex-
ample, that is, a sequence of configurations leading to an abstract unsafe con-
figuration which does not correspond to any concrete computation. When a
spurious counterexample is found, counterexample-guided abstraction refinement
(CEGAR) automatically refines the abstract domain so that a new run of the ab-
stract reachability algorithm rules out the counterexample [1,3,30]. Clearly, the
CEGAR technique may not terminate because an infinite number of spurious
counterexamples may be found. Thus, in order to improve the termination be-
haviour of that technique, several more sophisticated refinement strategies have
been proposed (see, for instance, [14,16,20,32]).

In this paper in order to improve the termination of the safety verification
process, we propose a technique based on the specialization of constraint logic
programs. Constraint Logic Programming (CLP) has been shown to be very
suitable for the analysis of imperative programs, because it provides a very con-
venient way of representing symbolic program executions and also, by using
constraints, program invariants (see, for instance, [16,18,27,28]). Program spe-
cialization is a program transformation technique which, given a program P and
a portion in1 of its input data, returns a specialized program Ps that is equiva-
lent to P in the sense that when the remaining portion in2 of the input of P is
given, then Ps(in2) = P (in1, in2) [12,21,22]. The specialization of CLP programs
has been proposed in [27] as a pre-processing phase for program analysis. This
analysis is done in various steps. First, the semantics of an imperative language is
provided by means of a CLP program which defines the interpreter I of that lan-
guage, and then, program I is specialized with respect to the program P whose
safety property should be checked. The result of this specialization is a CLP
program IP and, since program specialization preserves semantic equivalence,
we can analyze IP for proving the properties of P .

Similarly to [27], also the technique proposed in this paper produces a special-
ized interpreter IP . However, instead of applying program analysis techniques,
we further specialize IP with respect to the property characterizing the input
values of P (that is, the precondition of P), thereby deriving a new program I ′P .
The effect of this further specialization is the modification of the structure of the
program IP and the explicit addition of new constraints that denote invariants

of the computation. Through various experiments we show that by exploiting
these invariants, the construction of the least model of the program I ′P termi-
nates in many interesting cases and, thus, it is possible to verify safety properties
by simply inspecting that model.

An essential ingredient of program specialization are the generalization steps,
which introduce new predicate definitions representing invariants of the program
executions. Generalizations can be used to enforce the termination of program
specialization (recall that termination occurs when no new predicate definitions
are generated) and, in this respect, they are similar to the widening operators
used in static program analysis [4,5]. One problem encountered with general-
izations is that sometimes they introduce predicate definitions which are too
general, thereby making specialization useless. In this paper we introduce a new
generalization strategy, called the constrained generalization, whose objective is
indeed to avoid the introduction of new predicate definitions that are too general.

The basic idea of the constrained generalization is related to the branching
behaviour of the unfolding steps, as we now indicate. Given a sequence of unfold-
ing steps performed during program specialization, we may consider a symbolic
evaluation tree made out of clauses, such that every clause has as children the
clauses which are generated by unfolding that clause. Suppose that a clause γ
has n children which are generated by unfolding using clauses γ1, . . . , γn, and
suppose that during program specialization we have to generalize clause γ. Then,
we would like to perform this generalization by introducing a new predicate defi-
nition, say δ, such that by unfolding clause δ, we get again, if possible, n children
and these children are due to the same clauses γ1, . . . , γn.

Since in this generalization the objective of preserving, if possible, the branch-
ing structure of the symbolic evaluation tree, is realized by adding extra con-
straints to the clause obtained after a usual generalization step (using, for in-
stance, the widening operator [4] or the convex-hull operator [5]), we call the
generalization proposed in this paper a constrained generalization. Similar pro-
posals have been presented in [2,15] and in Section 7 we will briefly compare
those proposals with ours.

The paper is organized as follows. In Section 2 we describe the syntax of the
SIMP language and the CLP interpreter which defines the operational semantics
of that language. In Section 3 we outline our software model checking approach
by developing an example taken from [14]. In Sections 4 and 5 we describe our
strategy for specializing CLP programs and, in particular, our novel constrained
generalization technique. In Section 6 we report on some experiments we have
performed by using a prototype implementation based on the MAP transfor-
mation system [26]. We also compare the results we have obtained using the
MAP system with the results we have obtained using state-of-the-art software
model checking systems such as ARMC [28], HSF(C) [13], and TRACER [17].
Finally, in Section 7 we discuss the related work and, in particular, we compare
our method with other existing methods for software model checking.

2 A CLP Interpreter for a Simple Imperative Language

The syntax of our language SIMP, a C-like imperative language, is defined by
using: (i) the set Int of integers, ranged over by n, (ii) the set {true, false} of
booleans, and (iii) the set Loc of locations, ranged over by x. We have also the
following derived sets: (iv) Aexpr of arithmetic expressions, (v) Bexpr of boolean
expressions, (vi) Test of tests, and (vii) Com of commands. The syntax of our
language is as follows.
Aexpr 3 a ::= n | x | a0 aop a1

Bexpr 3 b ::= true | false | a0 rop a1 | ! b | b0 bop b1
Test 3 t ::= nd | b
Com 3 c ::= skip | x = a | c0;c1 | if (t) { c0 } else c1 | while (t) { c } | error
where the arithmetic operator aop belongs to {+, -, *}, the relational operator
rop belongs to {<, <=, ==}, and the boolean operator bop belongs to {&&, ||}.
The constant nd denotes the nondeterministic choice and error denotes the error
command. The other symbols should be understood as usual in C. We will write
if (t) { c0 }, instead of if (t) { c0 } else skip.

Now we introduce a CLP program which defines the interpreter of our SIMP
language. We need the following notions.

A state is a function from Loc to Int. It is denoted by a list of CLP terms,
each of which is of the form bn(loc(X),V), where bn is a binary constructor
binding the location X to the value of the CLP variable V. We assume that the
set of locations used in every command is fixed and, thus, for every command,
the state has a fixed, finite length. We have two predicates operating on states:
(i) lookup(loc(X),S,V), which holds iff the location X stores the value V in the
state S, and (ii) update(loc(X),V,S1,S2), which holds iff the state S2 is equal to
the state S1, except that the location X stores the value V.

