
Improving Reachability Analysis

of Infinite State Systems by Specialization

Fabio Fioravanti1, Alberto Pettorossi2, Maurizio Proietti3, and Valerio Senni2,4

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

2 DISP, University of Rome Tor Vergata, Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
maurizio.proietti@iasi.cnr.it

4 LORIA-INRIA, Villers-les-Nancy, France
valerio.senni@loria.fr

Abstract. We consider infinite state reactive systems specified by us-
ing linear constraints over the integers, and we address the problem of
verifying safety properties of these systems by applying reachability anal-
ysis techniques. We propose a method based on program specialization,
which improves the effectiveness of the backward and forward reachabil-
ity analyses. For backward reachability our method consists in: (i) spe-
cializing the reactive system with respect to the initial states, and then
(ii) applying to the specialized system a reachability analysis that works
backwards from the unsafe states. For forward reachability our method
works as for backward reachability, except that the role of the initial
states and the unsafe states are interchanged. We have implemented our
method using the MAP transformation system and the ALV verifica-
tion system. Through various experiments performed on several infinite
state systems, we have shown that our specialization-based verification
technique considerably increases the number of successful verifications
without significantly degrading the time performance.

1 Introduction

One of the present challenges in the field of automatic verification of reactive
systems is the extension of the model checking techniques [5] to systems with
an infinite number of states. For these systems exhaustive state exploration is
impossible and, even for restricted classes, simple properties such as safety (or
reachability) properties are undecidable (see [10] for a survey of relevant results).

In order to overcome this limitation, several authors have advocated the
use of constraints over the integers (or the reals) to represent infinite sets of
states [4,8,9,15,17]. By manipulating constraint-based representations of sets of
states, one can verify a safety property ϕ of an infinite state system by one of
the following two strategies:
(i) Backward Strategy: one applies a backward reachability algorithm, thereby
computing the set BR of states from which it is possible to reach an unsafe state
(that is, a state where ¬ϕ holds), and then one checks whether or not BR has
an empty intersection with the set I of the initial states;

(ii) Forward Strategy: one applies a forward reachability algorithm, thereby com-
puting the set FR of states reachable from an initial state, and then one checks
whether or not FR has an empty intersection with the set U of the unsafe states.

Variants of these two strategies have been proposed and implemented in var-
ious automatic verification tools [2,3,14,20,25]. Some of them also use techniques
borrowed from the field of abstract interpretation [6], whereby in order to check
whether or not a safety property ϕ holds for all states which are reachable from
the initial states, an upper approximation BR (or FR) of the set BR (or FR)
is computed. These techniques improve the termination of the verification tools
at the expense of a possible loss in precision. Indeed, whenever BR ∩ I 6= ∅ (or
FR ∩ U 6= ∅), one cannot conclude that, for some state, ϕ does not hold.

One weakness of the Backward Strategy is that, when computing BR, it does
not take into account the properties holding on the initial states. This may lead,
even if the formula ϕ does hold, to a failure of the verification process, because
either the computation of BR does not terminate or one gets an overly approx-
imated BR with a non-empty intersection with the set I. A similar weakness
is also present in the Forward Strategy as it does not take into account the
properties holding on the unsafe states when computing FR or FR.

In this paper we present a method, based on program specialization [19],
for overcoming these weaknesses. Program specialization is a program transfor-
mation technique that, given a program and a specific context of use, derives a
specialized program that is more effective in the given context. Our specialization
method is applied before computing BR (or FR). Its objective is to transform
the constraint-based specification of a reactive system into a new specification
that, when used for computing BR (or FR), takes into consideration also the
properties holding on the initial states (or the unsafe states, respectively).

Our method consists of the following three steps: (1) the translation of a
reactive system specification into a constraint logic program (CLP) [18] that im-
plements backward (or forward) reachability; (2) the specialization of the CLP
program with respect to the initial states (or the unsafe states, respectively),
and (3) the reverse translation of the specialized CLP program into a special-
ized reactive system. We prove that our specialization method is correct, that
is, it transforms a given specification into one which satisfies the same safety
properties.

We have implemented our specialization method on the MAP transformation
system for CLP programs [22] and we have performed experiments on several in-
finite state systems by using the Action Language Verifier (ALV) [25]. These ex-
periments show that specialization determines a relevant increase of the number
of successful verifications, in the case of both backward and forward reachability
analysis, without a significant degradation of the time performance.

2 Specifying Reactive Systems

In order to specify reactive systems and their safety properties,we use a simplified
version of the languages considered in [2,3,20,25]. Our language allows us to
specify systems and properties by using constraints over the setZ of the integers.

2

A system is a triple 〈Var, Init,Trans〉, where: (i) Var is a variable declaration,
(ii) Init is a formula denoting the set of initial states, and (iii) Trans is a formula
denoting a transition relation between states.

