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Abstract. We consider infinite state reactive systems specified by using linear constraints over the
integers, and we address the problem of verifying safety properties of these systems by applying
reachability analysis techniques. We propose a method based on program specialization, which
improves the effectiveness of the backward and forward reachability analyses. For backward reach-
ability our method consists in: (i) specializing the reactive system with respect to the initial states,
and then (ii) applying to the specialized system the reachability analysis that works backwards from
the unsafe states.
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For reasons of efficiency, during specialization we make use of a relaxation from integers to reals.
In particular, we test the satisfiability or entailment of constraints over the real numbers, while pre-
serving the reachability properties of the reactive systems when constraints are interpreted over the
integers.

For forward reachability our method works as for backward reachability, except that the role of the
initial states and the unsafe states are interchanged. We have implemented our method using the
MAP transformation system and the ALV verification system. Through various experiments per-
formed on several infinite state systems, we have shown that our specialization-based verification
technique considerably increases the number of successful verifications without a significant degra-
dation of the time performance.

Keywords: Reachability analysis, automatic verification, program transformation, constraint logic
programming.

1. Introduction

One of the present challenges in the field of automatic verification of reactive systems is the extension
of the model checking techniques [7] to systems with an infinite number of states. For these systems
exhaustive state exploration is impossible and, even for restricted classes, simple properties such as
safety (or reachability) properties are undecidable (see [15] for a survey of relevant results).

In order to overcome this limitation, several authors have advocated the use of constraints over the
integers (or the reals) to represent infinite sets of states [6, 13, 14, 24, 26]. By manipulating constraint-
based representations of sets of states, one can verify a safety property ϕ of an infinite state system by
one of the following two strategies:
(i) Backward Strategy: one applies a backward reachability algorithm, thereby computing the set BR of
states from which it is possible to reach an unsafe state (that is, a state where ¬ϕ holds), and then one
checks whether or not BR has an empty intersection with the set I of the initial states;
(ii) Forward Strategy: one applies a forward reachability algorithm, thereby computing the set FR of
states reachable from an initial state, and then one checks whether or not FR has an empty intersection
with the set U of the unsafe states.

Variants of these two strategies have been proposed and implemented in various automatic verifi-
cation tools [2, 4, 23, 30, 40]. Some of them also use techniques borrowed from the field of abstract
interpretation [9], whereby in order to check whether or not a safety property ϕ holds for all states which
are reachable from the initial states, an upper approximation BR (or FR) of the set BR (or FR, respec-
tively) is computed. These techniques improve the termination of the verification tools at the expense of
a possible loss in precision. Indeed, whenever BR ∩ I 6= ∅ (or FR ∩ U 6= ∅, respectively), one cannot
conclude that there exists a state where ϕ does not hold.

One weakness of the Backward Strategy is that, when computing the set BR, it does not take into
account the properties holding on the initial states. This may lead, even if the formula ϕ does hold, to a
failure of the verification process, because either the computation of BR does not terminate or one gets
an excessively approximated BR with a non-empty intersection with the set I . A similar weakness is
also present in the Forward Strategy as it does not take into account the properties holding on the unsafe
states when computing FR or FR.
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In this paper we present a method based on program specialization [29] for mitigating these weak-
nesses. Program specialization is a program transformation technique that, given a program and a specific
context of use, derives a specialized program that is more effective in the given context. Our specializa-
tion method is applied before computing BR (or FR). Its objective is to transform the constraint-based
specification of a reactive system into a new specification that, when used for computing BR (or FR),
takes into consideration also the properties holding on the initial states (or the unsafe states, respectively).

Our method consists of the following three steps: (1) the translation of a reactive system specification
into a constraint logic program (CLP) [27] that implements backward (or forward) reachability; (2) the
specialization of the CLP program with respect to the initial states (or the unsafe states, respectively),
and (3) the reverse translation of the specialized CLP program into a specialized reactive system. We
prove that our specialization method is correct, that is, it transforms a given specification into one which
satisfies the same safety properties.

The specialization process performed at Step 2 makes use of the familiar unfold/fold transformation
rules for CLP programs [16]. For applying these rules many constraint manipulations and satisfiability
tests are needed. Since constraint solving in the domain of the integers is often expensive, in order to
improve efficiency, we apply a relaxation from integers to reals [5, 14], called the real relaxation, that is,
we solve constraints over the reals R, instead of the integers Z. To this aim we reformulate the transfor-
mation rules so that the applicability conditions of the rules are based on the satisfiability or entailment
of constraints over the reals. We prove that, even if we apply the real relaxation, every application of
the rules transforms a given program into a new program with the same least model constructed over the
integers, called the least Z-model.

This relaxation allows us to exploit efficient techniques for checking satisfiability and entailment of
constraints over the reals [38], for computing their projection, and for more complex constructions, such
as the widening and the convex hull operations over sets of constraints [3, 9, 11]. However, since we
use transformation rules which preserve the least Z-model of the CLP programs, we may apply to the
specialized programs other suitable verification techniques, including techniques based on constraints
over the integers.

We have implemented our specialization method on the MAP transformation system for CLP pro-
grams [32] and we have performed experiments on several infinite state systems by using the Action
Language Verifier (ALV) [40]. These experiments show that specialization determines a relevant in-
crease of the number of successful verifications, in the case of both backward and forward reachability
analysis, without a significant degradation of the time performance.

2. Constraint Logic Programs over Integers

We will consider constraint logic programs with constraints over a finite domain and linear constraints
over the set Z of the integer numbers.

Constraints are defined as follows. We assume a finite set D of typed constants. Variables can be
either: (i) integer variables, or (ii) enumerated variables. Each integer variable ranges over the integer
numbers and each enumerated variable Xi ranges over a finite set Di of constants, with Di ⊆ D. The set
Di is said to be the type of the variableXi and it is said to be the type of every constant inDi. If e1 and e2
are enumerated variables or constants of the same type, then e1=e2 and e1 6=e2 are atomic constraints.
If p1 and p2 are linear polynomials with integer variables and integer coefficients, then p1=p2, p1≥p2,
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and p1 > p2 are atomic constraints. A constraint is either true, or false, or an atomic constraint, or a
conjunction of constraints.

