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Abstract. We present a method for verifying relational program prop-
erties, that is, properties that relate the input and the output of two
programs. Our verification method is parametric with respect to the
definition of the operational semantics of the programming language in
which the two programs are written. That definition of the semantics
consists of a set Int of constrained Horn clauses (CHCs) that encode the
interpreter of the programming language. Then, given the programs and
the relational property we want to verify, we generate, by using Int, a
set of constrained Horn clauses whose satisfiability is equivalent to the
validity of the property. Unfortunately, state-of-the-art solvers for CHCs
have severe limitations in proving the satisfiability, or the unsatisfiability,
of such sets of clauses. We propose some transformation techniques that
increase the power of CHC solvers when verifying relational properties.
We show that these transformations, based on unfold/fold rules, preserve
satisfiability. Through an experimental evaluation, we show that in many
cases CHC solvers are able to prove the satisfiability (or the unsatisfi-
ability) of sets of clauses obtained by applying the transformations we
propose, whereas the same solvers are unable to perform those proofs
when given as input the original, untransformed sets of CHCs.

1 Introduction
During the process of software development it is often the case that several
versions of the same program are produced. This is due to the fact that the pro-
grammer, for instance, may want to replace an old program fragment by a new
program fragment with the objective of improving efficiency, or adding a new
feature, or modifying the program structure. In these cases, in order to prove the
correctness of the whole program, it may be desirable to consider relational prop-
erties of those program fragments, that is, properties that relate the semantics
of the old fragments to the semantics of the new fragments. Among the many
examples of relational properties that can be considered in practice as indicated
in some papers [5,30], program equivalence has a prominent significance.
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It has been noted that proving relational properties between two structurally
similar program versions is often easier than directly proving the desired cor-
rectness property for the new program version [5,20,30]. Moreover, in order to
automate the correctness proofs, it may be convenient to follow a transforma-
tional approach so that one can use the already available methods and tools
for proving correctness of individual programs. For instance, various papers pro-
pose program composition and cross-product techniques such that, in order to
prove that a given relation between program P1 and P2 holds, it is sufficient to
show that suitable pre- and post-conditions for the composition of P1 and P2
hold [5,30,38]. The validity of these pre- and post-conditions is then checked by
using state-of-the-art verification tools (e.g., Boogie [4] and Why [21]). A dif-
ferent transformational approach is followed by Felsing et al. [20], who introduce
a set of proof rules for program equivalence, and from these rules they generate
verification conditions in the form of constrained Horn clauses (CHCs) which
is a logical formalism recently suggested for program verification (see [7] for a
survey of verification techniques that use CHCs). The satisfiability of the veri-
fication conditions, which guarantees that the relational property holds, can be
checked by using CHC solvers, such as Eldarica [26] and Z3 [17] (obviously,
no complete solver exists because most properties of interest, and among them
equivalence, are in general undecidable). Unfortunately, all the above mentioned
approaches enable only a partial reuse of the available verification techniques,
because one should develop specific transformation rules for each programming
language and each proof system that has to be used.

In this paper we propose a method to achieve a higher parametricity with
respect to the programming language and the class of relational properties con-
sidered, and this is done by pushing further the transformational approach. As a
first step of our method, we formalize a relational property between two programs
as a set of CHCs. This is done by using an interpreter for the given programming
language written in clausal form [16,34]. In particular, the properties of the data
domain in use, such as the integers and the integer arrays, are formalized in the
constraint theory of the CHCs. Now, it is very often the case that this first step is
not sufficient to allow state-of-the-art CHC solvers to verify the properties of in-
terest. Indeed, the strategies for checking satisfiability employed by those solvers
deal with the sets of clauses encoding the semantics of each of the two programs
in an independent way, thereby failing to take full advantage of the interrelations
between the two sets of clauses. In this paper, instead of looking for a smarter
strategy for satisfiability checking, we propose some transformation techniques
for CHCs that compose together, in a suitable way, the clauses relative to the
two programs, so that their interrelations may be better exploited. This trans-
formational approach has the advantage that we can use existing techniques for
CHC satisfiability as a final step of the verification process. Moreover, since the
CHC encodings of the two programs do not explicitly refer to the syntax of the
given programs, we are able to prove relations that would be difficult to infer by
the above mentioned, syntax-driven approaches. Our approach has been proved
to be effective in practice, as indicated in Section 5.
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The main contributions of the paper are the following.
(1) We present a method for encoding as a set of CHCs a large class of rela-
tional properties of programs written in a simple imperative language. The only
language-specific component of our method is a CHC interpreter that provides
a formal definition of the semantics of the programming language in use.
(2) We propose an automatic transformation technique for CHCs, called Pred-
icate Pairing, that combines together the clauses representing the semantics of
each program with the objective of increasing the effectiveness of the subsequent
application of the CHC solver in use. We prove that Predicate Pairing guaran-
tees equisatisfiability between the initial and the final sets of clauses. The proof
is based on the fact that this transformation can be expressed as a sequence of
applications of the unfolding and folding rules [19,36].
(3) We report on an experimental evaluation performed by a proof-of-concept
implementation (see Figure 1) of our transformation technique by using the
VeriMAP system [14]. The satisfiability of the transformed CHCs is then veri-
fied by using the solvers Eldarica [26] and Z3 [17]. Our experiments show that
the transformation is effective on a number of small, yet nontrivial examples.
Moreover, our method is competitive with respect to other tools for checking
relational properties [20].