Now we formally define these notions. A variable declaration Var is a se-
quence of declarations of (distinct) variables each of which may be either: (i) an
enumerated variable, or (ii) an integer variable. (i) An enumerated variable x is
declared by the statement: enumerated x D, meaning that x ranges over a
finite set D of constants. The set D is said to be the type of x and it is also said
to be the type of every constant in D. (ii) An integer variable x is declared by
the statement: integer x, meaning that x is a variable ranging over the set Z of
the integers. By X we denote the set of variables declared in Var, and by X ′ we
denote the set {x′ | x ∈ X} of primed variables.

Constraints are defined as follows. If e1 and e2 are enumerated variables or
constants of the same type, then e1 =e2 and e1 6=e2 are atomic constraints. If p1

and p2 are linear polynomials with integer coefficients, then p1 =p2, p1≥p2, and
p1 >p2 are atomic constraints. A constraint is either true, or false, or an atomic
constraint, or a conjunction of constraints. Init is a disjunction of constraints
on the variables in X . Trans is a disjunction of constraints on the variables in
X ∪ X ′.

A specification is a pair 〈Sys,Safe〉, where Sys is a system and Safe is a
formula of the form ¬EFUnsafe, specifying a safety property of the system, and
Unsafe is a disjunction of constraints on the variables in X .

Example 1. Here we show a reactive system (1.1) and its specification (1.2) in
our language.

〈x1,x2〉

(1.1) (1.2)x
′

1 = x1+x2

x
′

2 = x2+1
Var : integer x1; integer x2;
Init : x1 ≥ 1 ∧∧ x2 = 0;

Trans: x
′

1 = x1+x2 ∧∧ x
′

2 = x2+1;
Safe: ¬EF(x2 >x1)

�

Now we define the semantics of a specification. Let Di be a finite set of constants,
for i = 1, . . . , k. Let X = 〈x1, . . . , xk, xk+1, . . . , xn〉 be a listing of the variables
in X , where: (i) for i = 1, . . . , k, xi is an enumerated variable of type Di, and
(ii) for i = k+1, . . . , n, xi is an integer variable. Let X ′ be a listing 〈x′

1, . . . , x
′

k,
x′

k+1
, . . . , x′

n〉 of the variables in X ′. A state is an n-tuple 〈r1, . . . , rk, zk+1, . . . , zn〉

of constants in D1 × . . .×Dk × Z
n−k.

A state s of the form 〈r1, . . . , rk, zk+1, . . . , zn〉 satisfies a disjunction d of con-
straints on X , denoted s |= d, if the formula d[s/X] holds, where [s/X] denotes
the substitution [r1/x1, . . . , rk/xk, zk+1/xk+1, . . . , zn/xn]. A state satisfying Init

(resp., Unsafe) will be called an initial (resp., unsafe) state.
A pair of states 〈s, s′〉 satisfies a constraint c on the variables in X ∪X ′, de-

noted 〈s, s′〉 |= c, if the constraint c[s/X, s′/X ′] holds. A computation sequence

is a sequence of states s0, . . . , sm, with m≥ 0, such that, for i = 0, . . . , m−1,
〈si, si+1〉 |= c, for some constraint c in {cj | j ∈ J}, where Trans =

∨
j∈J cj .

3

State sm is reachable from state s0 if there exists a computation sequence
s0, . . . , sm. The system Sys satisfies the safety property, called Safe, of the form
¬EFUnsafe, if there is no state s which is reachable from an initial state and
s |= Unsafe.

A specification 〈Sys1,Safe1〉 is equivalent to a specification 〈Sys2,Safe2〉 if
Sys1 satisfies Safe1 if and only if Sys2 satisfies Safe2.

3 Constraint-Based Specialization of Reactive Systems

Now we present a method for transforming a specification 〈Sys,Safe〉 into an
equivalent specification whose safety property is easier to verify. This method has
two variants, called Bw-Specialization and Fw-Specialization. Bw-Specialization
specializes the given system with respect to the disjunction Init of constraints
that characterize the initial states. Thus, backward reachability analysis of the
specialized system may be more effective because it takes into account the in-
formation about the initial states. A symmetric situation occurs in the case
of Fw-Specialization where the given system is specialized with respect to the
disjunction Unsafe of constraints that characterize the unsafe states.

Here we present the Bw-Specialization method only. (The Fw-Specialization
method is similar and it is described in Appendix.) Bw-Specialization transforms
the specification 〈Sys,Safe〉 into an equivalent specification 〈SpSys, SpSafe〉 ac-
cording to the following three steps.
Step (1). Translation: The specification 〈Sys,Safe〉 is translated into a CLP pro-

gram, called Bw, that implements the backward reachability algorithm.
Step (2). Specialization: The CLP program Bw is specialized into a program

SpBw by taking into account the disjunction Init of constraints.
Step (3). Reverse Translation: The specialized CLP program SpBw is translated

back into a new, specialized specification 〈SpSys,SpSafe〉, which is equivalent
to 〈Sys,Safe〉.

The specialized specification 〈SpSys,SpSafe〉 contains new constraints that are
derived by propagating through the transition relation of the system Sys the
constraints Init holding in the initial states. Thus, the backward reachability
analysis that uses the transition relation of the specialized system SpSys, takes
into account the information about the initial states and, for this reason, it is
often more effective (see Section 4 for an experimental validation of this fact).