For the purposes of this paper it is sufficient to consider CLP programs which are finite sets of clauses
of the form A← c ∧∧B, where A is an atom, c is a constraint, and B is either the empty conjunction true
or a single atom. For reasons of simplicity and without loss of generality, we assume that the arguments
of all atoms are variables, that is, the atoms are of the form p(X1, . . . , Xn), with n ≥ 0, where p is a
predicate symbol not in {>,≥,=, 6=} and X1, . . . , Xn are distinct integer or enumerated variables.

Given a constraint c, by vars(c) we denote the set of variables occurring in c. By ∀(c) we denote
the universal closure ∀X1 . . . ∀Xn c, where vars(c) = {X1, . . . , Xn}. Similarly, by ∃(c) we denote the
existential closure ∃X1 . . . ∃Xn c. Similar notation will also be used for atoms, goals, and clauses.

For constraints over the integers we assume the standard interpretation which interprets the + and ×
symbols as addition and multiplication, respectively, and assigns to the>,≥,= symbols the usual mean-
ing for integer comparison. Additionally, we adopt the standard Herbrand interpretation for constraints
over D, so that e1 = e2 holds if and only if e1 and e2 are identical constants.

By abuse of language, we will denote this constraint interpretation by Z.
A Z-model of a CLP program P is defined to be a model of P which agrees with the interpretation Z

for the constraints. Every CLP program P has a unique least Z-model (or, simply, least model), denoted
M(P ) (see [27] for the definition of the least model of a constraint logic program).

We say that a constraint c is Z-satisfiable if Z |= ∃(c). We also say that a constraint c Z-entails a
constraint d, denoted c vZ d, if Z |= ∀(c→ d).

Let R be the usual interpretation of the constraints over the set of the real numbers, extended with
the interpretation for constraints over D defined above. A constraint c is R-satisfiable if R |= ∃(c). A
constraint c R-entails a constraint d, denoted c vR d, if R |= ∀(c → d). The R-projection of a con-
straint c onto the set X of variables is a constraint cp such that the following hold: (i) vars(cp) ⊆ X and
(ii) R |= ∀(cp ↔ ∃Y1 . . . ∃Yk c), where {Y1, . . . , Yk} = vars(c) − X . Recall that the set of constraints
over Z is not closed under projection.

The following lemma states some simple relationships between Z-satisfiability and R-satisfiability,
and between Z-entailment and R-entailment.

Lemma 2.1. Let c and d be constraints and X be a set of variables.
(i) If c is Z-satisfiable, then c is R-satisfiable. (ii) If c vR d, then c vZ d. (iii) If cp is the R-projection
of c onto X , then c vZ cp.

3. Transformation Rules with the Real Relaxation

In this section we present a set of transformation rules that can be used for specializing CLP programs.
The applicability conditions of the rules are given in terms of constraints interpreted over the set R and,
as shown by Theorem 3.1, these rules preserve the least Z-model semantics.

The rules we will consider are those needed in the specialization step of the method presented in
Section 5. Note, however, that the correctness result stated in Theorem 3.1 can be extended to constraint
logic programs with any number of atoms in the body of the clauses (as done in [22]), with locally
stratified negation [17], and to a larger set of rules, including definition introduction withm (≥1) clauses,
negative unfolding, multiple positive folding [19], and negative folding [19, 39].



F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Improving Reachability Analysis by Specialization 285

Before presenting these rules, we show through an example that, if we consider different domains
for the interpretation of the constraints and, in particular, if we apply the relaxation from the integers to
the reals, we may derive different programs with different intended semantics.

Let us consider, for instance, the following constraint logic program P :

1. p← Y >0 ∧∧Y <1 2. q ←
If we interpret the constraints over the reals, since R |= ∃Y (Y > 0 ∧∧Y < 1), program P can be trans-
formed into program PR:

1′. p← 2. q ←
If we interpret the constraints over the integers, since Z |= ¬∃Y (Y > 0 ∧∧Y < 1), program P can be
transformed into program PZ:

2. q ←
Programs PR and PZ are not equivalent because they have different least Z-models (which in this case
coincide with their least Herbrand models). Thus, when we apply the real relaxation we should proceed
with some care. In particular, we will admit a transformation rule only when its applicability conditions
interpreted over R imply the corresponding applicability conditions interpreted over Z.

The transformation rules are used to construct a transformation sequence, that is, a sequence
P0, . . . , Pn of programs. A transformation sequence P0, . . . , Pn is incrementally constructed, starting
from the initial program P0, as we now indicate. Suppose that we have constructed a transformation
sequence P0, . . . , Pk, for some k, with 0 ≤ k ≤ n−1. The next program Pk+1 in the transformation
sequence is derived from program Pk by the application of a transformation rule among rules R1–R4
defined below.

Our first rule is the Constrained Atomic Definition rule (or Definition Rule, for short), which is applied
for introducing a new predicate definition.

R1. Constrained Atomic Definition. Let us consider a clause, called a definition clause, of the form:

D: newp(X1, . . . , Xh)← c ∧∧ p(X1, . . . , Xh)

where: (i) newp does not occur in {P0, . . . , Pk}, (ii) X1, . . . , Xh are distinct variables, (iii) c is a con-
straint with vars(c) ⊆ {X1, . . . , Xh}, and (iv) p occurs in P0.
By constrained atomic definition from program Pk we derive the program Pk+1 = Pk∪{D}. For k ≥ 0,
Defsk denotes the set of clauses introduced by the definition rule during the transformation sequence
P0, . . . , Pk. In particular, Defs0 = ∅.

R2. Unfolding. Let E : H ← c ∧∧A be a clause in program Pk and let

K1 ← c1 ∧∧B1 . . . Km ← cm ∧∧Bm (m ≥ 0)

be all clauses of (a renamed apart variant of) program Pk such that, for i=1, . . ., m, there exists a
renaming substitution ρi such that A = Kiρi (recall that all atoms in a CLP program have distinct
variables as arguments).
By unfolding clause E w.r.t. the atom A we derive the clauses

F1 : H ← c ∧∧ c1ρ1 ∧∧B1ρ1
. . .

Fm : H ← c ∧∧ cmρm ∧∧Bmρm

and from program Pk we derive the program Pk+1 = (Pk − {E}) ∪ {F1, . . . , Fm}.
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Note that if m=0 then, by unfolding, clause E is deleted from Pk.