We also have the predicates aev(A,S,V) and bev(B,S), for the evaluation of
arithmetic expressions and boolean expressions, respectively. aev(A,S,V) holds
iff the arithmetic expression A in the state S evaluates to V, and bev(B,S) holds iff
the boolean expression B holds in the state S. A test T in a state S is evaluated via
the predicate tev(T,S) defined as follows: (i) for all states S, both tev(nd,S) and
tev(not(nd),S) hold (and in this sense nd denotes the nondeterministic choice),
and (ii) for all boolean expressions B, tev(B,S) holds iff bev(B,S) holds.

A command c is denoted by a term built out of the following constructors:
skip (nullary), asgn (binary) for the assignment, comp (binary) for the compo-
sition of command, ite (ternary) for the conditional, and while (binary) for
the while-do. The operator ‘;’ associates to the right. Thus, for instance, the
command c0;c1;c2 is denoted by the term comp(c0,comp(c1,c2)).

A configuration is a pair of a command and a state. A configuration is denoted
by the term cf(c,s), where cf is a binary constructor which takes as arguments
the command c and the state s. The interpreter of our SIMP language, adapted
from [29], is defined in terms of a transition relation that relates an old config-
uration to either a new configuration or a new state. That relation is denoted
by the predicate tr whose clauses are given below. tr(cf(C,S),cf(C1,S1)) holds

iff the execution of the command C in the state S leads to the new configura-
tion cf(C1,S1), and tr(cf(C,S),S1) holds iff the execution of the command C in
the state S leads to the new state S1.
tr(cf(skip,S), S).
tr(cf(asgn(loc(X),A),S),S1) :- aev(A,S,V), update(loc(X),V,S,S1).
tr(cf(comp(C0,C1),S), cf(C1,S1)) :- tr(cf(C0,S),S1).
tr(cf(comp(C0,C1),S), cf(comp(C0’,C1),S’)) :- tr(cf(C0,S), cf(C0’,S’)).
tr(cf(ite(T,C0,C1),S), cf(C0,S)) :- tev(T,S).
tr(cf(ite(T,C0,C1),S), cf(C1,S)) :- tev(not(T),S).
tr(cf(while(T,C),S), cf(ite(T,comp(C,while(T,C)),skip),S)).

A state s is said to be initial if initProp holds in s. A configuration is said to be
initial if its state is initial. A configuration is said to be unsafe if its command
is error.

Now, we introduce a CLP program, called R, that by using a bottom-up
evaluation strategy, performs in a backward way the reachability analysis over
configurations. Program R checks whether or not an unsafe configuration is
reachable from an initial configuration, by starting from the unsafe configura-
tions. The semantics of program R is given by its least model, denoted M(R).

Definition 1 (Reachability Program). Given a boolean expression initProp
holding in the initial states and a command com, the reachability program R is
made out of the following clauses:
unsafe :- initConf(X), reachable(X).
reachable(X) :- unsafeConf(X). % unsafe configurations are reachable
reachable(X) :- tr(X,X1), reachable(X1).
initConf(cf(com,S)) :- bev(initProp,S).% initProp holds in the initial state S
unsafeConf(cf(error,S)). % the error command defines an unsafe configuration

together with the clauses for the predicates tr and bev and the predicates they
depend upon. In the above clauses for R the terms initProp and com denote
initProp and com, respectively. We will say that com is safe with respect to
initProp (or com is safe, for short) iff unsafe 6∈M(R).

3 Specialization-Based Software Model Checking

In this section we outline the method for software model checking we propose.
By means of an example borrowed from [14], we argue that program special-
ization can prove program safety in some cases where the CEGAR method (as
implemented in ARMC [28]) does not work.
Let the property initProp which characterizes the initial states be:

x==0 && y==0 && n>=0
and the SIMP command com be:

while (x<n) { x = x+1; y = y+1 };
while (x>0) { x = x-1; y = y-1 };
if (y>x) error

We want to prove that com is safe with respect to initProp, that is, there is
no execution of com with input values of x, y, and n satisfying initProp, such

that the error command is executed. As shown in Table 1 of Section 6, CEGAR
fails to prove this safety property, because an infinite set of counterexamples is
generated (see the entry ‘∞’ for Program re1 in the ARMC column).

By applying the specialization-based software model checking method we
propose in this paper, we will be able to prove that com is indeed safe. As
indicated in Section 2, we have to show that unsafe 6∈M(R), where R is the
CLP program of Definition 1, com is the term:

comp(while(lt(loc(x),loc(n)),
comp(asgn(loc(x),plus(loc(x),1)), asgn(loc(y),plus(loc(y),1)))),

comp(while(gt(loc(x),0),
comp(asgn(loc(x),minus(loc(x),1)), asgn(loc(y),minus(loc(y),1)))),

ite(gt(loc(y),loc(x)),error,skip)))
and initProp is the term:

and(eq(loc(x),0), and(eq(loc(y),0), ge(loc(n),0)))
Our method consists of the three phases as we now specify.

The Software Model Checking Method
Input : A boolean expression initProp characterizing the initial states and a SIMP
command com.
Output : The answer safe iff com is safe with respect to initProp.

Let R be the CLP program of Definition 1 defining the predicate unsafe.
Phase (1): Specializecom(R,Rcom);
Phase (2): SpecializeinitProp(Rcom, RSp);
Phase (3): BottomUp(RSp,MSp);
Return the answer safe iff unsafe 6∈MSp.

During Phase (1), by making use of familiar transformation rules (definition
introduction, unfolding, folding, removal of clauses with unsatisfiable body, and
removal of subsumed clauses [7]), we ‘compile away’, similarly to [27], the SIMP
interpreter by specializing program R with respect to com, thereby deriving the
following program Rcom which encodes the reachability relation associated with
the interpreter specialized with respect to com:
1. unsafe :- X=1, Y=1, N>=1, new1(X,Y,N).
2. new1(X,Y,N) :- X<N, X’=X+1, Y’=Y+1, new1(X’,Y’,N).
3. new1(X,Y,N) :- X>=1, X>=N, X’=X-1, Y’=Y-1, new2(X’,Y’,N).
4. new1(X,Y,N) :- X=<0, X<Y, X>=N.
5. new2(X,Y,N) :- X>=1, X’=X-1, Y’=Y-1, new2(X’,Y’,N).
6. new2(X,Y,N) :- X=<0, X<Y.

The specialization of Phase (1) is said to perform ‘the removal of the interpreter’.
Note that: (i) the two predicates new1 and new2 correspond to the two while-do
commands occurring in com, and (ii) the assignments and the conditional occur-
ring in com, do not occur in Rcom because by unfolding they have been replaced
by suitable constraints relating the values of X and Y (that is, the old values of
the SIMP variables x and y) to the values of X’ and Y’ (that is, the new values
of those variables x and y).