Let us now describe Steps (1), (2), and (3) in more detail.
Step (1). Translation. Let us consider the system Sys = 〈Var, Init,Trans〉 and
the property Safe. Suppose that:

(1) X and X ′ are listings of the variables in the sets X and X ′, respectively,
(2) Init is a disjunction init1(X) ∨∨ . . . ∨∨ initk(X) of constraints,
(3) Trans is a disjunction t1(X, X ′) ∨∨ . . . ∨∨ tm(X, X ′) of constraints,
(4) Safe is the formula ¬EFUnsafe, where Unsafe is a disjunction u1(X) ∨∨ . . .

∨∨un(X) of constraints.

Then, program Bw consists of the following clauses:

4

I1: unsafe← init1(X) ∧∧ bwReach(X)
· · ·

Ik: unsafe← initk(X) ∧∧ bwReach(X)
T1: bwReach(X)← t1(X, X ′) ∧∧ bwReach(X ′)
· · ·

Tm: bwReach(X)← tm(X, X ′) ∧∧ bwReach(X ′)
U1: bwReach(X)← u1(X)
· · ·

Un: bwReach(X)← un(X)

The meaning of the predicates defined in the program Bw is as follows:
(i) bwReach(X) holds iff an unsafe state can be reached from the state X in zero
or more applications of the transition relation, and (ii) unsafe holds iff there
exists an initial state X such that bwReach(X) holds.

Example 2. For the system of Example 1 we get the following CLP program:
I1: unsafe← x1 ≥ 1 ∧∧ x2 = 0 ∧∧ bwReach(x1, x2)
T1: bwReach(x1, x2)← x′

1 =x1 + x2 ∧∧ x′

2 = x2 + 1 ∧∧ bwReach(x′

1, x
′

2)
U1: bwReach(x1, x2)← x2 >x1 �

The semantics of program Bw is given by the least Z-model, denoted M(Bw), that
is, the set of ground atoms derived by using: (i) the theory of linear equations
and inequations over the integers Z for the evaluation of the constraints, and
(ii) the usual least model construction (see [18] for more details).

The translation of the specification 〈Sys,Safe〉 performed during Step (1) is
correct in the sense stated by Theorem 1. The proof of this theorem is based
on the fact that the definition of the predicate bwReach in the program Bw is a
recursive definition of the reachability relation defined in Section 2.

Theorem 1 (Correctness of Translation). The system Sys satisfies the for-

mula Safe iff unsafe /∈M(Bw).

Step (2). Specialization. Program Bw is transformed into a specialized pro-
gram SpBw such that unsafe ∈ M(Bw) iff unsafe ∈ M(SpBw) by applying the
specialization algorithm shown in Figure 1.

This algorithm modifies the initial program Bw by propagating the infor-
mation about the initial states Init and it does so by using the definition in-

troduction, unfolding, clause removal, and folding rules for transforming con-
straint logic programs (see, for instance, [11]). In particular, our specializa-
tion algorithm: (i) introduces new predicates defined by clauses of the form
newp(X) ← c(X) ∧∧ bwReach(X), corresponding to specialized versions of the
bwReach predicate, and (ii) derives mutually recursive definitions of these new
predicates by applying the unfolding, clause removal, and folding rules.

An important feature of our specialization algorithm is that the applicability
conditions of the transformation rules used by the algorithm are expressed in
terms of the unsatisfiability (or entailment) of constraints on the domain R of the
real numbers, instead of the domain Z of the integer numbers, thereby allowing
us to use more efficient constraint solvers (according to the present state-of-the-
art solvers). Note that, despite this domain change from Z to R, the specialized

5

Input : Program Bw.
Output : Program SpBw such that unsafe ∈M(Bw) iff unsafe ∈M(SpBw).

Initialization:
SpBw := {J1, . . . , Jk}, where J1: unsafe← init1(X) ∧∧ newu1(X)

· · ·
Jk: unsafe← initk(X) ∧∧ newuk(X);

InDefs := {I ′

1, . . . , I
′

k}, where I ′

1: newu1(X)← init1(X) ∧∧ bwReach(X)
· · ·

I ′

k: newuk(X)← initk(X) ∧∧ bwReach(X);
Defs := InDefs;
while there exists a clause C: newp(X)← c(X) ∧∧ bwReach(X) in InDefs do

Unfolding: SpC := {newp(X)← c(X) ∧∧ t1(X, X ′) ∧∧ bwReach(X ′),
· · ·

newp(X)← c(X) ∧∧ tm(X, X ′) ∧∧ bwReach(X ′),
newp(X)← c(X) ∧∧ u1(X),
· · ·

newp(X)← c(X) ∧∧ un(X) };
Clause Removal:
while in SpC there exist two distinct clauses E and F such that E R-subsumes F or

there exists a clause F whose body has a constraint which is not R-satisfiable
do SpC := SpC− {F} end-while;