R3. Folding. Let E: H ← c ∧∧A be a clause in Pk and let D: K ← d ∧∧B be a clause in (a renamed
apart variant of) Defsk. Suppose that there exists a renaming substitution ρ such that: (i) A = B ρ, and
(ii) c vR d ρ. By folding E using D we derive the clause F : H ← c ∧∧Kρ and from program Pk we
derive the program Pk+1 = (Pk − {E}) ∪ {F}.

The following example illustrates an application of Rule R3.

Example 3.1. Suppose that the following clause belongs to Pk:

E: h(X)← X≥1 ∧∧ 2Y =3X+2 ∧∧ p(X,Y )

and suppose that the following clause is a definition clause in Defsk:

D: new(V,Z)← Z>2 ∧∧ p(V,Z)

We have that the substitution ρ = {V/X,Z/Y } satisfies Conditions (i) and (ii) of the folding rule
because X≥1 ∧∧ 2Y =3X+2 vR (Z>2)ρ. Thus, by folding clause F using clause E, we derive:

F : h(X)← X≥1 ∧∧ 2Y =3X+2 ∧∧ new(X,Y )

The following notion will be used for introducing the clause removal rule. Given two clauses of the form
F : H ← c ∧∧B and E: H ← d, respectively, we say that F is Z-subsumed by E, if c vZ d. Similarly,
we say that F is R-subsumed by E, if c vR d.

By Lemma 2.1, if γ is R-subsumed by δ, then γ is Z-subsumed by δ.

R4. Clause Removal. Let F be a clause in Pk of the form H ← c ∧∧B. By clause removal we derive the
program Pk+1 = Pk − {F} if either

Case (f): the constraint c is not R-satisfiable, or
Case (s): clause F is R-subsumed by a clause occurring in Pk − {F}.

The following Theorem 3.1 states that the transformation rules R1–R4 preserve the least Z-model se-
mantics.

Theorem 3.1. (Correctness of the Transformation Rules)
Let P0 be a CLP program and let P0, . . . , Pn be a transformation sequence obtained by applying rules
R1–R4. Let us assume that for every k, with 0<k<n−1, if Pk+1 is derived by applying folding to a
clause in Pk using a clause D in Defsk , then there exists j, with 0<j <n−1, such that: (i) D belongs
to Pj , and (ii) Pj+1 is derived by unfolding D w.r.t. the only atom in its body.
Then, for every ground atom A whose predicate occurs in P0, we have that A ∈M(P0) iff A ∈M(Pn).

Proof:
(Sketch) Let us consider variants of Rules R1–R4 where the applicability conditions are obtained from
those for R1–R4 by replacing R by Z. Let us denote R1Z–R4Z these variants of the rules. Rules R1Z,
R2Z, and R3Z, and R4Z (Case (f) and Case (s)) can be viewed as instances (for D = Z) of the rules
R1, R2p, R3 (Case P), R4f and R4s, respectively, for specializing CLP(D) programs presented in [17].
Since every constraint logic program without negation is trivially locally stratified, by Theorem 3.3.10
of [17] we have thatA ∈M(P0) iffA ∈M(Pn), for every ground atomAwhose predicate occurs in P0.
By Lemma 2.1 we have that the applicability conditions of R1–R4 imply the applicability conditions of
R1Z–R4Z, and, thus, we get the thesis. ut



F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Improving Reachability Analysis by Specialization 287

4. Specifying Reactive Systems

In order to specify reactive systems and their safety properties, we use a simplified version of the speci-
fication languages proposed in [2, 4, 30, 40].

A system is a triple 〈Var, Init,Trans〉, where: (i) Var is a variable declaration, (ii) Init is a formula
denoting the set of initial states, and (iii) Trans is a formula denoting a transition relation between states.

Now we formally define these notions. A variable declaration Var is a sequence of declarations
of (distinct) enumerated or integer variables. An enumerated variable x is declared by the statement:
enumerated x D, meaning that x ranges over a finite set D of constants. An integer variable x is
declared by the statement: integer x. By X we denote the set of variables declared in Var, and by X ′
we denote the set {x′ | x ∈ X} of primed variables. Init is a disjunction of constraints on the variables
in X . Trans is a disjunction of constraints on the variables in X ∪ X ′.

A safety specification (or, for brevity, a specification) is a pair 〈Sys, Safe〉, where Sys is a system and
Safe is a formula of the form ¬EF Unsafe, specifying a safety property of the system, and Unsafe is a
disjunction of constraints on the variables in X .

Example 4.1. On the left (1.1) we show a reactive system and on the right (1.2) we show the safety
specification 〈Sys, Safe〉, where Sys=〈Var, Init,Trans〉. In this specification the disjunction of constraints
Init and Trans are both made out of a single constraint only.

〈x1,x2〉

(1.1) (1.2)x′
1 = x1+x2

x′
2 = x2+1

Var : integer x1; integer x2;
Init : x1 ≥ 1 ∧∧ x2 = 0;

Trans: x′
1 = x1+x2 ∧∧ x′

2 = x2+1;
Safe: ¬EF(x2>x1)

�

Now we define the semantics of a specification. Let Di be a finite set of constants, for i = 1, . . . , k.
Let X = 〈x1, . . . , xk, xk+1, . . . , xn〉 be a listing of the variables in X , where: (i) for i = 1, . . . , k,
xi is an enumerated variable of type Di, and (ii) for i = k+1, . . . , n, xi is an integer variable. Let
X ′ be the associated listing 〈x′1, . . . , x′k, x′k+1, . . . , x

′
n〉 of the variables in X ′. A state is an n-tuple

〈r1, . . . , rk, zk+1, . . . , zn〉 of constants in D1 × . . .×Dk × Zn−k.
A state s of the form 〈r1, . . . , rk, zk+1, . . . , zn〉 satisfies a disjunction d of constraints on X , de-

noted s |= d, if the formula d[s/X] holds, where [s/X] denotes the substitution [r1/x1, . . . , rk/xk,
zk+1/xk+1, . . . , zn/xn]. A state satisfying Init is said to be an initial state. A state satisfying Unsafe is
said to be an unsafe state.

A pair 〈s, s′〉 of states satisfies a constraint c on the variables in X ∪ X ′, denoted 〈s, s′〉 |= c, if
the constraint c[s/X, s′/X ′] holds. A computation sequence is a sequence of states s0, . . . , sm, with
m ≥ 0, such that, for i = 0, . . . ,m−1, 〈si, si+1〉 |= c, for some constraint c in {cj | j ∈ J}, where
Trans =

∨
j∈J cj . State sm is reachable from state s0 if there exists a computation sequence s0, . . . , sm.