{ϕ} P1 ∼ P2 {ψ}

CHC Intepreter Int

CHC Solver

Eldarica orZ3

VeriMAP

1. CHC Specialization;
2. Predicate Pairing;
3. Constraint Propagation;

true

false

unknown

1

Fig. 1. The verification method. The VeriMAP system transforms CHCs, and the
CHC solver checks the satisfiability of CHCs. VeriMAP takes as input: (i) the CHC
encoding of a relational property {φ}P1 ∼ P2 {ψ} between programs P1 and P2, and
(ii) the CHC interpreter that encodes the semantics of the programming language.

The paper is organized as follows. In Section 2 we present a simple introduc-
tory example. Then, in Section 3 we present the method for translating a rela-
tional property between two programs into constrained Horn clauses. In Section 4
we introduce the transformation techniques for CHCs and we prove that they
preserve satisfiability (and unsatisfiability). The implementation of the verifica-
tion method and its experimental evaluation are reported in Section 5. Finally,
in Section 6, we discuss the related work.

2 An Introductory Example

In this section we present an example to illustrate the approach proposed in
this paper. Let us consider the two imperative programs of Figure 2. Program
sum_upto computes the sum of the first x1 non-negative integers and program
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prod computes the product of x2 by y2 by summing up x2 times the value of y2.
We have that the following relational property holds:

Leq: {x1=x2, x2≤y2} sum–upto ∼ prod {z1≤z2}
meaning that, if x1=x2 and x2≤y2 hold before the execution of sum_upto and
prod, then z1≤z2 holds after their execution. Property Leq cannot directly be
proved using techniques based on structural similarities of programs [5,20], be-
cause sum_upto is a non-tail recursive program and prod is an iterative program.

/* -- Program sum_upto -- */
int x1, z1;
int f(int n1){

int r1;
if (n1 <= 0) {

r1 = 0;
} else {

r1 = f(n1 - 1) + n1; }
return r1; }

void sum_upto() {
z1 = f(x1); }

/* -- Program prod -- */
int x2,y2,z2;
int g(int n2, int m2){

int r2;
r2 = 0;
while (n2 > 0) {

r2 += m2;
n2--; }

return r2; }
void prod() {

z2 = g(x2,y2); }

Fig. 2. The programs sum_upto and prod.

By using the method presented in Section 3 and the CHC Specialization pre-
sented in Section 4.1, the relational property Leq is translated into the set of
constrained Horn clauses shown in Figure 3.

A constrained Horn clause is an implication of the form: A0 ← c, A1, . . . , An,
where: (i) A0 is either an atomic formula (or an atom, for short) or false, (ii) c is
a constraint, that is, a quantifier-free formula of the theory of linear integer
arithmetic and integer arrays [9], and (iii) A1, . . . , An is a possibly empty con-
junction of atoms. A0 is said to be the head of the clause, and the conjunc-
tion c, A1, . . . , An is said to be the body of the clause. If the body is the empty
conjunction of constraints and atoms (i.e., true), then the clause is called a fact.

1. false ← X1=X2, X2≤Y 2, Z1>Z2, su(X1, Z1), pr(X2, Y 2, Z2)
2. su(X,Z)← f(X,Z)
3. f(N,Z)← N≤0, Z=0
4. f(N,Z)← N≥1, N1=N−1, Z=R+N, f(N1, R)
5. pr(X,Y, Z)←W =0, g(X,Y,W,Z)
6. g(N,P,R,R)← N≤0
7. g(N,P,R,R2)← N≥1, N1=N−1, R1=P+R, g(N1, P,R1, R2)

Fig. 3. Translation into constrained Horn clauses of the relational property Leq.

Clause 1 specifies the relational property Leq, where the logical variables Z1
and Z2 refer to the values of the imperative variables z1 and z2, respectively.
Note that the constraint Z1>Z2 in the body of clause 1 encodes the negation
of the postcondition z1 ≤ z2 we want to prove. Clauses 2–4 and 5–7 encode the
input-output relations computed by programs sum_upto and prod, respectively.
We have that the relational property Leq holds iff clauses 1–7 are satisfiable.
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Unfortunately, state-of-the-art solvers for constrained Horn clauses with lin-
ear integer arithmetic (such as Eldarica [26] and Z3 [17]) are unable to prove
the satisfiability of clauses 1–7. This is due to the fact that those solvers act
on the predicates su and pr separately, and hence, to prove that clause 1 is
satisfiable (that is, its premise is unsatisfiable), they should discover quadratic
relations among variables (in our case, Z1=X1×(X1−1)/2 and Z2=X2×Y 2),
and these relations cannot be expressed by linear arithmetic constraints.

In order to deal with this limitation one could extend constrained Horn
clauses with solvers for the theory of non-linear integer arithmetic constraints [8].
However, this extension has to cope with the additional problem that the satis-
fiability problem for non-linear constraints is, in general, undecidable [31].