Definition-Introduction & Folding:
while in SpC there is a clause E of the form: newp(X) ← e(X, X ′) ∧∧ bwReach(X ′)
do

if in Defs there is a clause D of the form: newq(X) ← d(X) ∧∧ bwReach(X) such
that e(X, X ′) ⊑R d(X ′), where d(X ′) is d(X) with X replaced by X ′

then SpC := (SpC− {E}) ∪ {newp(X)← e(X,X ′) ∧∧ newq(X ′)};
else let Gen(E,Defs) be the clause newr(X)← g(X) ∧∧ bwReach(X) where:

(i) newr is a predicate symbol not in Defs and (ii) e(X, X ′)⊑R g(X ′);
Defs := Defs ∪ {Gen(E,Defs)}; InDefs := InDefs ∪ {Gen(E,Defs)};
SpC := (SpC− {E}) ∪ {newp(X)← e(X, X ′) ∧∧ newr(X ′)};

end-while;

SpBw := SpBw ∪ SpC;

end-while

Fig. 1. The specialization algorithm.

reachability program SpBw is equivalent to the initial program Bw w.r.t. the least
Z-model semantics (see Theorem 4 below). This result is based on the correctness
of the transformation rules [11] and on the fact that the unsatisfiability (or
entailment) of constraints on R implies the unsatisfiability (or entailment) of
those constraints on Z. For instance, let us consider the rule that removes a
clause of the form H ← c ∧∧ B if the constraint c is unsatisfiable on the integers.
Our specialization algorithm removes the clause if c is unsatisfiable on the reals.
Clearly, we may miss the opportunity of removing a clause whose constraint
is satisfiable on the reals and unsatisfiable on the integers, thereby deriving a
specialized program with redundant satisfiability tests. More in general, the use
of constraint solvers on the reals may reduce the specialization time, but may
leave in the specialized programs residual satisfiability tests on the integers that
should be performed at verification time on the specialized system.

6

Let us define the notions of R-satisfiability, R-entailment, and R-subsumption
that we have used in the specialization algorithm. Let X and X ′ be n-tuples of
variables as indicated in Section 2. The constraint c(X) is R-satisfiable, if there
exists an n-tuple A in D1 × . . .×Dk ×R

n−k such that c(A) holds. A constraint
c(X,X ′) R-entails a constraint d(X,X ′), denoted c(X,X ′) ⊑R d(X,X ′), if for
all A, A′ in D1 × . . . × Dk × R

n−k, if c(A,A′) holds then d(A,A′) holds. (Note
that the variables X or X ′ may be absent from c(X,X ′) or d(X,X ′).) Given two
clauses of the forms C: H ← c(X) and D: H ← d(X) ∧∧ e(X,X ′) ∧∧ B, where the
constraint e(X,X ′) and the atom B may be absent, we say that C R-subsumes D,
if d(X) ∧∧ e(X,X ′) ⊑R c(X).

As usual when performing program specialization, our algorithm also makes
use of a generalization operator Gen for introducing definitions of new predicates
by generalizing constraints. Given a clause E: newp(X)←e(X,X ′) ∧∧ bwReach(X ′)
and the set Defs of clauses that define the new predicates introduced so far
by the specialization algorithm, Gen(E,Defs) returns a clause G of the form
newr(X) ← g(X) ∧∧ bwReach(X) such that: (i) newr is a fresh, new predi-
cate symbol, and (ii) e(X,X ′) ⊑R g(X ′) (where g(X ′) is the constraint g(X)
with X replaced by X ′). Then, clause E is folded by using clause G, thereby
deriving newp(X) ← e(X,X ′) ∧∧ newr(X ′). This transformation step preserves
equivalence with respect to the least Z-model semantics. Indeed, newr(X ′) is
equivalent to g(X ′) ∧∧ bwReach(X ′) by definition and, as already mentioned,
e(X,X ′) ⊑R g(X ′) implies that e(X,X ′) entails g(X ′) in Z.

The generalization operator we use in our experiments reported in Section 4,
is defined in terms of relations and operators on constraints such as widening

and well-quasi orders based on the coefficients of the polynomials occurring in
the constraints. For lack of space we will not describe in detail the generalization
operator we apply, and we refer to [13,23] for various operators which can be
used for specializing constraint logic programs. It will be enough to say that the
termination of the specialization algorithm is ensured by the fact that, similarly
to the widening operator presented in [6], our generalization operator guarantees
that during specialization only a finite number of new predicates is introduced.

Thus, we have the following result.

Theorem 2 (Termination and Correctness of Specialization). (i) The

specialization algorithm terminates. (ii) Let program SpBw be the output of the

specialization algorithm. Then unsafe∈M(Bw) iff unsafe∈M(SpBw).