Unfortunately, the program Rcom is not satisfactory for showing safety, be-
cause the bottom-up construction of the least model M(Rcom) does not ter-
minate. The top-down evaluation of the unsafe query in Rcom does not ter-
minate either. Then, in Phase (2) we specialize program Rcom with respect to
the property initProp, thereby deriving the specialized program RSp. During
this Phase (2) the constraints occurring in the definitions of new1 and new2 are
generalized according to a suitable generalization strategy based both on widen-
ing [4,8,11] and on the novel constrained generalization strategy we propose
in this paper. Suitable new predicate definitions will be introduced during this
Phase (2), so that at Phase (3) we can construct the least model MSp of the
derived program RSp by using a bottom-up evaluation procedure. We will show
that, in our example, the construction of the least model MSp terminates and
we can prove the safety of the command com by showing that the atom unsafe
does not belong to that model.

Phase (2) of our method makes use of the same transformation rules used
during Phase (1), but those rules are applied according to a different strategy,
whose effect is the propagation of the constraints occurring in Rcom.

We start off by introducing the following definition:
7. new3(X,Y,N) :- X=1, Y=1, N>=1, new1(X,Y,N).
and then folding clause 1 by using this clause 7. We get the folded clause:
1.f unsafe:- X=1, Y=1, N>=1, new3(X,Y,N).
We proceed by following the usual unfold-definition-fold cycle of the special-
ization strategies [8,11]. Each new definition introduced during specialization
determines a new node of a tree, called DefsTree, whose root is clause 7, which
is the first definition we have introduced. (We will explain below how the tree
DefsTree is incrementally constructed.) Then, we unfold clause 7 and we get:
8. new3(X,Y,N) :- X=1, Y=1, N>=2, X’=2, Y’=2, new1(X’,Y’,N).
9. new3(X,Y,N) :- X=1, Y=1, N=1, X’=0, Y’=0, new2(X’,Y’,N).
Now, we should fold these two clauses. Let us deal with them, one at the time,
and let us first consider clause 8. In order to fold clause 8 we consider a definition,
called the candidate definition, which is of the form:
10. new4(X,Y,N) :- X=2, Y=2, N>=2, new1(X,Y,N).
The body of this candidate definition is obtained by projecting the constraint
in clause 8 with respect to X’, Y’, and N, and renaming the primed variables to
unprimed variables. Since in DefsTree there is an ancestor definition, namely
the root clause 7, with the predicate new1 in the body, we apply the widening
operator , introduced in [11], to clause 7 and clause 10, and we get the definition:
11. new4(X,Y,N) :- X>=1, Y>=1, N>=1, new1(X,Y,N).
(Recall that the widening operation of two clauses c1 and c2, after replacing
every equality A=B by the equivalent conjunction A>=B, A=<B, keeps the atomic
constraints of clause c1 which are implied by the constraint of clause c2.)

At this point, we do not introduce clause 11 (as we would do if we perform
a usual generalization using widening alone, as indicated in [8,11]), but we ap-
ply our constrained generalization, which imposes the addition of some extra
constraints to the body of clause 11, as we now explain.

With each predicate newk we associate a set of constraints, called the regions
for newk, which are all the atomic constraints on the unprimed variables (that is,
the variables in the heads of the clauses) occurring in any one of the clauses for
newk in program Rcom. Then, we add to the body of the generalized definition
obtained by widening, say newp(...) :- c, newk(...), (clause 11, in our case), all
negated regions for newk which are implied by c.

In our example, the regions for new1 are: X<N, X>=1, X>=N, X=<0, X<Y (see
clauses 2, 3, and 4) and the negated regions are, respectively: X>=N, X<1, X<N,
X>0, X>=Y. The negated regions implied by the constraint X=2, Y=2, N>=2, occur-
ring in the body of the candidate clause 10, are: X>0 and X>=Y.

Thus, instead of clause 11, we introduce the following clause 12 (we wrote
neither X>0 nor X>=1 because those constraints are implied by X>=Y, Y>=1):
12. new4(X,Y,N) :- X>=Y, Y>=1, N>=1, new1(X,Y,N).
and we say that clause 12 has been obtained by constrained generalization from
clause 10. Clause 12 is placed in DefsTree as a child of clause 7, as clause 8 has
been derived by unfolding clause 7. By folding clause 8 using clause 12 we get:
8.f new3(X,Y,N) :- X=1, Y=1, N>=2, X’=2, Y’=2, new4(X’,Y’,N).
Now, it remains to fold clause 9 and in order to do so, we consider the following
candidate definition:
13. new5(X,Y,N) :- X=0, Y=0, N=1, new2(X,Y,N).
Clause 13 is placed in DefsTree as a child of clause 7, as clause 9 has been derived
by unfolding clause 7. We do not make any generalization of this clause, because
no definition with new2 in its body occurs as an ancestor of clause 13 in DefsTree.
By folding clause 9 using clause 13 we get:
9.f new3(X,Y,N) :- X=1, Y=1, N=1, X’=0, Y’=0, new5(X’,Y’,N).
Now, we consider the last two definition clauses we have introduced, that is,
clauses 12 and 13. First, we deal with clause 12. Starting from that clause, we
perform a sequence of unfolding-definition-folding steps similar to the sequence
we have described above, when presenting the derivation of clauses 8.f and 9.f,
starting from clause 7. During this sequence of steps, we introduce two predicates,
new6 and new7 (see the definition clauses 16 and 18, respectively), for performing
the required folding steps. We get the following clauses:
14.f new4(X,Y,N):-X>=Y, X<N, Y>0, X’=X+1, Y’=Y+1, new4(X’,Y’,N).
15.f new4(X,Y,N):-X>=Y, X>=N, Y>0, N>0, X’=X-1, Y’=Y-1, new6(X’,Y’,N).
17.f new6(X,Y,N):-X>0, X>=Y, X>=N-1, Y>=0, N>0, X’=X-1, Y’=Y-1, new7(X’,Y’,N).
19.f new7(X,Y,N):-X>0, X=<Y, N>0, X’=X-1, Y’=Y-1, new7(X’,Y’,N).
The tree DefsTree of all the definitions introduced during Phase (2), can be
depicted as follows:

DefsTree : 7. new3(X,Y,N):= X=1,Y=1,N>=1,new1(X,Y,N).