In this paper we propose an approach based on suitable transformations of
the clauses that encode the property Leq into an equisatisfiable set of clauses,
for which the satisfiability (or unsatisfiability) is hopefully easier to prove. In
our example, the clauses of Figure 3 are transformed into the ones shown in
Figure 4.

10. false ← N≤Y, W=0, Z1>Z2, fg(N,Z1, Y,W,Z2)
11. fg(N,Z1, Y, Z2, Z2)← N≤0, Z1=0
13. fg(N,Z1, Y,W,Z2)← N≥1, N1=N−1, Z1=R+N, M=Y+W,

fg(N1, R, Y,M,Z2)

Fig. 4. Transformed clauses derived from the clauses 1–7 in Figure 3. Clause numbers
are those indicated in the derivation of Section 4.2.

The predicate fg(N,Z1, Y,W,Z2) is equivalent to the conjunction ‘f(N,Z1),
g(N,Y,W,Z2)’. The effect of this transformation is that it is possible to in-
fer linear relations among a subset of the variables occurring in conjunctions
of predicates, without having to use in an explicit way their non-linear rela-
tions with other variables. In particular, one can infer that, whenever W = 0,
fg(N,Z1, Y,W,Z2) enforces the constraint (N >Y ) ∨ (Z1≤Z2), and hence the
satisfiability of clause 10 of Figure 4, without having to derive quadratic rela-
tions. Indeed, after this transformation, state-of-the-art solvers for CHCs with
linear arithmetics are able to prove the satisfiability of the clauses of Figure 4,
which implies the validity of the relational property Leq (see Section 5).

3 Specifying Relational Properties using CHCs

In this section we introduce the notion of a relational property relative to two
programs written in a simple imperative language and we show how a relational
property can be translated into CHCs.

3.1 Relational properties
We consider a C-like imperative programming language manipulating integers
and integer arrays via assignments, function calls, conditionals, while-loops, and
jumps. A program is a sequence of labeled commands (or commands, for short).
We assume that in each program there is a unique halt command that, when ex-
ecuted, causes program termination. We will feel free to write commands without
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their labels and programs without their halt commands, whenever those labels
and commands are not needed for specifying the semantics of the programs.

The semantics of our language is defined by a binary transition relation,
denoted by =⇒, between configurations. Each configuration is a pair ⟨⟨ℓ :c, δ⟩⟩ of
a labeled command ℓ : c and an environment δ. An environment δ is a function
that maps a variable identifier x to its value v either in the integers (for integer
variables) or in the set of finite sequences of integers (for array variables). Given
an environment δ, dom(δ) denotes its domain. The definition of the relation =⇒
corresponds to the multistep operational semantics, that is: (i) the semantics
of a command, different from a function call, is defined by a pair of the form
⟨⟨ℓ : c, δ⟩⟩ =⇒ ⟨⟨ℓ′ : c′, δ′⟩⟩, and (ii) the semantics of a function call is recursively
defined in terms of the reflexive, transitive closure =⇒∗ of =⇒.

In particular, the semantics of an assignment is:
(R1) ⟨⟨ℓ :x=e, δ⟩⟩ =⇒ ⟨⟨at(nextlab(ℓ)), update(δ, x, JeK δ)⟩⟩
where: (i) at(ℓ) denotes the command whose label is ℓ, (ii) nextlab(ℓ) denotes
the label of the command which is immediately after the command with label ℓ,
(iii) update(δ, x, v) denotes the environment δ′ that is equal to the environment δ,
except that δ′(x)=v, and (iv) JeK δ is the value of the expression e in δ.

The semantics of a call to the function f is:
(R2) ⟨⟨ℓ :x=f(e1, . . . , ek), δ⟩⟩ =⇒ ⟨⟨at(nextlab(ℓ)), update(δ′, x, JeK δ′)⟩⟩

if ⟨⟨at(firstlab(f)), δ⟩⟩ =⇒∗ ⟨⟨ℓr : return e, δ′⟩⟩
where: (i) firstlab(f) denotes the label of the first command in the definition of
the function f , and (ii) δ is the environment δ extended by the bindings for the
formal parameters, say x1, . . . , xk, and the local variables, say y1, . . . , yh, of f
(we assume that the identifiers xi’s and yi’s do not occur in dom(δ)). Thus, we
have that δ = δ ∪ {x1 7→ Je1K δ, . . . , xk 7→ JekK δ, y1 7→ v1, . . . , yh 7→ vh}, for
arbitrary values v1, . . . , vh. We refer to [16] for a more detailed presentation of
the multistep semantics.

A program P terminates for an initial environment δ, whose domain in-
cludes all global variables of P , and computes the final environment η, denoted
⟨P, δ⟩ ⇓ η, iff ⟨⟨ℓ0 : c, δ⟩⟩ =⇒∗ ⟨⟨ℓh : halt, η⟩⟩, where ℓ0 : c is the first labeled com-
mand of P . ⟨⟨ℓ0 :c, δ⟩⟩ and ⟨⟨ℓh :halt, η⟩⟩ are called the initial configuration and the
final configuration, respectively. It follows from the definition of the operational
semantics that also the domain of η includes all global variables of P .