Example 3. The following program is obtained as output of the specialization
algorithm when it takes as input the CLP program of Example 2:

J1: unsafe← x1≥1 ∧∧ x2 =0 ∧∧ new1(x1, x2)
S1: new1(x1, x2)← x1≥1 ∧∧ x2 =0 ∧∧ x′

1 =x1 ∧∧ x′

2 =1 ∧∧ new2(x′

1, x
′

2)
S2: new2(x1, x2)← x1≥1 ∧∧ x2 =1 ∧∧ x′

1 = x1+1 ∧∧ x′

2 =2 ∧∧ new3(x′

1, x
′

2)
S3: new3(x1, x2)← x1≥1 ∧∧ x2≥1 ∧∧ x′

1 =x1+x2 ∧∧ x′

2 =x2+1 ∧∧ new3(x′

1, x
′

2)
V1: new3(x1, x2)← x1≥1 ∧∧ x2 >x1 �

Step (3). Reverse Translation. The output of the specialization algorithm is
a specialized program SpBw of the form:

7

J1: unsafe← init1(X) ∧∧ newu1(X)
· · ·

Jk: unsafe← initk(X) ∧∧ newuk(X)
S1: newp1(X)← s1(X, X ′) ∧∧ newt1(X

′)
· · ·

Sm: newpm(X)← sm(X, X ′) ∧∧ newtm(X ′)
V1: newq1(X)← v1(X)
· · ·

Vn: newqn(X)← vn(X)

where: (i) s1(X, X ′), . . . , sm(X, X ′), v1(X), . . . , vm(X) are constraints, and
(ii) the (possibly non-distinct) predicate symbols newui’s, newpi’s, newti’s, and
newqi’s are the new predicate symbols introduced by the specialization algo-
rithm. Let NewPred be the set of all of those new predicate symbols.

We derive a new specification 〈SpSys,SpSafe〉, where SpSys is a system of
the form 〈SpVar,SpInit,SpTrans〉, as follows.

(1) Let xp be a new enumerated variable ranging over the set NewPred of pred-
icate symbols introduced by the specialization algorithm.
Let the variable X occurring in the program SpBw denote the n-tuple of
variables 〈x1, . . . , xk, xk+1, . . . , xn〉, where: (i) for i = 1, . . . , k, xi is an enu-
merated variable ranging over the finite set Di, and (ii) for i = k + 1, . . . , n,
xi is an integer variable.
We define SpVar to be the following sequence of declarations of variables:

enumerated xp NewPred ;
enumerated x1 D1; . . . ; enumerated xk Dk;
integer xk+1; . . . ; integer xn.

(2) From clauses J1, . . . , Jk we get the disjunction SpInit of k constraints, each
of which is of the form: initi(X) ∧∧ xp =newui.

(3) From clauses S1, . . . , Sm we get the disjunction SpTrans of m constraints,
each of which is of the form: si(X, X ′) ∧∧ xp =newpi ∧∧ x′

p =newti.
(4) From clauses V1, . . . , Vn we get the disjunction SpUnsafe of n constraints,

each of which is of the form: vi(X) ∧∧ xp =newqi.
SpSafe is the formula ¬EFSpUnsafe.

The reverse translation of the program SpBw into the specification 〈SpSys,SpSafe〉
is correct in the sense stated by the following theorem.

Theorem 3 (Correctness of Reverse Translation). The following equiva-

lence holds: unsafe /∈M(SpBw) iff SpSys satisfies SpSafe.

Example 4. The following specialized specification is the result of the reverse
translation of the specialized CLP program of Example 3:

SpVar : enumerated xp {new1, new2, new3}; integer x1; integer x2;
SpInit : x1≥1 ∧∧ x2 =0 ∧∧ xp =new1;

SpTrans : (x1≥1 ∧∧ x2 =0 ∧∧ xp =new1 ∧∧ x′

1 =x1 ∧∧ x′

2 =1 ∧∧ x′

p =new2) ∨∨

(x1≥1 ∧∧ x2 =1 ∧∧ xp =new2 ∧∧ x′

1 =x1+1 ∧∧ x′

2 =2 ∧∧ x′

p =new3) ∨∨

(x1≥1 ∧∧ x2≥1 ∧∧ xp =new3 ∧∧ x′

1 =x1+x2 ∧∧ x′

2 =x2+1 ∧∧ x′

p =new3)
SpSafe: ¬EF(x1≥1 ∧∧ x2 >x1 ∧∧ xp =new3)

8

Note that the backward reachability algorithm implemented in the ALV tool [25]
is not able to verify (within 600 seconds) the safety property of the initial speci-

fication (see Example 1). Basically, this is due to the fact that working backward
from the unsafe states where x2 >x1 holds, ALV is not able to infer that, for all
reachable states, x2≥ 0 holds. The Bw-Specialization method is able to derive,
from the constraint characterizing the initial states, a new transition relation
SpTrans whose constraints imply x2 ≥ 0. By exploiting this constraint, ALV
successfully verifies the safety property of the specialized specification. �

The correctness of our Bw-Specialization method is stated by the following
theorem, which is a straightforward consequence of Theorems 1, 2, and 3.

Theorem 4 (Correctness of Bw-Specialization). Let 〈SpSys,SpSafe〉 be

the specification derived by applying the Bw-Specialization method to the specifi-

cation 〈Sys,Safe〉. Then, 〈Sys,Safe〉 is equivalent to 〈SpSys,SpSafe〉.

4 Experimental Evaluation

In this section we present the results of the verification experiments we have
performed on various infinite state systems taken from the literature [3,8,9,25].