12. new4(X,Y,N):= X>=Y,Y>=1,N>=1,new1(X,Y,N).

13. new5(X,Y,N):= X=0,Y=0,N=1,new2(X,Y,N).

16. new6(X,Y,N):= X>=Y,X+1>=N,Y>=0,N>=1,new2(X,Y,N).

18. new7(X,Y,N):= X>=Y,N>=1,new2(X,Y,N).

Then, we deal with clause 13. Again, starting from that clause we perform a
sequence of unfolding-definition-folding steps. By unfolding clause 13 w.r.t. new2
we get an empty set of clauses for new5. Then, we delete clause 9.f because there
are no clauses for new5.

Eventually, we get the program RSp made out of the following clauses:
1.f unsafe :- X=1, Y=1, N>=1, new3(X,Y,N).
7.1f new3(X,Y,N):-X=1, Y=1, N>=2, X’=2, Y’=2, new4(X’,Y’,N).
together with the clauses 14.f, 15.f, 17.f, and 19.f.

This concludes Phase (2).
Now, we can perform Phase (3) of our method. This phase terminates im-

mediately because in RSp there are no constrained facts (that is, clauses whose
bodies consist of constraints only) and M(RSp) is the empty set.

Thus, unsafe 6∈M(RSp) and we conclude that the command com is safe with
respect to initProp.

One can verify that if we were to do the generalization steps of Phase (2)
using the widening technique alone (without the constrained generalization),
we could not derive a program that allows us to prove safety, because during
Phase (3) the execution of the BottomUp procedure does not terminate.

4 The Specialization Strategy

Phases (1) and (2) of our Software Model Checking method outlined in Section 3
are realized by two applications of a single, general specialization strategy for
CLP programs that we now present.

This strategy is an adaptation of the specialization strategies we have pre-
sented in [8,11] and, as already mentioned in Section 3, it makes use of the follow-
ing transformation rules: definition introduction, unfolding, clause removal, and
folding. These rules, under suitable conditions, guarantee that the least model
semantics is preserved (see, for instance, [7]).

Our general specialization strategy is realized by the following Specialize
procedure.

Procedure Specialize
Input : A CLP program of the form P ∪ {γ0}, where γ0 is unsafe← c,G.
Output : A CLP program Ps such that unsafe∈M(P ∪{γ0}) iff unsafe∈M(Ps).

Ps := {γ0}; InDefs := {γ0}; Defs := ∅;
while there exists a clause γ in InDefs
do Unfold(γ, Γ);

Generalize&Fold(Defs, Γ,NewDefs,∆);
Ps := Ps∪∆; InDefs := (InDefs−{γ})∪NewDefs; Defs := Defs∪NewDefs;

end-while

Initially, this procedure considers the clause γ0 of the form:
unsafe← c,G

where c is a constraint and G is a goal, and then iteratively applies the following
two procedures: (i) the Unfold procedure, which uses the unfolding rule and
the clause removal rule, and (ii) the Generalize&Fold procedure, which uses the
definition introduction rule and the folding rule.

The Unfold procedure takes as input a clause γ and returns as output a
set Γ of clauses derived from γ by one or more applications of the unfolding
rule, which consists in: (i) replacing an atom A occurring in the body of a
clause by the bodies of the clauses in P whose head is unifiable with A, and
(ii) applying the unifying substitution. The first step of the Unfold procedure
consists in unfolding γ with respect to the leftmost atom in its body. In order
to guarantee the termination of the Unfold procedure, an atom A is selected
for unfolding only if it has not been derived by unfolding a variant of A itself.
More sophisticated unfolding strategies can be applied (see [22] for a survey of
techniques for controlling unfolding), but our simple strategy turns out to be
effective in all our examples. At the end of the Unfold procedure, subsumed
clauses and clauses with unsatisfiable constraints are removed.

The Generalize&Fold procedure takes as input the set Γ of clauses produced
by the Unfold procedure and introduces a set NewDefs of definitions, that is,
clauses of the form newp(X)← d(X), A(X), where newp is a new predicate sym-
bol, X is a tuple of variables, d(X) is a constraint whose variables are among
the ones in X, and A(X) is an atom whose variables are exactly those of the
tuple X. Any such definition denotes a set of states X satisfying the constraint
d(X). By folding the clauses in Γ using the definitions in NewDefs and the defi-
nitions introduced during previous iterations of the specialization procedure, the
Generalize&Fold procedure derives a new set of specialized clauses. In particular,
a clause of the form:

newq(X)← c(X), A(X)
obtained by the Unfold procedure, is folded by using a definition of the form:

newp(X)← d(X), A(X)
if for all X, c(X) implies d(X). This condition is also denoted by c(X) v d(X),
where the quantification ‘for all X’ is silently assumed. If c(X) v d(X), we say
that d(X) is a generalization of c(X). The result of folding is the specialized
clause:

newq(X)← c(X),newp(X).
The specialization strategy proceeds by applying the Unfold procedure followed
by the Generalize&Fold procedure to each clause in NewDefs, and terminates
when no new definitions are needed for performing folding steps. Unfortunately,
an uncontrolled application of the Generalize&Fold procedure may lead to the
introduction of infinitely many new definitions, thereby causing the nontermi-
nation of the specialization procedure. In the following section we will define
suitable generalization operators which guarantee the introduction of finitely
many new definitions.

5 Constrained Generalization

In this section we define the generalization operators which are used to ensure
the termination of the specialization strategy and, as mentioned in the Intro-
duction, we also introduce constrained generalization operators that generalize
the constraints occurring in a candidate definition and, by adding suitable extra
constraints, have the objective of preventing that the set of clauses generated by
unfolding the generalized definition is larger than the set of clauses generated
by unfolding the candidate definition. In this sense we say the objective of con-
strained generalization is to preserve the branching behaviour of the candidate
definitions.

Let C denote the set of all linear constraints. The set C is the minimal set of
constraints which: (i) includes all atomic constraints of the form either p1≤ p2

or p1 < p2, where p1 and p2 are linear polynomials with variables X1, . . . , Xk

and integer coefficients, and (ii) is closed under conjunction (which we denote
by ‘,’ and also by ‘∧’). An equation p1 = p2 stands for p1 ≤ p2 ∧ p2 ≤ p1. The
projection of a constraint c onto a tuple X of variables, denoted project(c,X), is
a constraint such that R |= ∀X (project(c,X) ↔ ∃Y c), where Y is the tuple of
variables occurring in c and not in X, and R is the structure of the real numbers.