The system Sys satisfies the safety property, called Safe, of the form ¬EFUnsafe, if there is no state s
which is reachable from an initial state and s |= Unsafe.

A specification 〈Sys1, Safe1〉 is equivalent to a specification 〈Sys2, Safe2〉 if Sys1 satisfies Safe1 if and
only if Sys2 satisfies Safe2.



288 F. Fioravanti, A. Pettorossi, M. Proietti, V. Senni / Improving Reachability Analysis by Specialization

5. Constraint-Based Specialization of Reactive Systems

Now we present a method for transforming a specification 〈Sys, Safe〉 into an equivalent specification
whose safety property is easier to verify. This method has two variants, called Bw-Specialization and
Fw-Specialization. Bw-Specialization specializes the given system with respect to the disjunction Init
of constraints that characterize the initial states, so that backward reachability analysis of the specialized
system may be more effective, because it takes into account the information about the initial states. A
symmetric situation occurs in the case of Fw-Specialization where the given system is specialized with
respect to the disjunction Unsafe of constraints that characterize the unsafe states.

Here we present the Bw-Specialization method only. (The Fw-Specialization method is symmet-
ric [21] and it is described in the Appendix.) Bw-Specialization transforms the specification 〈Sys, Safe〉
into an equivalent specification 〈SpSys, SpSafe〉 according to the following three steps.
Step (1). Translation: The specification 〈Sys, Safe〉 is translated into a CLP program, called Bw, that

implements the backward reachability algorithm.
Step (2). Specialization: The CLP program Bw is specialized by taking into account the disjunction Init

of constraints, thereby deriving the program SpBw.
Step (3). Reverse Translation: The specialized CLP program SpBw is translated back into a new, special-

ized specification 〈SpSys, SpSafe〉 which is equivalent to 〈Sys, Safe〉.
The specialized specification 〈SpSys, SpSafe〉 contains new constraints that are derived by propagating
through the transition relation of the system Sys the constraints Init holding in the initial states. Thus, the
backward reachability analysis that uses the transition relation of the specialized system SpSys, takes into
account the information about the initial states and, for this reason, it is often more effective in practice
(see Section 6 for an experimental validation of this fact).

Now let us describe Steps (1), (2), and (3) in more detail.
Step (1). Translation. Let us consider the system Sys = 〈Var, Init,Trans〉 and the property Safe.
Suppose that:

(1) X and X ′ are listings of the variables in the sets X and X ′, respectively,

(2) Init is a disjunction init1(X) ∨∨ . . . ∨∨ initk(X) of constraints,

(3) Trans is a disjunction t1(X,X ′) ∨∨ . . . ∨∨ tm(X,X ′) of constraints,

(4) Safe is the formula ¬EFUnsafe , where Unsafe is a disjunction u1(X) ∨∨ . . . ∨∨ un(X) of con-
straints.

Then, program Bw consists of the following clauses:

I1: unsafe← init1(X) ∧∧ bwReach(X)
· · ·

Ik: unsafe← initk(X) ∧∧ bwReach(X)
T1: bwReach(X)← t1(X,X

′) ∧∧ bwReach(X ′)
· · ·

Tm: bwReach(X)← tm(X,X ′) ∧∧ bwReach(X ′)
U1: bwReach(X)← u1(X)
· · ·

Un: bwReach(X)← un(X)

The meaning of the predicates defined in the program Bw is as follows: (i) bwReach(X) holds iff an
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unsafe state can be reached from the state X in zero or more applications of the transition relation, and
(ii) unsafe holds iff there exists an initial state X such that bwReach(X) holds.

Example 5.1. For the system specified in Example 4.1 we get the following CLP program:
I1: unsafe← x1 ≥ 1 ∧∧ x2 = 0 ∧∧ bwReach(x1, x2)
T1: bwReach(x1, x2)← x′1=x1 + x2 ∧∧ x

′
2 = x2 + 1 ∧∧ bwReach(x′1, x

′
2)

U1: bwReach(x1, x2)← x2>x1 �

The translation of the specification 〈Sys, Safe〉 performed during Step (1) is correct in the sense stated by
Theorem 5.1. The proof of this theorem is based on the fact that the definition of the predicate bwReach
in the program Bw is a recursive definition of the reachability relation introduced in Section 4.
Theorem 5.1. (Correctness of Translation)
The system Sys satisfies the formula Safe iff unsafe /∈M(Bw).

Step (2). Specialization. Program Bw is transformed into a specialized program SpBw such that
unsafe ∈M(Bw) iff unsafe ∈M(SpBw) by applying the specialization algorithm shown in Figure 1.

This algorithm modifies the initial program Bw by propagating the information about the initial states
denoted by the formula Init and it does so by using the transformation rules with the relaxation from
integers to reals introduced in Section 3.

In particular, our specialization algorithm: (i) introduces new predicates defined by clauses of the
form newp(X) ← c(X) ∧∧ bwReach(X), corresponding to specialized versions of the bwReach predi-
cate, and (ii) derives mutually recursive definitions of these new predicates by applying the unfolding,
clause removal, and folding rules.

The correctness of the specialization algorithm directly follows from the correctness of the transfor-
mation rules stated in Theorem 3.1, whose applicability conditions are satisfied by the definition of the
specialization algorithm itself.