We have run our experiments by using the ALV tool, which is based on a
BDD-based symbolic manipulation for enumerated types and on a solver for
linear constraints on integers [25]. ALV performs backward and forward reacha-
bility analysis by an approximate computation of the least fixpoint of the tran-
sition relation of the system. We have run ALV using the options: ‘default’
and ‘A’ (both for backward analysis), and the option ‘F’ (for forward analysis).
The Bw-Specialization and the Fw-Specialization methods were implemented
on MAP [22], a tool for transforming CLP programs which uses the SICStus
Prolog clpr library to operate on constraints on the reals. All experiments were
performed on an Intel Core 2 Duo E7300 2.66 GHz under Linux.

The results of our experiments are reported in Table 1, where we have in-
dicated, for each system and for each ALV option used, the following times
expressed in seconds: (i) the time taken by ALV for verifying the given system
(columns Sys), and (ii) the total time taken by MAP for specializing the system
and by ALV for verifying the specialized system (columns SpSys).

The experiments show that our specialization method always increases the
precision of ALV, that is, for every ALV option used, the number of properties
verified increases when considering the specialized systems (columns SpSys) in-
stead of the given, non-specialized systems (columns Sys). There are also some
examples (Consistency, Selection Sort, and Reset Petri Net) where ALV is not
able to verify the property on the given reactive system (regardless of the option
used), but it verifies the property on the corresponding specialized system.

Now, let us compare the verification times. The time in column Sys and the
time in column SpSys are of the same order of magnitude in almost all cases.
In two examples (Peterson and CSM, with the ‘default’ option) our method
substantially reduces the total verification time. Finally, in the Bounded Buffer

9

default A F

EXAMPLES Sys SpSys Sys SpSys Sys SpSys

1. Bakery2 0.03 0.05 0.03 0.05 0.06 0.04
2. Bakery3 0.70 0.25 0.69 0.25 ∞ 3.68

3. MutAst 1.46 0.37 1.00 0.37 0.22 0.59

4. Peterson 56.49 0.10 ∞ 0.10 ∞ 13.48

5. Ticket ∞ 0.03 0.10 0.03 0.02 0.19

6. Berkeley RISC 0.01 0.04 ⊥ 0.04 0.01 0.02
7. DEC Firefly 0.01 0.02 ⊥ 0.03 0.01 0.07

8. IEEE Futurebus 0.26 0.68 ⊥ ⊥ ∞ ∞

9. Illinois University 0.01 0.03 ⊥ 0.03 ∞ 0.07

10. MESI 0.01 0.02 ⊥ 0.03 0.02 0.07

11. MOESI 0.01 0.06 ⊥ 0.05 0.02 0.08

12. Synapse N+1 0.01 0.02 ⊥ 0.02 0.01 0.01
13. Xerox PARC Dragon 0.01 0.05 ⊥ 0.06 0.02 0.10

14. Barber 0.62 0.21 ⊥ 0.21 ∞ 0.08

15. Bounded Buffer 0.01 3.10 0.01 3.16 ∞ 0.03

16. Unbounded Buffer 0.01 0.06 0.01 0.06 0.04 0.04

17. CSM 56.39 7.69 ⊥ 7.69 ∞ 125.32
18. Consistency ∞ 0.11 ⊥ 0.11 ∞ 324.14

19. Insertion Sort 0.03 0.06 0.04 0.06 0.18 0.02

20. Selection Sort ∞ 0.21 ⊥ 0.21 ∞ 0.33

21. Reset Petri Net ∞ 0.02 ⊥ ⊥ ∞ 0.01

22. Train 42.24 59.21 ⊥ ⊥ ∞ 0.46

Number of verified properties 18 22 7 19 11 21

Table 1. Verification times (in seconds) using ALV [25]. ‘⊥’ means termination with
the answer ‘Unable to verify’ and ‘∞’ means ‘No answer’ within 10 minutes.

example (with options ‘default’ and ‘A’) our specialization method significantly
increases the verification time. Thus, overall, the increase of precision due to
the specialization method we have proposed, does not determine a significant
degradation of the time performance.

The increase of the verification times in the Bounded Buffer example is due
to the fact that the non-specialized system can easily be verified by a backward
reachability analysis and, thus, our pre-processing based on specialization is
unnecessary. Moreover, after specializing the Bounded Buffer system, we get a
new system whose specification is quite large (because the MAP system generates
a large number of clauses). We will return to this point in the next section.

5 Related Work and Conclusions

We have considered infinite state reactive systems specified by constraints over
the integers and we have proposed a method, based on the specialization of
CLP programs, for pre-processing the given systems and getting new, equivalent

10

systems so that their backward (or forward) reachability analysis terminates
with success more often (that is, precision is improved), without a significant
increase of the verification time. The improvement of precision of the analysis
is due to the fact that the backward (or forward) verification of the specialized
systems takes into account the properties which are true on the initial states (or
on the unsafe states, respectively).