In order to introduce the notion of a generalization operator (see also [11],
where the set C of all linear constraints with variables X1, . . . , Xk has been
denoted Link), we need the following definition [6].

Definition 2 (Well-Quasi Ordering -). A well-quasi ordering (or wqo, for
short) on a set S is a reflexive, transitive relation - on S such that, for every
infinite sequence e0e1 . . . of elements of S, there exist i and j such that i<j and
ei - ej . Given e1 and e2 in S, we write e1 ≈ e2 if e1 - e2 and e2 - e1. A wqo -
is thin iff for all e ∈ S, the set {e′ ∈ S | e ≈ e′} is finite.

The use of a thin wqo guarantees that during the Specialize procedure each defi-
nition can be generalized a finite number of times only, and thus the termination
of the procedure is guaranteed.

The thin wqo Maxcoeff, denoted by -M , compares the maximum absolute
values of the coefficients occurring in polynomials. It is defined as follows. For
any atomic constraint a of the form p < 0 or p ≤ 0, where p is q0 + q1X1 + . . .+
qkXk, we define maxcoeff(a) to be max {|q0|, |q1|, . . . , |qk|}. Given two atomic
constraints a1 of the form p1 < 0 and a2 of the form p2 < 0, we have that
a1 -M a2 iff maxcoeff(a1) ≤ maxcoeff(a2).

Similarly, if we are given the atomic constraints a1 of the form p1≤0 and a2

of the form p2≤ 0. Given two constraints c1 ≡ a1, . . . , am, and c2 ≡ b1, . . . , bn,
we have that c1 -M c2 iff, for i = 1, . . . ,m, there exists j ∈ {1, . . . , n} such that
ai -M bj . For example, we have that:
(i) (1−2X1 < 0) -M (3+X1 < 0),
(ii) (2−2X1+X2 < 0) -M (1+3X1 < 0), and
(iii) (1+3X1 < 0) 6-M (2−2X1+X2 < 0).

Definition 3 (Generalization Operator). Let - be a thin wqo on the
set C of constraints. A function 	 from C×C to C is a generalization operator
with respect to - if, for all constraints c and d, we have: (i) d v c 	 d, and
(ii) c	 d - c.

A trivial generalization operator is defined as c	d = true, for all constraints c
and d (without loss of generality we assume that true - c for every constraint c).
This operator is used during Phase (1) of our Software Model Checking method.

Definition 3 generalizes several operators proposed in the literature, such as
the widening operator [4] and the most specific generalization operator [23,33].

Other generalization operators defined in terms of relations and operators on
constraints such as widening and convex-hull, have been defined in [11]. Some of
them can be found in Appendix A.

Now we describe a method for deriving, from any given generalization oper-
ator 	, a new version of that operator, denoted 	cns, which adds some extra
constraints and still is a generalization operator. The operator 	cns is called the
constrained generalization operator derived from 	. Constrained generalization
operators are used during Phase (2) of our Software Model Checking method.

In order to specify the constrained generalization operator we need the fol-
lowing notions.

Let P ∪ {γ0} be the input program of the Specialize procedure. For any
constraint d and atom A, we define the unfeasible clauses for the pair (d,A),
denoted UnfCl(d,A), to be the set {(H1 ← c1, G1), . . . , (Hm ← cm, Gm)}, of
(renamed apart) clauses of P ∪ {γ0} such that, for i = 1, . . . ,m, A and Hi are
unifiable via the most general unifier ϑi and (d ∧ ci)ϑi is unsatisfiable.

The head constraint of a clause γ of the form H ← c, A is the constraint
project(c,X), where X is the tuple of variables occurring in H. For any atomic
constraint a, neg(a) denotes the negation of a defined as follows: neg(p < 0) is
−p≤ 0 and neg(p≤ 0) is −p< 0. Given a set C of clauses, we define the set of
the negated regions of C, denoted NegReg(C), as follows:

NegReg(C) = {neg(a) | a is an atomic constraint of a head constraint
of a clause in C}.

For any constraint d and atom A, we define the following constraint:
cns(d,A) =

∧
{r | r ∈ NegReg(UnfCl(d,A)) ∧ d v r}.

We have that d v cns(d,A). Now, let 	 be a generalization operator with
respect to the thin wqo -. We define the constrained generalization operator
derived from 	, as follows:
	cns(c, d,A) = (c	 d) ∧ cns(d,A).

Now we show that	cns is indeed a generalization operator w.r.t. the thin wqo -B

we now define. Given a finite set B of (non necessarily atomic) constraints, a
constraint c1∧ . . .∧cn, where c1, . . . , cn are atomic, and a constraint d, we define
the binary relation -B on constraints as follows: c1 ∧ . . . ∧ cn -B d iff either
(i) (c1 ∧ . . . ∧ cn) - d, or (ii) there exists i ∈ {1, . . . , n} such that ci ∈ B and
(c1 ∧ . . . ∧ ci−1 ∧ ci+1 ∧ . . . ∧ cn) -B d. It can be shown that -B is a thin wqo.

We observe that, for all constraints c, d, and all atoms A: (i) since d v c	 d
and d v cns(d,A), then also d v 	cns(c, d,A), and (ii) by definition of -B , for all
constraints e, if c	d - e, then 	cns(c, d,A) -B e, where B = NegReg(P ∪{γ0}).

Thus, we have the following result.

Proposition 1. For any program P ∪{γ0} given as input to the Specialize pro-
cedure, for any atom A, the operator 	cns(_,_, A) is a generalization operator
with respect to the thin well-quasi ordering -B, where B = NegReg(P ∪ {γ0}).

During Phase (2) in the Specialize procedure we use the following sub-
procedure Generalize&Fold which is an adaptation of the one in [11].

Procedure Generalize&Fold
Input : (i) a set Defs of definitions structured as a tree of definitions, called
DefsTree, (ii) a set Γ of clauses obtained from a clause γ by the Unfold procedure,
and (iii) a constrained generalization operator 	cns.
Output : (i) A set NewDefs of new definitions, and (ii) a set ∆ of folded clauses.