In order to guarantee the termination of this Step (2), our specialization algorithm makes use also of
a generalization operator Gen for introducing definitions of new predicates by generalizing constraints.
Given a clause E: newp(X) ← e(X,X ′) ∧∧ bwReach(X ′) and the set Defs of clauses that define the
new predicates introduced so far by the specialization algorithm, Gen(E,Defs) returns a clause G of
the form newr(X) ← g(X) ∧∧ bwReach(X) such that: (i) newr is a fresh, new predicate symbol, and
(ii) e(X,X ′) vR g(X ′) (where g(X ′) is the constraint g(X) with X replaced by X ′). Then, clause E
is folded by using clause G, thereby deriving newp(X)← e(X,X ′) ∧∧ newr(X ′). By Theorem 3.1 this
transformation step preserves equivalence with respect to the least Z-model semantics. Indeed, newr(X ′)
is equivalent to g(X ′) ∧∧ bwReach(X ′) by definition and, by Lemma 2.1, e(X,X ′) vR g(X ′) implies
that e(X,X ′) vZ g(X

′).
The generalization operator, called WidenSum, we have used in our experiments reported in Sec-

tion 6, is defined in terms of relations and operators on constraints such as widening and well-quasi
orders based on the coefficients of the polynomials occurring in the constraints. For lack of space we
will not describe here in detail the operator WidenSum and, instead, we will refer to [22, 35]. In these
papers the reader will also find the definition of various other generalization operators which can be used
for specializing constraint logic programs. Here it will be enough to say that the termination of the spe-
cialization algorithm is ensured by the fact that, similarly to the widening operator presented in [11], our
generalization operator guarantees that during specialization only a finite number of new predicates is
introduced.
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Input: Program Bw.
Output: Program SpBw such that unsafe ∈M(Bw) iff unsafe ∈M(SpBw).

INITIALIZATION (rules R1 and R3):
SpBw := {J1, . . . , Jk}, where J1: unsafe← init1(X) ∧∧ newu1(X)

· · ·
Jk: unsafe← initk(X) ∧∧ newuk(X);

InDefs := {I ′1, . . . , I ′k}, where I ′1: newu1(X)← init1(X) ∧∧ bwReach(X)
· · ·

I ′k: newuk(X)← initk(X) ∧∧ bwReach(X);
Defs := InDefs;

while there exists a clause C: newp(X)← c(X) ∧∧ bwReach(X) in InDefs do

UNFOLDING (rule R2):
SpC := {newp(X)← c(X) ∧∧ t1(X,X

′) ∧∧ bwReach(X ′),
· · ·
newp(X)← c(X) ∧∧ tm(X,X ′) ∧∧ bwReach(X ′),
newp(X)← c(X) ∧∧ u1(X),
· · ·
newp(X)← c(X) ∧∧ un(X) };

CLAUSE REMOVAL (rule R4):
while in SpC there exist two distinct clauses E and F such that E R-subsumes F or there exists

a clause F whose body has a constraint which is not R-satisfiable do SpC := SpC− {F}
end-while;

DEFINITION-INTRODUCTION & FOLDING (rules R1 and R3):
while in SpC there is a clause E of the form: newp(X)← e(X,X ′) ∧∧ bwReach(X ′) do

if in Defs there is a clause D of the form: newq(X)← d(X) ∧∧ bwReach(X) such that
e(X,X ′) vR d(X

′), where d(X ′) is d(X) with X replaced by X ′

then SpC := (SpC− {E}) ∪ {newp(X)← e(X,X ′) ∧∧ newq(X ′)};
else let Gen(E,Defs) be the clause newr(X)← g(X) ∧∧ bwReach(X) where:

(i) newr is a predicate symbol not in Defs and (ii) e(X,X ′)vR g(X
′);

Defs := Defs ∪ {Gen(E,Defs)};
InDefs := InDefs ∪ {Gen(E,Defs)};
SpC := (SpC− {E}) ∪ {newp(X)← e(X,X ′) ∧∧ newr(X ′)};

end-while;

InDefs := InDefs− {C};
SpBw := SpBw ∪ SpC;

end-while

Figure 1. The specialization algorithm.

Thus, we have the following result.

Theorem 5.2. (Termination and Correctness of Specialization)
(i) The specialization algorithm terminates. (ii) Let program SpBw be the output of the specialization
algorithm. Then unsafe∈M(Bw) iff unsafe∈M(SpBw).
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Example 5.2. The following program is obtained as output of the specialization algorithm when it takes
as input the CLP program of Example 5.1 and uses the generalization operator WidenSum [22]:

J1: unsafe← x1≥1 ∧∧ x2=0 ∧∧ new1(x1, x2)
S1: new1(x1, x2)← x1≥1 ∧∧ x2=0 ∧∧ x′1=x1 ∧∧ x

′
2=1 ∧∧ new2(x′1, x

′
2)

S2: new2(x1, x2)← x1≥1 ∧∧ x2=1 ∧∧ x′1 = x1+1 ∧∧ x′2=2 ∧∧ new3(x′1, x
′
2)

S3: new3(x1, x2)← x1≥1 ∧∧ x2≥1 ∧∧ x′1=x1+x2 ∧∧ x
′
2=x2+1 ∧∧ new3(x′1, x

′
2)

V1: new3(x1, x2)← x1≥1 ∧∧ x2>x1 �

Step (3). Reverse Translation. The output of the specialization algorithm is a specialized program
SpBw of the form:

J1: unsafe← init1(X) ∧∧ newu1(X)

· · ·
Jk: unsafe← initk(X) ∧∧ newuk(X)

S1: newp1(X)← s1(X,X
′) ∧∧ newt1(X ′)

· · ·
Sm: newpm(X)← sm(X,X ′) ∧∧ newtm(X ′)

V1: newq1(X)← v1(X)

· · ·
Vn: newqn(X)← vn(X)

where: (i) s1(X,X ′), . . . , sm(X,X ′), v1(X), . . . , vm(X) are constraints, and (ii) the possibly non-dis-
tinct predicate symbols newui’s, newpi’s, newti’s, and newqi’s are the new predicate symbols introduced
by Rule R1 during the execution of the specialization algorithm of Step (2). Let NewPred be the set of
all those new predicate symbols.

We derive a new specification 〈SpSys, SpSafe〉, where SpSys is a system of the form 〈SpVar, SpInit,
SpTrans〉, as follows.

(1) Let xp be a new enumerated variable ranging over the set NewPred of predicate symbols introduced
by the specialization algorithm.

Let the variable X occurring in the program SpBw denote the n-tuple of variables
〈x1, . . . , xk, xk+1, . . . , xn〉, where: (i) for i = 1, . . . , k, xi is an enumerated variable ranging
over the finite set Di, and (ii) for i = k + 1, . . . , n, xi is an integer variable.

We define SpVar to be the following sequence of variable declarations:
enumerated xp NewPred;
enumerated x1 D1; . . . ; enumerated xk Dk;
integer xk+1; . . . ; integer xn.

(2) From clauses J1, . . . , Jk we get the disjunction SpInit of k constraints, each of which is of the
form: initi(X) ∧∧ xp=newui.

