
VeriMAP A Tool for Verifying Programs through Transformations
Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maurizio Proietti
University of Chieti-Pescara, University of Rome ‘Tor Vergata’, and IASI-CNR of Rome - Italy

What is VeriMAP?

I a tool for the verification of safety properties of C programs
I based on transformation of Constraint Logic Programs (Horn clauses)
I uses CLP as a metalanguage for representing:
. the operational semantics of the C language
. the C program
. the safety property to be verified

I satisfiability preserving CLP transformations
. for generating Verification Conditions
. for checking their satisfiability

The VeriMAP architecture

C-to-CLP
Translator

Unfold/Fold
Transformer Analyzer

Transformation Strategies

Generalization
Operators

Replacement
Rules

C Program

CIL Interpreter

Constraint Domain

Data Theory

unknown

true/false

Property

Proof Rules

Iterated Verifier

Constraint 
Solvers

Unfolding 
Operators

Verification
Conditions
Generator

Verification of Safety Properties

Given the specification {ϕinit} prog {ψ}, define ϕerror ≡ ¬ψ

int x, y, n;
while(x<n) {

x=x+1;
y=y+2;

}

Initial and error properties
ϕinit(x,y,n) ≡ x=0 ∧ y=0 ∧ n≥0
ϕerror(x,y,n) ≡ y>2x

A program is incorrect w.r.t. ϕinit and ϕerror iff from an initial configuration
satisfying ϕinit it is possible to reach a final configuration satisfying ϕerror .

C-to-CLP translator

I First while’s and for’s are translated into equivalent commands that use
if-else’s and goto’s.

I Then, for each program command, C-to-CLP generates a CLP fact of the form
at(L, C), where C and L represent the command and its label.

1. `0 : if (x<n) goto `1;
else goto `h;

2. `1 : x=x+1;
3. `2 : y=y+2;
4. `3 : goto `0;
5. `h : halt;

1. at(l0,ite(less(x,n),l1,lh)).
2. at(l1,asgn(x,expr(plus(x,1)),l2)).
3. at(l2,asgn(y,expr(plus(y,2)),l3)).
4. at(l3,goto(l0)).
5. at(lh,halt).

I Also facts for the initial and error properties are generated:

phiInit(cf(...,[(x,X),(y,Y),(n,N)])) :- X=0, Y=0, N>=0.
phiError(cf(...,[(x,X),(y,Y),(n,N)])) :- Y>2*X.

Encoding imperative programs using CLP - The Interpreter Int

incorrect :- initial(Cf), phiInit(Cf), reach(Cf).
reach(Cf) :- tr(Cf,Cf1), reach(Cf1).
reach(Cf) :- final(Cf), phiError(Cf).

+ clauses for tr (the operational semantics of the programming language)

L: Id = Expr tr(cf(cmd(L,asgn(Id,Expr)),E),cf(cmd(L1,C),E1)):-
aeval(Expr,E,V), evaluate expression
update(Id,V,E,E1), update environment
nextlabel(L,L1), next label
at(L1,C). next command

L: if(Expr) { tr(cf(cmd(L,ite(Expr,L1,L2)),E),cf(C,E)):-
L1: . . . beval(Expr,E), expression is true

} at(L1,C). next command
else tr(cf(cmd(L,ite(Expr,L1,L2)),E),cf(C,E)) :-

L2: . . . beval(not(Expr),E), expression is false
} at(L2,C). next command

+ clauses for at (the encoding of the commands of the program)
+ clauses for phiInit and phiError (initial and error properties)

Correctness of the CLP encoding
prog is correct iff incorrect 6∈M(Int) (the least model of Int)

Rule-based program transformation

P

P1

P2

TransfP

R

R

R

R

I transformation rules R :
Definition: introduce a new predicate (e.g., a loop invariant)
Unfold: symbolic evaluation step (resolution)
Fold: matching a predicate definition (e.g., a loop invariant)
Clause Removal: remove unsat or subsumed clauses
Constraint Replacement: replace constraints using a theory

I the transformation rules preserve the least model semantics:
incorrect∈M(P) iff incorrect∈M(TransfP)

I rules are guided by a strategy Unfold ; Constr. Repl. ; Clause Removal ; Definition ; Fold
 ∗

I generalization operators ensure the termination of the strategy

Verification Condition Generator

Verification Conditions are generated by specializing the interpreter Int w.r.t. prog
all references to tr (operational semantics) and at (encoding of prog) are removed

incorrect :- X=0, Y=0, N>=0, new1(X,Y,N).
new1(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, new1(X1,Y1,N).
new1(X,Y,N) :- X≥N, Y>2*X.

Unfold/Fold transformer

I The initial property is propagated by Unfold/Fold Transformation

incorrect :- X1=0, Y1=0, N>=0, new2(X1,Y1,N).
new2(X,Y,N) :- X=0, Y=0, N>=1, X1=1, Y1=2, new3(X1,Y1,N).
new3(X,Y,N) :- X≥0, Y≥0, X<N, X1=X+1, Y1=Y+2, new3(X1,Y1,N).
new3(X,Y,N) :- X≥N, N≥0, Y>2*X.

Analyzer

We use a lightweight analyzer. Precision is achieved by iteration.
I If there is no constrained fact then the program is correct.
I If there is the fact incorrect then the program is incorrect.

Iterated Verification

We have propagated the constraints occurring in the initial property.
If the Analyzer returns unknown, we reverse the transition relation and iterate
the transformation process, thus propagating the error property.

incorrect :- Y>2*X,N>=0,X>=N,new4(X,Y,N).
new4(X1,Y1,N) :- X1=X+1,Y1=Y+2,N=X+1,X>=0,Y>2*X,new5(X,Y,N).
new5(X1,Y1,N) :- X1=X+1,Y1=Y+2,X>=0,N>=X+1,Y>2*X,new5(X,Y,N).

I No constrained fact is present: the program is correct.

Array programs

We apply rewrite rules for Constraint Replacement based on the Theory of Arrays.

I (Array Congruence) I=J, read(A, I, U), read(A, J, V) → U=V
I (Read-over-Write1) I=J, write(A, I, U, B), read(B, J, V) → U=V
I (Read-over-Write2) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

Experimental Evaluation - Integer Programs

216 examples taken from: DAGGER, TRACER, InvGen, and TACAS 2013 Software
Verification Competition. Times are in seconds.

VeriMAP ARMC HSF(C) TRACER
1 correct answers 185 138 160 103
2 safe problems 154 112 138 85
3 unsafe problems 31 26 22 18
4 incorrect answers 0 9 4 14
5 false alarms 0 8 3 14
6 missed bugs 0 1 1 0
7 errors 0 18 0 22
8 timed-out problems 31 51 52 77
9 total time 10717.34 15788.21 15770.33 23259.19

10 average time 57.93 114.41 98.56 225.82

URL: http://map.uniroma2.it/VeriMAP/

http://map.uniroma2.it/VeriMAP/