Now, we can formally define a relational property as follows. Let P1 and P2 be
two programs with global variables in V1 and V2, respectively, with V1∩V2 = ∅.
Let φ and ψ be two first order formulas with variables in V1∪V2. Then, by using
the notation of Barthe et al. [5], a relational property is specified by the 4-tuple
{φ}P1∼P2 {ψ}. (See property Leq in Section 2 for an example.)

We say that {φ} P1 ∼ P2 {ψ} is valid iff the following holds: if the inputs of P1
and P2 satisfy the pre-relation φ and the programs P1 and P2 both terminate,
then upon termination the outputs of P1 and P2 satisfy the post-relation ψ. The
validity of a relational property is formalized by Definition 1 below, where given
a formula χ and an environment δ, by χ [δ] we denote the formula χ where every
free occurrence of a variable x in dom(δ) has been replaced by δ(x).
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Definition 1. A relational property {φ} P1 ∼ P2 {ψ} is said to be valid, de-
noted |= {φ} P1 ∼ P2 {ψ}, iff for all environments δ1 and δ2 with dom(δ1)=V1
and dom(δ2)=V2, the following holds:

if |= φ [δ1∪ δ2] and ⟨P1, δ1⟩ ⇓ η1 and ⟨P2, δ2⟩ ⇓ η2, then |= ψ [η1∪ η2].

3.2 Formal Semantics of the Imperative Language in CHCs

In order to translate a relational program property into CHCs, first we need to
specify the operational semantics of our imperative language by a set of CHCs.
We follow the approach proposed by De Angelis et al. [16] which now we briefly
recall. The transition relation =⇒ between configurations and its reflexive, tran-
sitive closure =⇒∗ are specified by the binary predicates tr and reach, respec-
tively. We only show the formalization of the semantic rules R1 and R2 above,
consisting of the following clauses D1 and D2, respectively. For the other rules
of the multistep operational semantics we refer to the original paper [16].
(D1) tr(cf (cmd(L, asgn(X, expr(E))),Env), cf (cmd(L1, C),Env1))←

eval(E,Env, V ), update(Env, X, V,Env1),nextlab(L,L1), at(L1, C)
(D2) tr(cf (cmd(L, asgn(X, call(F,Es))),Env), cf (cmd(L2, C2),Env2))←

fun–env(Es,Env, F,FEnv),firstlab(F,FL), at(FL, C),
reach(cf (cmd(FL, C),FEnv), cf (cmd(LR, return(E)),Env1)),
eval(E,Env1, V ), update(Env1, X, V,Env2),nextlab(L,L2), at(L2, C2)

The predicate reach is recursively defined by the following two clauses:
reach(C,C)←
reach(C,C2)← tr(C,C1), reach(C1, C2)

A program is represented by a set of facts of the form at(L,C), where L and C
encode a label and a command, respectively. For instance, program sum_upto of
Figure 2 is represented by the following facts:

at(0, ite(lte(n1, 0), 1, 2))←
at(1, asgn(r1, 0))←
at(2, asgn(r1, call(f, [minus(n1, 1)])))←
at(3, asgn(r1, plus(r1, n1)))←

at(4, return(r1))←
at(5, asgn(z1, call(f, [x1])))←
at(6, halt)←

In this representation of the program sum_upto the halt command and the
labels of the commands, which were omitted in the listing of Figure 2, have
been explicitly shown. Configurations are represented by terms of the form
cf (cmd(L,C),Env), where: (i) cmd(L,C) encodes a command C with label L,
and (ii) Env encodes the environment. The term asgn(X, expr(E)) encodes the
assignment of the value of the expression E to the variable X. The predicate
eval(E,Env, V ) holds iff V is the value of the expression E in the environ-
ment Env. The term call(F,Es) encodes the call of the function F with the list
Es of the actual parameters. The predicate fun–env(Es,Env, F,FEnv) computes
from Es and Env the list Vs of the values of the actual parameters of the func-
tion F and builds the new initial environment FEnv for executing the body of F .
In FEnv the local variables of F are all bound to arbitrary values. The other
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terms and predicates occurring in clauses D1 and D2 have the obvious mean-
ing which can be derived from the above explanation of the semantic rules R1
and R2 (see Section 3.1).

Given a program Prog, its input-output relation is represented by a predicate
prog defined as follows:

prog(X,X ′)← initConf (C,X), reach(C,C ′), finalConf (C ′, X ′)
where initConf (C,X) and finalConf (C ′, X ′) hold iff the tuples X and X ′ are
the values of the global variables of Prog in the initial and final configurations C
and C ′, respectively.

3.3 Translating Relational Properties into CHCs

In any given a relational property {φ}P1 ∼ P2 {ψ} between programs P1
and P2, we assume that φ and ψ are constraints, that is, as mentioned in Sec-
tion 2, quantifier-free formulas of the theory of linear integer arithmetic and
integer arrays [9]. Let A be the set of axioms of this theory. The set C of con-
straints is closed under conjunction and, when writing clauses, we will use comma
to denote a conjunction of constraints.