(3) From clauses S1, . . . , Sm we get the disjunction SpTrans of m constraints, each of which is of the
form: si(X,X ′) ∧∧ xp=newpi ∧∧ x

′
p=newti.

(4) From clauses V1, . . . , Vn we get the disjunction SpUnsafe of n constraints, each of which is of the
form: vi(X) ∧∧ xp=newqi.

SpSafe is the formula ¬EF SpUnsafe.
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The reverse translation of the program SpBw into the specification 〈SpSys, SpSafe〉 is correct in the sense
stated by the following theorem.

Theorem 5.3. (Correctness of Reverse Translation)
The following equivalence holds: unsafe /∈M(SpBw) iff SpSys satisfies SpSafe.

Example 5.3. The following specialized specification is the result of the reverse translation of the spe-
cialized CLP program of Example 5.2:

SpVar: enumerated xp {new1, new2, new3}; integer x1; integer x2;
SpInit: x1≥1 ∧∧ x2=0 ∧∧ xp=new1;

SpTrans: (x1≥1 ∧∧ x2=0 ∧∧ xp=new1 ∧∧ x′1=x1 ∧∧ x
′
2=1 ∧∧ x′p=new2) ∨∨

(x1≥1 ∧∧ x2=1 ∧∧ xp=new2 ∧∧ x′1=x1+1 ∧∧ x′2=2 ∧∧ x′p=new3) ∨∨
(x1≥1 ∧∧ x2≥1 ∧∧ xp=new3 ∧∧ x′1=x1+x2 ∧∧ x

′
2=x2+1 ∧∧ x′p=new3)

SpSafe: ¬EF(x1≥1 ∧∧ x2>x1 ∧∧ xp=new3)
The backward reachability algorithm implemented in the ALV tool [40] is not able to verify the prop-
erty Safe for the given system Sys = 〈Var, Init,Trans〉 of Example 4.1, while it is able to verify the
property SpSafe for the system SpSys= 〈SpVar, SpInit, SpTrans〉 derived after specialization and defined
as indicated above. (Note that, as a consequence of Theorem 5.4 below the specification 〈Sys, Safe〉 is
equivalent to the specification 〈SpSys, SpSafe〉.)

This behaviour of ALV is basically due to the fact that for the given system, working backward from
the unsafe states where x2>x1 holds, ALV generates, at the various iterations, inequalities of the form:
x1 + nx2 + n (n−1)/2 ≤ 0, for n = 1, 2, . . . Thus, the verification process does not terminate.

Our specialization algorithm performs a forward exploration of the state space from the constraint
x1 ≥ 1 ∧∧x2 = 0 that characterizes the initial states, and proves that the states which are reachable from
the initial states all satisfy the constraint x1 ≥ 1 ∧∧x2 ≥ 0. This fact is exploited for deriving from
the given specification, a transformed specification (see, in particular, the constraints x1 ≥ 1, x2 = 0,
x2=1, and x2≥1 that are inserted at various points of the specification shown above) and the constraint
x1≥1 ∧∧x2≥0 makes the inequalities x1+nx2+n (n−1)/2 ≤ 0 to be unsatisfiable, for n=1, 2, . . . Thus,
for the transformed specification obtained after specialization, ALV does not generate these inequalities
when performing the backward reachability analysis and it manages to verify the safety property. �

The correctness of our Bw-Specialization method is stated by the following theorem, which is a
straightforward consequence of Theorems 5.1, 5.2, and 5.3.

Theorem 5.4. (Correctness of Bw-Specialization)
Let 〈SpSys, SpSafe〉 be the specification derived by applying the Bw-Specialization method to the speci-
fication 〈Sys, Safe〉. Then, 〈Sys, Safe〉 is equivalent to 〈SpSys, SpSafe〉.

6. Experimental Evaluation

In this section we present the results of the verification experiments we have performed on various infinite
state systems taken from the literature [4, 13, 14, 40].

We have performed our experiments by using the ALV tool, which is based on a BDD-based sym-
bolic manipulation for enumerated types and on a solver for linear constraints on integers [40]. ALV
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performs backward and forward reachability analysis by an approximate computation of the least fix-
point of the transition relation of the system. We have run ALV using the options: ‘default’ and ‘A’
(both for backward analysis), and the option ‘F’ (for forward analysis). The Bw-Specialization and
the Fw-Specialization methods were implemented on MAP [32], a tool for transforming CLP programs
which uses the SICStus Prolog clpr library to operate on constraints on the reals. All experiments were
performed on an Intel Core 2 Duo E7300 2.66 GHz under Linux.

The results of our experiments are reported in Table 1, where we have indicated, for each system and
for each ALV option, the following times expressed in seconds: (i) the time taken by ALV for verifying
the given system (see columns Sys), and (ii) the total time taken by MAP for specializing the system plus
the time taken by ALV for verifying the specialized system (see columns SpSys).

The experiments show that our specialization method always increases the precision of ALV, that is,
for every ALV option used, the number of properties verified increases when considering the specialized
systems (columns SpSys), instead of the given, non-specialized systems (columns Sys). There are also
some examples (Consistency, Selection Sort, and Reset Petri Net) where ALV is not able to verify the
property for the given reactive system (regardless of the option used), but it verifies the property for the
corresponding specialized system.

Now, let us compare the verification times. The time in column Sys and the time in column SpSys are
of the same order of magnitude in almost all cases. In two examples (Peterson and CSM, with the ‘de-
fault’ option) our method substantially reduces the total verification time. Unfortunately, in the Bounded
Buffer example (with options ‘default’ and ‘A’) our specialization method significantly increases the veri-
fication time. All in all we may conclude that in the systems we have considered, the increase of precision
due to our specialization method does not determine a significant degradation of the time performance.

The increase of the verification times in the Bounded Buffer example is due to the fact that the non-
specialized system can easily be verified by backward reachability analysis and, thus, our pre-processing
based on specialization is unnecessary. Another reason for this increase of the verification time in the
Bounded Buffer example is that, after specialization, we get a new system whose specification is quite
large (because the MAP system generates a large number of clauses). We will return to this point in the
next section.