NewDefs := ∅; ∆ := Γ ;
while in ∆ there exists a clause δ: H ← d,G1, A,G2 where the predicate symbol
of A occurs in the body of some clause in Γ do
Generalize:
Let X be the set of variables occurring in A and dX = project(d,X).
1. if in Defs ∪NewDefs there exists a (renamed apart) clause

η: newp(X)← e,A such that dXve and evcns(dX , A)
then NewDefs := NewDefs

2. elseif there exists a clause α in Defs such that:
(i) α is of the form newq(X)← b, A, and (ii) α is the most recent ancestor
of γ in DefsTree whose body contains a variant of A
then NewDefs := NewDefs ∪ {newp(X)← 	cns(b, dX , A), A}

3. else NewDefs := NewDefs ∪ {newp(X)← dX , A}
Fold:

∆ := (∆− {δ}) ∪ {H ← d,G1,newp(X), G2}
end-while

The proof of termination of the Specialize procedure of Section 4 is a variant
of the proof of Theorem 3 in [10]. In this variant we use Proposition 1 and we
also take into account the fact that during the execution of the procedure, only
a finite number of atoms are generated (modulo variants). Since the correctness
of the Specialize procedure directly follows from the fact that the transformation
rules preserve the least model semantics [7], we have the following result.

Theorem 1 (Termination and Correctness of Specialization). (i) The
Specialize procedure always terminates. (ii) Let program Ps be the output of the
Specialize procedure. Then unsafe∈M(P) iff unsafe∈M(Ps).

6 Experimental Evaluation

In this section we present some preliminary results obtained by applying our
Software Model Checking method to some benchmark programs taken from the
literature. The results show that our approach is viable and competitive with
the state-of-the-art software model checkers.

Programs ex1, f1a, f2, and interp have been taken from the benchmark set
of DAGGER [14]. Programs substring and tracerP are taken from [20] and [16],
respectively. Programs re1 and singleLoop have been introduced to illustrate
the constrained generalization strategy. Finally, selectSort is an encoding of the
Selection sort algorithm where references to arrays have been replaced by using
the nondeterministic choice operator nd to perform array bounds checking. The
source code of all the above programs is available at http://map.uniroma2.it/smc/.

Our model checker uses the MAP system [26] which is a tool for transforming
constraint logic programs implemented in SICStus Prolog. MAP uses the clpr
library to operate on constraints over the reals. Our model checker consists of
three modules: (i) a translator which takes a property initProp and a command
com and returns their associated terms, (ii) the MAP system for CLP program
specialization which performs Phases (1) and (2) of our method, and (iii) a pro-
gram for computing the least models of CLP programs which performs Phase (3)
of our method.

We have also run three state-of-the-art CLP-based software model check-
ers on the same set of programs, and we have compared their performance
with that of our model checker. In particular, we have used: (i) ARMC [28],
(ii) HSF(C) [13], and (iii) TRACER [17]. ARMC and HSF(C) are CLP-based
software model checkers which implement the CEGAR technique. TRACER is
a CLP-based model checker which uses Symbolic Execution (SE) for the verifi-
cation of safety properties of sequential C programs using approximated precon-
ditions or approximated postconditions.

Program MAP ARMC HSF(C) TRACER
W Wcns CHWM CHWMcns SPost WPre

ex1 1.08 1.09 1.14 1.25 0.18 0.21 ∞ 1.29
f1a ∞ ∞ 0.35 0.36 ∞ 0.20 ⊥ 1.30
f2 ∞ ∞ 0.75 0.88 ∞ 0.19 ∞ 1.32
interp 0.29 0.29 0.32 0.44 0.13 0.18 ∞ 1.22
re1 ∞ 0.33 0.33 0.33 ∞ 0.19 ∞ ∞
selectSort 4.34 4.70 4.59 5.57 0.48 0.25 ∞ ∞
singleLoop ∞ ∞ ∞ 0.26 ∞ ∞ ⊥ 1.28
substring 88.20 171.20 5.21 5.92 931.02 1.08 187.91 184.09
tracerP 0.11 0.12 0.11 0.12 ∞ ∞ 1.15 1.28

Table 1. Time (in seconds) taken for performing model checking. ‘∞’ means ‘no answer
within 20 minutes’, and ‘⊥’ means ‘termination with error’.

Table 1 reports the results of our experimental evaluation which has been per-
formed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under the GNU Linux operating system.

In Columns W and CHWM we report the results obtained by the MAP
system when using the procedure presented in Section 5 and the generalization
operators Widen and CHWidenMax [11], respectively. In Columns Wcns and
CHWMcns we report the results for the constrained versions of those general-
ization operators, called Widencns and CHWidenMaxcns , respectively. In the
remaining columns we report the results obtained by ARMC, HSF(C), and
TRACER using the strongest postcondition (SPost) and the weakest precon-
dition (WPre) options, respectively. More details on the experimental results
can be found in Appendix B.

On the selected set of examples, we have that the MAP system with the
CHWidenMaxcns is able to verify 9 properties out of 9, while the other tools
do not exceed 7 properties. Also the verification time is generally comparable
to that of the other tools, and it is not much greater than that of the fastest
tools. Note that there are two examples (re1 and singleLoop) where constrained
generalization operators based on widening and convex-hull are strictly more
powerful than the corresponding operators which are not constrained.

We also observe that the use of a constrained generalization operator usually
causes a very small increase of the verification time with respect to the non-
constrained counterparts, thus making constrained generalization a promising
technique that can be used in practice for software verification.

7 Related Work and Conclusions

The specialization-based software model checking technique presented in this
paper is an extension of the technique for the verification of safety properties of
infinite state reactive systems, encoded as CLP programs, presented in [9,11].
The main novelties of the present paper are that here we consider imperative
sequential programs and we propose a new specialization strategy which has the
objective of preserving, if possible, the branching behaviour of the definitions to
be generalized.

The use of constraint logic programming and program specialization for ver-
ifying properties of imperative programs has also been proposed by [27]. In that
paper, the interpreter of an imperative language is encoded as a CLP program.
Then the interpreter is specialized with respect to a specific imperative program
to obtain a residual program on which a static analyser for CLP programs is
applied. Finally, the information gathered during this process is translated back
in the form of invariants of the original imperative program. Our approach does
not require static analysis of CLP and, instead, we discover program invariants
during the specialization process by means of (constrained) generalization oper-
ators.

The idea of constrained generalization which has the objective of preserving
the branching behaviour of a clause, is related to the technique for preserv-

ing characteristic trees while applying abstraction during partial deduction [24].
Indeed, a characteristic tree provides an abstract description of the tree gener-
ated by unfolding a given goal, and abstraction corresponds to generalization.
However, the partial deduction technique considered in [24] is applied to ordi-
nary logic programs (not CLP programs) and constraints such as equations and
inequations on finite terms, are only used in an intermediate phase.