More complex theories of constraints may be used for defining relational
properties. For instance, one may consider theories with nested quantifiers [2].
Our approach is, to a large extent, parametric with respect to those theories. In-
deed, the transformation rules on which it is based only require that satisfiability
and entailment of constraints be decidable (see Section 4).

A set S of CHC clauses is said to be A-satisfiable or, simply, satisfiable, iff
A ∪ S is satisfiable.

The relational property of the form {φ} P1 ∼ P2 {ψ} is translated into the
following CHC clause:
(Prop) false ← pre(X,Y ), p1(X,X ′), p2(Y, Y ′), neg–post(X ′, Y ′)
where: (i) X and Y are the disjoint tuples of the global variables xi’s of pro-
gram P1 and the global variables yi’s of program P2, respectively, rewritten in
capital letters (so to comply with CHC syntax);
(ii) pre(X,Y ) is the formula φ with its variables replaced by the corresponding
capital letters;
(iii) neg–post(X ′, Y ′) is the formula ¬ψ with its variables replaced by the corre-
sponding primed capital letters; and
(iv) the predicates p1(X,X ′) and p2(Y, Y ′) are defined by a set of clauses de-
rived from program P1 and P2, respectively, by using the formalization of the
operational semantics of the programming language presented in Section 3.2.

Note that we can always eliminate negation from the atoms pre(X,Y ) and
neg–post(X ′, Y ′) by pushing negation inward and transforming negated equali-
ties into disjunctions of inequalities. Moreover, we can eliminate disjunction from
constraints and replace clause Prop by a set of two or more clauses with false
in their head. Although these transformations are not strictly needed by the
techniques described in the rest of the paper, they are useful when automating
our verification method using constraint solving tools.
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For instance, the relational property Leq of Section 2 is translated into the
following clause (we moved all constraints to leftmost positions in the body):
(PropLeq) false ← X1=X2, X2≤Y 2, Z1′>Z2′,

sum–upto(X1, Z1, X1′, Z1′), prod(X2, Y 2, Z2, X2′, Y 2′, Z2′)
where predicates sum–upto and prod are defined in terms of the predicate reach
shown in Section 3.2. In particular, sum–upto is defined by the following clauses:

sum–upto(X1, Z1, X1′, Z1′)←
initConf (C,X1, Z1), reach(C,C ′),finalConf (C ′, X1′, Z1′)

initConf (cf (cmd(5, asgn(z1, call(f, [x1]))), [(x1, X1),(z1, Z1)]), X1, Z1)←
finalConf (cf (cmd(6, halt),[(x1, X1′),(z1, Z1′)]), X1′, Z1′)←

where: (i) initConf holds for the initial configuration of the sum_upto program
(that is, the pair of the assignment z1 = f(x1) and the initial environment), and
(ii) finalConf holds for the final configuration of the sum_upto program (that is,
the pair of the unwritten halt command silently occurring after the assignment
z1 = f(x1) and the final environment).

Let RP be a relational property and TRP be the set of CHCs generated from
RP by the translation process described above, then TRP is correct in the sense
specified by the following theorem.

Theorem 1 (Correctness of the CHC Translation). RP is valid iff TRP
is satisfiable.

The proof of this theorem directly follows from the fact that the predicate tr
is a correct formalization of the semantics of the programming language.

4 Transforming Specifications of Relational Properties

The reduction of the problem of checking whether or not {φ} P1 ∼ P2 {ψ} is
valid, to the problem of verifying the satisfiability of a set TRP of constrained
Horn clauses allows us to apply reasoning techniques that are independent of the
specific programming language in which programs P1 and P2 are written. Indeed,
we can try to solve the satisfiability problem for TRP by applying the available
solvers for constrained Horn clauses. Unfortunately, as shown by the example in
Section 2, it may be the case that these solvers are unable to prove satisfiability
(or unsatisfiability). In Section 5 the reader will find an experimental evidence
of this limitation. However, a very significant advantage of having to show the
satisfiability of the set TRP of constrained Horn clauses is that we can transform
TRP by applying any CHC satisfiability preserving algorithm, and then submit
the transformed clauses to a CHC solver.

In this section we present two satisfiability preserving algorithms for trans-
forming constrained Horn clauses that have the objective of increasing the effec-
tiveness of the subsequent uses of CHC solvers. These algorithms, called transfor-
mation strategies, are: (1) the CHC Specialization, and (2) the Predicate Pairing.

These strategies are variants of techniques developed in the area of logic pro-
gramming for improving the efficiency of program execution [18,35]. In Section 5
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we will give an experimental evidence that these techniques are very effective for
the verification of relational properties. The CHC Specialization and Predicate
Pairing strategies are realized as sequences of applications of some elementary
transformation rules, collectively called unfold/fold rules, proposed in the field
of CLP a couple of decades ago [19]. Now we present the version of those rules
we need in our context. This version allows us to derive from an old set Cls of
constrained Horn clauses a new set TransfCls of constrained Horn clauses.

The definition rule allows us to introduce a new predicate symbol in Cls
defined by a single clause.