The use of constraint logic programs in the area of system verification has
been proposed by several authors (see [8,9], and [15] for a survey of early works).
Also transformation techniques for constraint logic programs have been shown
to be useful for the verification of infinite state systems [12,13,21,23,24]. In the
approach presented in this paper, constraint logic programs provide as an in-
termediate representation of the systems to be verified so that one can easily
specialize those systems. To these constraint logic programs we apply a variant
of the specialization technique presented in [13]. However, unlike [12,13,21,23,24],
the final result of our specialization is not a constraint logic program, but a new
reactive system which can be analyzed by using any verification tool for reac-
tive systems specified by linear constraints on the integers. In this paper we have
used the ALV tool [25] to perform the verification task on the specialized systems
(see Section 4), but we could have also used (with minor syntactic modifications)
other verification tools, such as TReX [2], FAST [3], and LASH [20]. Thus, one
can apply to the specialized systems any of the optimization techniques imple-
mented in those verification tools, such as fixpoint acceleration. We leave it for
future research to evaluate the combined use of our specialization technique with
other available optimization techniques.

Our specialization method is also related to some techniques for abstract
interpretation [6] and, in particular, to those proposed in the field of verification
of infinite state systems [1,5,7,16]. For instance, program specialization makes use
of generalization operators [13] which are similar to the widening operators used
in abstract interpretation. The main difference between program specialization
and abstract interpretation is that, when applied to a given system specification,
the former produces an equivalent specification, while the latter produces a more
abstract (possibly, finite state) model whose semantics is an approximation of the
semantics of the given specification. Moreover, since our specialization method
returns a new system specification which is written in the same language of the
given specification, after performing specialization we may also apply abstract
interpretation techniques for proving system properties. Finding combinations
of program specialization and abstract interpretation techniques that are most
suitable for the verification of infinite state systems is an interesting issue for
future research.

A further relevant issue we would like to address in the future is the reduction
of the size of the specification of the specialized systems. Indeed, in one of the
examples considered in Section 4, the time performance of the verification was
not quite good, because the (specification of the) specialized system had a large
size, due to the introduction of a large number of new predicate definitions. This
problem can be tackled by using techniques for controlling polyvariance (that is,

11

for reducing the number of specialized versions of the same predicate), which is
an important issue studied in the field of program specialization [19].

Finally, we plan to extend our specialization technique to specifications of
other classes of reactive systems such as linear hybrid systems [14,17].

Acknowledgements

This work has been partially supported by PRIN-MIUR and by a joint project
between CNR (Italy) and CNRS (France). The last author has been supported by
an ERCIM grant during his stay at LORIA-INRIA. Thanks to Laurent Fribourg
and John Gallagher for many stimulating conversations.

References

1. P.A. Abdulla, G. Delzanno, N. Ben Henda, and A. Rezine. Monotonic abstraction
(On efficient verification of parameterized systems). Int. J. of Foundations of

Computer Science, 20(5):779–801, 2009.
2. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability

analysis of complex systems. In Proc. CAV 2001, LNCS 2102, pages 368–372.
Springer, 2001.

3. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Acceleration from theory
to practice. Int. J. on Software Tools for Technology Transfer, 10(5):401–424, 2008.

4. T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with
unbounded integer variables: symbolic representations, approximations, and ex-
perimental results. ACM TOPLAS, 21(4):747–789, 1999.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction of approximation of fixpoints. In Proc.

POPL’77, pages 238–252. ACM Press, 1977.
7. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems.

ACM TOPLAS, 19(2):253–291, 1997.
8. G. Delzanno. Constraint-based verification of parameterized cache coherence pro-

tocols. Formal Methods in System Design, 23(3):257–301, 2003.
9. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Int. J.

on Software Tools for Technology Transfer, 3(3):250–270, 2001.
10. J. Esparza. Decidability of model checking for infinite-state concurrent systems.

Acta Informatica, 34(2):85–107, 1997.
11. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-

puter Science, 166:101–146, 1996.
12. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite

state systems by specializing constraint logic programs. In Proc. VCL’01, Tech.
Rep. DSSE-TR-2001-3, pages 85–96. Univ. of Southampton, UK, 2001.

13. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Program specialization for
verifying infinite state systems: An experimental evaluation. In Proc. LOPSTR

2010, LNCS 6564, pages 164–183. Springer, 2011.
14. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HYTECH. In

Proc. HSCC 2005, LNCS 3414, pages 258–273. Springer, 2005.

12

15. L. Fribourg. Constraint logic programming applied to model checking. In Proc.

LOPSTR ’99, LNCS 1817, pages 31–42. Springer-Verlag, 2000.
16. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking

using modal transition systems. In Proc. CONCUR ’01, LNCS 2154, pages 426–
440. Springer, 2001.

17. T. A. Henzinger. The theory of hybrid automata. In Proc. LICS ’96, 278–292, 1996.
18. J. Jaffar and M. Maher. Constraint logic programming: A survey. J. of Logic

Programming, 19/20:503–581, 1994.
19. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice Hall, 1993.
20. LASH homepage: http://www.montefiore.ulg.ac.be/∼boigelot/research/lash.
21. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-

tion and program specialization. In Proc. LOPSTR ’99, LNCS 1817, pages 63–82.
Springer, 2000.