7. Related Work and Conclusions

We have considered infinite state reactive systems specified by constraints over the integers and we have
proposed a method, based on the specialization of CLP programs, for pre-processing the given systems
and getting new, equivalent systems so that their backward (or forward) reachability analysis terminates
with success more often (that is, precision is improved), without a significant increase of the verification
time. The improvement of precision of the analysis is due to the fact that the backward (or forward)
verification of the specialized systems takes into account the properties which are true on the initial
states (or on the unsafe states, respectively).

The use of constraint logic programs in the area of system verification has been proposed by several
authors (see [13, 14], and [24] for a survey of early works). Also transformation techniques for constraint
logic programs have been shown to be useful for the verification of infinite state systems [18, 22, 31, 35,
37]. In the approach presented in this paper, constraint logic programs provide a suitable intermediate
representation of the systems to be verified so that one can easily specialize those systems. To these
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default A F

EXAMPLES Sys SpSys Sys SpSys Sys SpSys

1. Bakery2 0.03 0.05 0.03 0.05 0.06 0.04
2. Bakery3 0.70 0.25 0.69 0.25 ∞ 3.68
3. MutAst 1.46 0.37 1.00 0.37 0.22 0.59
4. Peterson 56.49 0.10 ∞ 0.10 ∞ 13.48
5. Ticket ∞ 0.03 0.10 0.03 0.02 0.19
6. Berkeley RISC 0.01 0.04 ⊥ 0.04 0.01 0.02
7. DEC Firefly 0.01 0.02 ⊥ 0.03 0.01 0.07
8. IEEE Futurebus 0.26 0.68 ⊥ ⊥ ∞ ∞
9. Illinois University 0.01 0.03 ⊥ 0.03 ∞ 0.07
10. MESI 0.01 0.02 ⊥ 0.03 0.02 0.07
11. MOESI 0.01 0.06 ⊥ 0.05 0.02 0.08
12. Synapse N+1 0.01 0.02 ⊥ 0.02 0.01 0.01
13. Xerox PARC Dragon 0.01 0.05 ⊥ 0.06 0.02 0.10
14. Barber 0.62 0.21 ⊥ 0.21 ∞ 0.08
15. Bounded Buffer 0.01 3.10 0.01 3.16 ∞ 0.03
16. Unbounded Buffer 0.01 0.06 0.01 0.06 0.04 0.04
17. CSM 56.39 7.69 ⊥ 7.69 ∞ 125.32
18. Consistency ∞ 0.11 ⊥ 0.11 ∞ 324.14
19. Insertion Sort 0.03 0.06 0.04 0.06 0.18 0.02
20. Selection Sort ∞ 0.21 ⊥ 0.21 ∞ 0.33
21. Reset Petri Net ∞ 0.02 ⊥ ⊥ ∞ 0.01
22. Train 42.24 59.21 ⊥ ⊥ ∞ 0.46

Number of verified properties 18 22 7 19 11 21

Table 1. Verification times (in seconds) using ALV [40]. ‘⊥’ means termination with the answer ‘Unable to
verify’ and ‘∞’ means ‘No answer’ within 10 minutes.

constraint logic programs we apply a variant of the specialization technique presented in [22]. However,
unlike [18, 22, 31, 35, 37], the final result of our specialization is not a constraint logic program, but a
new reactive system which can be analyzed by using any verification tool for reactive systems specified
by linear constraints on the integers. In this paper we have used the ALV tool [40] to perform the
verification task on the specialized systems (see Section 6), but we could have also used (with minor
syntactic modifications) other verification tools, such as TReX [2], FAST [4], and LASH [30]. Thus,
one can apply to the specialized systems any of the optimization techniques used by those verification
tools, such as fixpoint acceleration. We leave it for future research to evaluate the combined use of our
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specialization technique with other available optimization techniques.
Our specialization method is also related to some techniques for abstract interpretation [9] and, in

particular, to those proposed in the field of verification of infinite state systems [1, 7, 12, 25]. For
instance, program specialization makes use of generalization operators [22] which are similar to the
widening operators used in abstract interpretation. The main difference between program specialization
and abstract interpretation is that, when applied to a given system specification, the former produces an
equivalent specification, while the latter derives invariants by computing approximations of the semantics
of the given specification. Similarly to abstract interpretation, also our specialization method derives
invariants, which are encoded by the clauses introduced by using the definition rule. However, while
abstract interpretation uses invariants for checking whether or not they are strong enough to prove a
given system property, our method uses invariants for deriving equivalent specifications such that the
verification task may terminate more often and, when it terminates, it may be made more efficient.
Moreover, since our specialization method returns a new system specification which is written in the
same language of the given specification, after performing specialization we may apply in a subsequent
step some abstract interpretation techniques for proving system properties. Finding combinations of
program specialization and abstract interpretation techniques that are most suitable for the verification of
infinite state systems is an interesting issue for future research.

A related technique, which is widely used in the field of Software Model Checking, is CEGAR
(Counterexample-Guided Abstraction Refinement) [28]. As already mentioned in the Introduction, when
an upper approximation of the backward reachable states BR has a non-empty intersection with the set I
of the initial states, that is, BR∩I 6= ∅, one has to verify whether this is due to a genuine counterexample
violating the safety property or it is due to the approximation which is too coarse. In the latter case, by
using a so-called interpolant formula, a smaller upper approximation of BR is produced so that the
counterexample is avoided. This refinement process is repeated until the system is proved either safe
or unsafe. Since the verification problem is undecidable, termination of the refinement process is not
guaranteed. In contrast to abstraction refinement, our specialization method proceeds in the opposite
direction and, starting from the original, concrete specification, it iteratively introduces progressively
more abstract predicate definitions. The termination of our specialization method is guaranteed by the
generalization operator that we use. Again, due to the undecidability of verification, the termination of
the reachability analysis after specialization is not guaranteed.

Our Bw-Specialization method performs backward reachability after a program specialization phase,
which can be regarded as a forward constraint propagation technique (and symmetrically for Fw-Special-
ization). Thus, our method is related to the combined use of backward and forward abstract interpreta-
tion, originally proposed by Cousot [8] and recently reconsidered and extended in [10, 36], where the
result of backward analysis is used for performing forward analysis, and vice versa. However, while we
have shown the effectiveness of our method in a number of examples of infinite state systems, no such
extensive experimental evaluation is provided in [10, 36].