Definition Rule. We introduce a definition clauseD of the form newp(X)← c,G,
where newp is a new predicate symbol, X is a tuple of variables occurring
in {c,G}, c is a constraint, and G is a non-empty conjunction of atoms. We
derive the set of clauses TransfCls =Cls∪{D}. We denote by Defs the set of def-
inition clauses introduced in a sequence of application of the unfold/fold rules.

The unfolding rule consists in applying a resolution step with respect to an
atom selected in the body of a clause in Cls.

Unfolding Rule. Let C be a clause in Cls of the form H ← c, L,A,R, where
H is either false or an atom, A is an atom, c is a constraint, and L and R
are (possibly empty) conjunctions of atoms. Let us consider the set {Ki ←
ci, Bi | i = 1, . . . ,m} made out of the (renamed apart) clauses of Cls such
that, for i= 1, . . . ,m, the following two conditions hold: (1) A is unifiable with
Ki via the most general unifier ϑi, and (2) A |= ∃X (c , ci)ϑi, where X is the
tuple of variables in (c , ci)ϑi (recall that by comma we denote conjunction). By
unfolding C w.r.t. A using Cls, we derive the set of clauses TransfCls = (Cls −
{C}) ∪ U(C), where the set U(C) is {(H ← c, ci, L,Bi, R)ϑi | i = 1, . . . ,m}.

Since the definition rule introduces new predicates through a single definition
clause, the head and the body of that clause are equivalent in the least C-model
of Cls [27]. The folding rule consists in replacing an instance of the body of a
definition clause by the corresponding instance of its head.

Folding Rule. Let E be a clause in Cls of the form: H ← e, L,Q,R. Suppose that
there exists a clause D in Defs of the form K ← d,G such that: (1) for some
substitution ϑ, Q = Gϑ, and (2) A |= ∀X (e→dϑ) holds, where X is the tuple
of variables in e→dϑ. Then, by folding E using D we derive the set of clauses
TransfCls = (Cls − {E}) ∪ {H ← e, L,Kϑ,R}.

By using the results of Etalle and Gabbrielli [19], which ensure that the
transformation rules preserve the least C-model of a set of constrained Horn
clauses, if any, we get the following result.

Theorem 2 (Soundness of the Unfold/Fold Rules). Suppose that from a
set Cls of constrained Horn clauses we derive a new set TransfCls of clauses
by a sequence of applications of the unfold/fold rules, where every definition
clause used for folding is unfolded during that sequence. Then Cls is satisfiable
iff TransfCls is satisfiable.
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Note that the applicability condition of Theorem 2 avoids that an unsatisfi-
able set of clauses is transformed into a satisfiable set. For instance, the unsatis-
fiable set of clauses { false ← p, p← } could be transformed into the satisfiable
set of clauses (by taking q to be false and p to be true) { false ← q, q ← q, p←},
by first introducing the new definition clause q ← p and then folding both
false ← p and q ← p, using q ← p. This sequence of applications of the rules is
avoided by the condition that the definition q ← p must be unfolded, and hence
replaced by the fact q.

4.1 CHC Specialization

Specialization is a transformation technique that has been proposed in various
programming contexts to take advantage of static information for simplifying and
customizing programs [28]. In the field of program verification it has been shown
that the specialization of constrained Horn clauses can be very useful for trans-
forming and simplifying clauses before checking their satisfiability [12,16,29].

We will use specialization of constrained Horn clauses, called CHC Spe-
cialization, for simplifying the set TRP of clauses. In particular, starting from
clause Prop (see Section 3.3):
(Prop) false ← pre(X,Y ), p1(X,X ′), p2(Y, Y ′), neg–post(X ′, Y ′)
we introduce two new predicates p1sp and p2sp, defined by the clauses:
(S1) p1sp(V, V ′)← p1(X,X ′) (S2) p2sp(W,W ′)← p2(Y, Y ′)
where V, V ′,W,W ′ are the sub-tuples of X,X ′, Y, Y ′, respectively, which occur in
pre(X,Y ) or neg–post(X ′, Y ′). Then, by applying the folding rule to clause Prop,
we can replace p1 and p2 by p1sp and p2sp, respectively, thereby obtaining:
(Propsp) false ← pre(V,W ), p1sp(V, V ′), p2sp(W,W ′), neg–post(V ′,W ′)
Now, by applying the specialization strategy proposed by De Angelis et al. [16],
starting from the set (TRP−{Prop})∪{Propsp, S1, S2} of clauses, we will derive
specialized versions of the clauses that define the semantics of programs P1
and P2. In particular, in the specialized clauses there will be references to neither
the predicate reach, nor the predicate tr, nor the terms encoding configurations.