22. MAP homepage: http://www.iasi.cnr.it/∼proietti/system.html.
23. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of

CLP programs. In Proc. LOPSTR 2002, LNCS 2664, pages 90–108, 2003.
24. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan,

and S. A. Smolka. Verification of parameterized systems using logic program trans-
formations. In Proc. TACAS 2000, LNCS 1785, pages 172–187. Springer, 2000.

25. T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An infinite-state model
checker for reactive software specifications. Formal Methods in System Design,
35(3):325–367, 2009.

Appendix. Specialization Method for Forward Reachability

Let us briefly describe the Fw-Specialization method to be applied as a pre-
processing step before performing a forward reachability analysis.

Fw-Specialization consists of three Steps (1f), (2f), and (3f), analogous to
Steps (1), (2), and (3) of the backward reachability case described in Section 3.

Step (1f). Translation. Consider the system Sys = 〈Var, Init,Trans〉 and the
property Safe specified as indicated in Step (1) of Section 3. The specification
〈Sys,Safe〉 is translated into the following constraint logic program Fw that
encodes the forward reachability algorithm.

G1: unsafe← u1(X) ∧∧ fwReach(X)
· · ·

Gn: unsafe← un(X) ∧∧ fwReach(X)

R1: fwReach(X ′)← t1(X, X ′) ∧∧ fwReach(X)
· · ·

Rm: fwReach(X ′)← tm(X, X ′) ∧∧ fwReach(X)

H1: fwReach(X)← init1(X)
· · ·

Hk: fwReach(X)← initk(X)

Note that we have interchanged the roles of the initial and unsafe states (compare
the clauses Gi’s and Hi’s of program Fw with clauses Ii’s and Ui’s of program Bw

presented in Section 3), and we have reversed the direction of the derivation of
new states from old ones (compare clauses Ri’s of program Fw with clauses Ti’s
of program Bw).

13

Step (2f). Forward Specialization. Program Fw is transformed into an equiv-
alent program SpFw by applying a variant of the specialization algorithm de-
scribed in Figure 1 to the input program Fw, instead of program Bw. This trans-
formation consists in specializing Fw with respect to the disjunction Unsafe of
constraints that characterizes the unsafe states of the system Sys.

Step (3f). Reverse Translation. The output of the specialization algorithm
is a program SpFw of the form:

L1: unsafe← u1(X) ∧∧ newu1(X)
· · ·

Ln: unsafe← un(X) ∧∧ newun(X)

P1: newp1(X
′)← p1(X, X ′) ∧∧ newd1(X)

· · ·
Pr: newpr(X

′)← pr(X, X ′) ∧∧ newdr(X)

W1: newq1(X)← w1(X)
· · ·

Ws: newqs(X)← ws(X)

where (i) p1(X, X ′), . . . , pr(X, X ′),w1(X), . . . ,ws(X) are constraints, and (ii) the
(possibly non-distinct) predicate symbols newui’s, newpi’s, newd i’s, and newqi’s
are the new predicate symbols introduced by the specialization algorithm.

Now we translate the program SpFw into a new specification 〈SpSys,SpSafe〉,
where SpSys = 〈SpVar,SpInit,SpTrans〉. The translation is like the one presented
in Step (3), the only difference being the interchange of the initial states and
the unsafe states. In particular, (i) we derive a new variable declaration SpVar

by introducing a new enumerated variable ranging over the set of new predicate
symbols, (ii) we extract the disjunction SpInit of constraints characterizing the
new initial states from the constrained facts Wi’s, (iii) we extract the disjunc-
tion SpTrans of constraints characterizing the new transition relation from the
clauses Pi’s, (iv) we extract the disjunction SpUnsafe of constraints characteriz-
ing the new unsafe states from the clauses Li’s which define the unsafe predicate,
and finally, (v) we define SpSafe as the formula ¬EFSpUnsafe.

Similarly to Section 3, we can prove the correctness of the transformation
consisting of Steps (1f), (2f), and (3f).

Theorem 5 (Correctness of Fw-Specialization). Let 〈SpSys,SpSafe〉 be the

specification derived by applying the Fw-Specialization method to the specification

〈Sys,Safe〉. Then, 〈Sys,Safe〉 is equivalent to 〈SpSys,SpSafe〉.

Starting from the specification of Example 1, by applying our Fw-Specialization
method, we get the following specialized specification:

SpVar : enumerated xp {new1,new2}; integer x1; integer x2;
SpInit : x1≥1 ∧∧ x2 =0 ∧∧ xp =new2;

SpTrans : (x1 <1 ∧∧ xp =new2 ∧∧ x′

1 = x1+x2 ∧∧ x′

2 = x2+1 ∧∧ x′

p =new1) ∨∨

(xp =new2 ∧∧ x′

1 = x1+x2 ∧∧ x′

2 = x2+1 ∧∧ x′

p =new2)
SpSafe: ¬EF(x2 >x1 ∧∧ xp =new2)

The forward reachability algorithm implemented in ALV successfully verifies
the safety property of this specialized specification, while it is not able to verify
(within 600 seconds) the safety property of the initial specification of Example 1.

14