Another important feature of our method is that our transformation rules for CLP programs make
use of the relaxation from the integers to the reals. The main practical advantage of using that relaxation
is that we can then use the highly optimized tools for manipulating constraints over the reals, like, for
example, PPL [3]. While relaxation techniques are typically used as approximation techniques (see, for
instance, [5, 9, 11, 14, 35]), in this paper we have shown that some of them may realize transformations
that preserve the semantics of interest. As an additional advantage, our approach allows one to use, after
transformation, other analysis tools, like those working on integer constraints. Note, however, that in
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principle, the result of applying transformation rules with the real relaxation may be sub-optimal with
respect to the one which can be achieved by manipulating integer constraints. For example, using our
rules we are unable to remove a clause whose constraints are satisfiable on the reals, but are unsatisfiable
on the integers. However, we have checked that, for the significant set of examples of Section 6, this
sub-optimality never occurs.

Since our specialization algorithm may introduce different specialized versions of the bwReach(X)
predicate, it can be classified as a polyvariant specialization technique [29]. Polyvariant specialization
is related to polyvariant program analysis, which has been studied in various fields, such as control flow
analysis of functional programming languages (see [33] for a survey) and context-sensitive analysis of
imperative programs [34]. A relevant issue we would like to address in the future is the reduction of
the size of the specification of the specialized systems. Indeed, in one of the examples considered in
Section 6, the time performance of the verification was not quite good, because of the large size of
the (specification of the) specialized system, due to the very many new predicate definitions that were
introduced. This problem can be tackled by using techniques for controlling polyvariance, that is, for
reducing the number of specialized versions of the same predicate, which is an important issue also
studied in the field of program specialization. Some results in this direction have been presented in [20].

Finally, we plan to extend our specialization technique to specifications of other classes of reactive
systems such as linear hybrid systems [23, 26].
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8. Appendix. Specialization Method for Forward Reachability

Let us briefly describe the Fw-Specialization method which transforms a given specification into as
equivalent one which is then subject to the forward reachability analysis.

Fw-Specialization consists of three Steps (1f), (2f), and (3f), analogous to Steps (1), (2), and (3) of
the backward reachability case described in Section 5.

Step (1f). Translation. Consider the system Sys = 〈Var, Init,Trans〉 and the property Safe specified as
indicated in Step (1) of Section 5. The specification 〈Sys, Safe〉 is translated into the following constraint
logic program Fw that encodes the forward reachability algorithm.

G1: unsafe← u1(X) ∧∧ fwReach(X)
· · ·

Gn: unsafe← un(X) ∧∧ fwReach(X)

R1: fwReach(X ′)← t1(X,X
′) ∧∧ fwReach(X)

· · ·
Rm: fwReach(X ′)← tm(X,X ′) ∧∧ fwReach(X)

H1: fwReach(X)← init1(X)
· · ·

Hk: fwReach(X)← initk(X)

Note that we have interchanged the roles of the initial and unsafe states (compare the clauses Gi’s and
Hi’s of program Fw with clauses Ii’s and Ui’s of program Bw presented in Section 5), and we have
reversed the direction of the derivation of new states from old ones (compare clausesRi’s of program Fw
with clauses Ti’s of program Bw).

Step (2f). Forward Specialization. Program Fw is transformed into an equivalent program SpFw by
applying a variant of the specialization algorithm presented in Figure 1 to the input program Fw, instead
of the input program Bw. This transformation consists in specializing Fw with respect to the disjunction
Unsafe of constraints that characterizes the unsafe states of the system Sys.

Step (3f). Reverse Translation. The output of the specialization algorithm is a program SpFw of the
form:

L1: unsafe← u1(X) ∧∧ newu1(X)
· · ·

Ln: unsafe← un(X) ∧∧ newun(X)

P1: newp1(X
′)← p1(X,X

′) ∧∧ newd1(X)
· · ·

Pr: newpr(X
′)← pr(X,X

′) ∧∧ newdr(X)

W1: newq1(X)← w1(X)
· · ·

Ws: newqs(X)← ws(X)
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where (i) p1(X,X ′), . . . , pr(X,X ′),w1(X), . . . ,ws(X) are constraints, and (ii) the possibly non-distinct
predicate symbols newui’s, newpi’s, newdi’s, and newqi’s are the new predicate symbols introduced by
the specialization algorithm.

Now we translate the program SpFw into a new specification 〈SpSys, SpSafe〉, where SpSys =
〈SpVar, SpInit, SpTrans〉. The translation is like the one presented in Step (3) of Section 5, the only
difference being the interchange of the initial states and the unsafe states. In particular, (i) we derive a
new variable declaration SpVar by introducing a new enumerated variable ranging over the set of new
predicate symbols, (ii) we extract the disjunction SpInit of constraints characterizing the new initial states
from the constrained facts Wi’s, (iii) we extract the disjunction SpTrans of constraints characterizing the
new transition relation from the clauses Pi’s, (iv) we extract the disjunction SpUnsafe of constraints
characterizing the new unsafe states from the clauses Li’s which define the unsafe predicate, and finally,
(v) we define SpSafe as the formula ¬EF SpUnsafe.

Similarly to Section 5, the following Theorem 8.1 shows the correctness of the transformation con-
sisting of Steps (1f), (2f), and (3f).

Theorem 8.1. (Correctness of Fw-Specialization)
Let 〈SpSys, SpSafe〉 be the specification derived by applying the Fw-Specialization method to the speci-
fication 〈Sys, Safe〉. Then, 〈Sys, Safe〉 is equivalent to 〈SpSys, SpSafe〉.

Starting from the specification of Example 4.1, by applying our Fw-Specialization method (with the
generalization operator CHWidenSum [22]), we get the following specialized specification:

SpVar: enumerated xp {new1, new2}; integer x1; integer x2;
SpInit: x1≥1 ∧∧ x2=0 ∧∧ xp=new2;

SpTrans: (x1<1 ∧∧ xp=new2 ∧∧ x′1 = x1+x2 ∧∧x
′
2 = x2+1 ∧∧ x′p=new1) ∨∨

(xp=new2 ∧∧ x′1 = x1+x2 ∧∧ x
′
2 = x2+1 ∧∧ x′p=new2)

SpSafe: ¬EF(x2>x1 ∧∧ xp=new2)

As for the backward reachability algorithm, also the forward reachability algorithm implemented in ALV
successfully verifies the safety property of this specialized specification, while it is not able to verify
(within 600 seconds) the safety property of the initial specification of Example 4.1.