Let us illustrate the application of the specialization strategy [16] by consid-
ering again the example of Section 2. Starting from clause PropLeq of Section 3.3,
that is:
(PropLeq) false ← X1=X2, X2≤Y 2, Z1′>Z2′,

sum–upto(X1, Z1, X1′, Z1′), prod(X2, Y 2, Z2, X2′, Y 2′, Z2′)
we introduce two new predicates, namely su and pr , defined as follows:
(S1Leq) su(X1, Z1′)← sum–upto(X1, Z1, X1′, Z1′)
(S2Leq) pr(X2, Y 2, Z2′)← prod(X2, Y 2, Z2, X2′, Y 2′, Z2′)
By applying the folding rule to PropLeq, we replace sum–upto(X1, Z1, X1′, Z1′)
and prod(X2, Y 2, Z2, X2′, Y 2′,Z2′) by su(X1, Z1′) and pr(X2, Y 2, Z2′), respec-
tively, and we get (modulo variable renaming) clause 1 of Figure 3.

Then, starting from S1Leq and S2Leq} we get clauses 2–7 of Figure 3 as we
now show. We only illustrate the first few steps of the application of the spe-



12 E. De Angelis et al.

cialization strategy, which consists in applying a sequence of the transformation
rules presented in Section 4.
Unfolding: The strategy starts by unfolding sum–upto(X1, Z1, X1′, Z1′) occur-
ring in the body of the clause S1Leq, hence deriving:

su(X1, Z1′)← initConf (C,X1, Z1), reach(C,C ′),finalConf (C ′, X1′, Z1′)
By unfolding the above clause w.r.t. initConf , reach, and finalConf , we get:

su(X1, Z1′)← tr(cf (cmd(5, asgn(z1, call(f, [x1]))), [(x1, X1),(z1, Z1)]), C),
reach(C,cf (cmd(6, halt,[(x1, X1′),(z1, Z1′)]))

Then, by unfolding the above clause w.r.t. tr , we get:
su(X1, Z1′)←

reach(cf (cmd(0, ite(lte(n1,0), 1, 2), [(x1, X1),(z1, Z1), (n1, N1),(r1, R1)]),
cf (cmd(6, halt,[(x1, X1′),(z1, Z1′)]))

Definition and Folding: By the definition rule we introduce the following clause
defining the new predicate f :

f (X1, Z1′)←
reach(cf (cmd(0, ite(lte(n1,0), 1, 2), [(x1, X1),(z1, Z1), (n1, N1),(r1, R1)]),

cf (cmd(6, halt,[(x1, X1′),(z1, Z1′)]))
Then, the new definition can used for folding, hence deriving (modulo variable
renaming) clause 2 of Figure 3.

Starting from the new definition for predicate f, after a similar sequence of
applications of the unfolding, definition, and folding rules, we get clauses 3–4.
Then, if we perform for the predicate pr the analogous transformation steps we
have done for the predicate sum–upto, that is, if we start from clause S2Leq,
instead of S1Leq, we eventually get the other clauses 5–7 of Figure 3.

Since the CHC Specialization is performed by applying the unfold/fold rules,
by Theorem 2 we have the following result.
Theorem 3. Let Tsp be derived from TRP by specialization. Then TRP is satis-
fiable iff Tsp is satisfiable.

4.2 Predicate Pairing
The second strategy which characterizes our verification method is the Predi-
cate Pairing strategy (see Figure 5). This strategy pairs together two predicates,
say q and r into one new predicate t equivalent to their conjunction. As shown
in the example of Section 2, Predicate Pairing may ease the discovery of rela-
tions among the arguments of the two distinct predicates, and thus it may ease
the satisfiability test. Obviously, pairing may be iterated and more than two
predicates may in general be tupled together.

Let us see the Predicate Pairing strategy in action by considering again the
example of Section 2.
First Iteration of the while-loop of the Predicate Pairing strategy.
Unfolding: The strategy starts by unfolding su(X1, Z1) and pr(X2, Y 2, Z2)
in clause 1 of Figure 3, hence deriving the following new clause:
8. false ← N≤Y, W=0, Z1>Z2, f(N,Z1), g(N,Y,W,Z2)
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Input: A set Q ∪ R ∪ {C} of clauses where: (i) C is of the form false ← c, q(X), r(Y ),
(ii) q and r occur in Q and R, respectively, and (iii) no predicate occurs in both Q
and R.
Output: A set TransfCls of clauses.
Initialization: InCls := {C}; Defs := ∅; TransfCls := Q ∪R;
while there is a clause C in InCls do

Unfolding: From clause C derive a set U(C) of clauses by unfolding C with respect
to every atom occurring in its body using Q ∪R;
Perform as long as possible the following replacement: for every clause C′ of the
form: H ← d, A1, ..., Ak in U(C), for every pair of (not necessarily distinct) atoms
Ai =pi(...,X,...) and Aj =pj(...,Y,...), if A |= ∀(d → (X=Y )), then replace every
occurrence of Y by X in C′, thereby updating the set U(C) of clauses.

Definition & Folding:
F (C) := U(C);
for every clause E ∈ F (C) of the form H ← d, G1, q(V ), G2, r(W ), G3 where q

and r occur in Q and R, respectively, do
if in Defs there is no clause D of the form newp(Z) ← q(V ), r(W ) (modulo

variable renaming), where Z is the tuple of distinct variables in (V,W )
then InCls := InCls ∪ {D}; Defs := Defs ∪ {D};
F (C) := (F (C)− {E}) ∪ {H ← d, G1,newp(Z), G2, G3}

end-for
InCls := InCls− {C}; TransfCls := TransfCls ∪ F(C);

end-while

Fig. 5. The Predicate Pairing transformation strategy.