In order to prove that a program satisfies a given property, software model
checking methods try to automatically construct a conservative model (that is,
a property-preserving model) of the program such that, if the model satisfies the
given property, then also does the actual program. In constructing such a model
a software model checker may follow two dual approaches: either (i) it may start
from a coarse model and then progressively refine it by incorporating new facts,
or (ii) it may start from a concrete model and then progressively abstract away
from it some irrelevant facts.

Our verification method follows the second approach. Given a program P ,
we model its computational behaviour as a CLP program (Phase 1) by using
the interpreter of the language in which P is written. Then, the CLP program
is specialized with respect to the property to be verified, by using constrained
generalization operators which have the objective of preserving, if possible, the
branching behaviour of the definitions to be generalized. In this way we may
avoid loss of precision, and at the same time, we enforce the termination of the
specialization process (Phase 2).

In order to get a conservative model of a program, different generalization
operators have been introduced in the literature. In particular, in [2] the authors
introduce the bounded widen operator c∇B d, defined for any given constraint c
and d and any set B of constraints. This operator, which improves the precision
of the widen operator introduced in [4], has been applied in the verification
of synchronous programs and linear hybrid systems. A similar operator c∇B d,
called widening up to B, has been introduced in [15]. In this operator the set B of
constraints is statically computed once the system to be verified is given. There
is also a version of that operator, called interpolated widen, in which the set B
is dynamically computed [14] by using the interpolants which are derived during
the counterexample analysis.

Similarly to [2,5,14,15], the main objective of the constrained generalization
operators introduced in this paper is the improvement of precision during pro-
gram specialization. In particular, this generalization operator, similar to the
bounded widen operator, limits the possible generalizations on the basis of a
set of constraints defined by the CLP program obtained as output of Phase 1.
Since this set of constraints which limits the generalization depends on the out-
put of Phase 1, our generalization is more flexible than the one presented in [2].
Moreover, our generalization operator is more general than the classical widen-
ing operator introduced in [4]. Indeed, we only require that the set of constraints
which have a non-empty intersection with the generalized constraint c 	 d, are
entailed by d.

Now let us point out some advantages of the techniques for software model
checking which, like ours, use methodologies based on program specialization.

(1) First of all, the approach based on specialization of interpreters provides
a parametric, and thus flexible, technique for software model checking. Indeed,
by following this approach, given a program P written in the programming
language L, and a property ϕ written in a logic M , in order to verify that ϕ
holds for P , first (i) we specify the interpreter IL for L and we specify the
semantics SM of M (as a proof system or a satisfaction relation) in a suitable
metalanguage, then (ii) we specialize the interpreter and the semantics with
respect to P and ϕ, and finally (iii) we analyze the derived specialized program
(by possibly applying program specialization again, as done in this paper).

The metalanguage we used in this paper for Step (i) is CLP in which we
have specified both the interpreter and the reachability relation (which defines
the semantics of the reachability formula to be verified).

These features make program specialization a suitable framework for software
model checking because it can easily adapt to the changes of the syntax and the
semantics of the programming languages under consideration and also to the
different logics where the properties of interest are expressed.

(2) By applying suitable generalization operators we can make sure that spe-
cialization always terminates and produces an equivalent program with respect
to the property of interest. Thus, we can apply a sequence of specializations,
thereby refining the analysis to the desired degree of precision.

(3) Program specialization provides a uniform framework for program analysis.
Indeed, as already mentioned, abstraction operators can be regarded as particu-
lar generalization operators and, moreover, specialization can be easily combined
to other program transformation techniques, such as program slicing, dead code
elimination, continuation passing transformation, and loop fusion.

(4) Finally, on a more technical side, program specialization can easily accom-
modate polyvariant analysis [31] by introducing several specialized predicate
definitions corresponding to the same point of the program to be analyzed.

Our preliminary experimental results show that our approach is viable and
competitive with state-of-the-art software model checkers such as ARMC [28],
HSF(C) [13] and TRACER [17].

In order to further validate of our approach, we plan in the near future
to perform experiments on a larger set of examples. In particular, in order to
support a larger set of input specifications, we are currently working on rewriting
our translator so that it can take CIL (C Intermediate Language) programs [25].
We also plan to extend our interpreter to deal with more sophisticated features
of imperative languages such as arrays, pointers, and procedure calls.

Moreover, since our specialization-based method preserves the semantics of
the original specification, we also plan to explore how our techniques can be effec-
tively used in a preprocessing step before using existing state-of-the-art software
model checkers for improving both their precision and their efficiency.

References

1. T. Ball and S. K. Rajamani. Boolean programs: a model and process for software
analysis. MSR TR 2000-14, Microsoft Report, 2000.

2. N. Bjørner, A. Browne, and Z. Manna. Automatic generation of invariants and
assertions. Proc. CP’95, LNCS 976, pages 589–623. Springer, 1995.

3. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. Proc. CAV’00, pages 154–169. Springer, 2000.

4. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixpoints. Proc.
POPL’77, pages 238–252. ACM Press, 1977.

5. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. Proc. POPL’78, pages 84–96. ACM Press, 1978.

6. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3(1-2):69–116, 1987.

7. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101–146, 1996.

8. F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for special-
izing constraint logic programs. Proc. LOPSTR’00, LNCS 2042, pages 125–146.
Springer, 2001.

9. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite
state systems by specializing constraint logic programs. Proc. VCL’01, DSSE-TR-
2001-3, pages 85–96. University of Southampton, UK, 2001.

10. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying infinite state systems by
specializing constraint logic programs. R. 657, IASI-CNR, Rome, Italy, 2007.

11. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strate-
gies for the verification of infinite state systems. Theo. Pract. Log. Pro., DOI:
10.1017/S1471068411000627, 2013.

12. J. P. Gallagher. Tutorial on specialisation of logic programs. Proc. PEPM’93,
pages 88–98. ACM Press, 1993.

13. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A Software Verifier based on Horn Clauses. Proc. TACAS’12, LNCS 7214,
pages 549–551. Springer, 2012.

14. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
Refining Abstract Interpretations. Proc. TACAS’08, LNCS 4963, pages 443–458.
Springer, 2008. www.cfdvs.iitb.ac.in/∼bhargav/dagger.php

15. N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11:157–185, 1997.

16. J. Jaffar, J. A. Navas, and A. E. Santosa. Symbolic execution for verification.
Computing Research Repository, 2011.

17. J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A Symbolic Execution Tool
for Verification, 2012. paella.d1.comp.nus.edu.sg/tracer/

18. J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal.
Proc. CP’09, LNCS 5732, pages 454–469. Springer, 2009.

19. R. Jhala and R. Majumdar. Software model checking. ACM Computing Surveys,
41(4):21:1–21:54, 2009.

20. R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate
Refinement. Proc. TACAS’06, LNCS 3920, pages 459–473. Springer, 2006.

21. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

22. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. Theo. Pract. Log. Pro., 2(4&5):461–515, 2002.

23. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, 1998.

24. M. Leuschel and D. De Schreye. Constrained partial deduction. Proc. WLP’97,
Munich, Germany, pages 116–126, 1997.

25. G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language
and tools for analysis and transformation of C programs. Proc. CC’02, LNCS 2304,
pages 209–265. Springer, 2002. kerneis.github.com/cil/

26. The MAP transformation system. www.iasi.cnr.it/∼proietti/system.html
27. J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs

through Analysis of Constraint Logic Programs. Proc. SAS’98, LNCS 1503, pages
246–261. Springer, 1998.

28. A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In: Proc. PADL’07, LNCS 4354, pages
245–259. Springer, 2007.

29. C. J. Reynolds. Theories of Programming Languages. CambridgeUniv. Press, 1998.
30. H. Saïdi. Model checking guided abstraction and analysis. Proc. SAS’00, pages

377–396. Springer, 2000.
31. S. Scott and T. Wang. Polyvariant flow analysis with constrained types. Proc.

ESOP’00, LNCS 1782, pages 382–396. Springer, 2000.
32. N. Sharygina, S. Tonetta, and A. Tsitovich. An abstraction refinement approach

combining precise and approximated techniques. Soft. Tools Techn. Transf.,
14(1):1–14, Springer, 2012.

33. M. H. Sørensen and R. Glück. An algorithm of generalization in positive super-
compilation. Proc. ILPS’95, pages 465–479. MIT Press, 1995.

Appendix A: Some generalization operators

Here we define some generalization operators which have been used in the ex-
periments we have performed (see also [11]).
• (W) Given any two constraints c ≡ a1, . . . , am, and d, the operator Widen,
denoted 	W , returns the constraint ai1, . . . , air, such that {ai1, . . . , air} = {ah |
1 ≤ h ≤m and d v ah}. Thus, Widen returns all atomic constraints of c that
are entailed by d (see [4] for a similar widening operator used in static program
analysis). The operator 	W is a generalization operator w.r.t. the thin wqo -M .
• (WM) Given any two constraints c ≡ a1, . . . , am, and d ≡ b1, . . . , bn, the oper-
ator WidenMax, denoted 	WM , returns the conjunction ai1, . . . , air, bj1, . . . , bjs,
where: (i) {ai1, . . . , air} = {ah | 1≤h≤m and d v ah}, and (ii) {bj1, . . . , bjs} =
{bk | 1≤k≤n and bk -M c}.

The operator WidenMax is a generalization operator w.r.t. the thin wqo -M .
It is similar to Widen but, together with the atomic constraints of c that are
entailed by d, it returns also the conjunction of a subset of the atomic constraints
of d.

Next we define a generalization operator by using the convex hull operator,
which is often used in static program analysis [5].

• (CH) The convex hull of two constraints c and d in C, denoted by ch(c, d), is
the least (w.r.t. the v ordering) constraint h in C such that c v h and d v h.
(Note that ch(c, d) is unique up to equivalence of constraints.)
• (CHWM) Given any two constraints c and d, we define the operator CHWiden-
Max, denoted 	CHWM , as follows: c 	CHWM d = c 	WM ch(c, d). The operator
	CHWM is a generalization operator w.r.t. the thin wqo -M .

CHWidenMax returns the conjunction of a subset of the atomic constraints
of c and a subset of the atomic constraints of ch(c, d).

Appendix B: Detailed experimental results

In Table 2 we present in some more detail the time taken for proving the proper-
ties of interest by using our method for software model checking with the general-
ization operatorsWiden (ColumnW) and CHWidenMax (Column CHWM) [11],
and the constrained generalization operators derived from them Widencns (Col-
umn Wcns) and CHWidenMaxcns (Column CHWMcns), respectively.

Columns Ph1, Ph2, and Ph3 show the time required during Phases (1),
(2), and (3), respectively, of our Software Model Checking method presented in
Section 3. The sum of these three times for each phase is reported in Column Tot.

Program
Ph1

W Wcns CHWM CHWMcns

Ph2 Ph3 Tot Ph2 Ph3 Tot Ph2 Ph3 Tot Ph2 Ph3 Tot
ex1 1.02 0.05 0.01 1.08 0.07 / 0 1.09 0.11 0.01 1.14 0.23 / 0 1.25
f1a 0.35 0.01 ∞ ∞ 0.01 ∞ ∞ 0 / 0 0.35 0.01 / 0 0.36
f2 0.71 0.03 ∞ ∞ 0.13 ∞ ∞ 0.03 / 0.01 0.75 0.17 / 0 0.88
interp 0.27 0.01 0.01 0.29 0.02 / 0 0.29 0.04 0.01 0.32 0.17 / 0 0.44
re1 0.31 0.01 ∞ ∞ 0.02 / 0 0.33 0.02 / 0 0.33 0.02 / 0 0.33
selectSort 4.27 0.06 0.01 4.34 0.43 / 0 4.70 0.3 0.02 4.59 1.3 / 0 5.57
singleLoop 0.22 0.02 ∞ ∞ 0.02 ∞ ∞ 0.03 ∞ ∞ 0.04 / 0 0.26
substring 0.24 0.01 87.95 88.20 0.02 170.94 171.2 4.96 / 0.01 5.21 5.67 / 0.01 5.92
tracerP 0.11 0 / 0 0.11 0.01 / 0 0.12 0 / 0 0.11 0.01 / 0 0.12

Table 2. Time (in seconds) taken for performing software model checking with the
MAP system. ‘∞’ means ‘no answer within 20 minutes’. Times marked by ‘/’ are
relative to the programs obtained after Phase (2) and have no constrained facts (thus,
for those programs the times of Phase (3) are very small (≤ 0.01 s)).