Definition & Folding: A new atom with predicate fg is introduced for replac-
ing the conjunction of the atoms with predicates f and g in the body of clause 8:
9. fg(N,Z1, Y,W,Z2)← f(N,Z1), g(N,Y,W,Z2)
and that conjunction is folded, hence deriving:
10. false ← N≤Y, W=0, Z1>Z2, fg(N,Z1, Y,W,Z2)
Second Iteration of the while-loop of the Predicate Pairing strategy.
Unfolding: Now, the atoms with predicate f and g in the premise of the newly
introduced clause 9 are unfolded, and the following new clauses are derived:
11. fg(N,Z1, Y, Z2, Z2)← N≤0, Z1=0
12. fg(N,Z1, Y,W,Z2)← N≥1, N1=N−1, Z1=R+N, M=Y+W,

f(N1, R), g(N1, Y,M,Z2)
Definition & Folding: No new predicate is needed, as the conjunction of the
atoms with predicate f and g in clause 12 can be folded using clause 9. We get:
13. fg(N,Z1, Y,W,Z2)← N≥1, N1=N−1, Z1=R+N, M=Y +W,

fg(N1, R, Y,M,Z2)
Clauses 10, 11, and 13, which are the ones shown in Figure 4, constitute the final
set of clauses we have derived.

The Predicate Pairing strategy always terminates because the number of the
possible new predicate definitions is bounded by the number k of conjunctions



14 E. De Angelis et al.

of the form q(V ), r(W ), where q occurs in Q and r occurs in R and, hence, the
number of executions of the while-loop of the strategy is bounded by k.

Thus, from the fact that the unfold/fold transformation rules preserve satis-
fiability (see Theorem 2), we get the following result.
Theorem 4 (Termination and soundness of the Predicate Pairing strat-
egy). Let the set Q ∪ R ∪ {C} of clauses be the input of the Predicate Pairing
strategy. Then the strategy terminates and returns a set TransfCls of clauses
such that Q ∪R ∪ {C} is satisfiable iff TransfCls is satisfiable.

4.3 Verifying Loop Composition
Once the relational property has been translated into a set of CHCs, its ver-
ification is no longer dependent on the syntax of the source programs. Thus,
as already mentioned in Section 2, we may be able to verify relations between
programs that have different structure (e.g., relations between non-tail recursive
programs and iterative programs). In this section we show one more example
of a property that relates two programs that are not structurally similar (in
particular, they are obtained by composing different numbers of while-loops).

Let us consider the programs sum1 and sum2 in Figure 6. They both compute
the sum of all integers up to m1 and m2, respectively. Program sum1 computes
the result using a single while-loop, and sum2 consists of the composition of two
while-loops: the first loop sums the numbers up to an integer n2, with 1≤n2<m2,
and the second loop adds to the result of the first loop the sum of all numbers
from n2+1 up to m2. We want to show the following relational property:

LeqS : {m1=m2, 1≤n2<m2} sum1 ∼ sum2 {s1≤s2}

/* -- Program sum1 -- */
int m1, s1;
void sum1() {

int i1 = 0;
s1 = 0;
while (i1 <= m1) {

s1 += i1;
i1++; }

/* -- Program sum2 -- */
int n2, m2, s2;
void sum2() {

int i2 = 0;
s2 = 0;
while (i2 <= n2) {

s2 += i2;
i2++; }

while (i2 <= m2) {
s2 += i2;
i2++; } }

Fig. 6. The programs sum1 and sum2.

The relational property LeqS and the two programs are translated into the set of
clauses shown in Figure 7. Neither the solvers for CHCs with linear arithmetics
(in particular, we tried Eldarica and Z3) nor Rêve, the tool for relational
verification that implements the approach proposed by Felsing et al. [20], are
able to prove the property LeqS.

The Predicate Pairing strategy transforms the clauses of Figure 7 into the
clauses of Figure 8 (the variable names are automatically generated by our im-
plementation). The strategy introduces the two new predicates s1s2 and s1s3,
which stand for the conjunctions of s1 with s2, and s1 with s3, respectively.
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false ←M1=M2, 1≤N2, N2<M2, S1>S2, sum1(M1, S1), sum2(M2, N2, S2)
sum1(M1, S1)← S1i=0, I1=0, s1(M1, S1i, I1, S1)
s1(M1, S1i, I1, S1)←M1<I1, S1i=S1
s1(M1, S1i, I1, S1)←M1≥I1, T =S1i+I1, J=I1+1, s1(M1, T, J, S1)
sum2(M2, N2, S2)← S2i=0, I2=0, s2(M2, N2, S2i, I2, S2)
s2(M2, N2, S2i, I2, S2)←M2<I2, s3(N2, S2i, I2, S2)
s2(M2, N2, S2i, I2, S2)←M2≥I2, U=S2i+I2, K=I2+1, s2(M2, N2, U,K, S2)
s3(N2, S2i, I2, S2)← N2<I2, S2i=S2
s3(N2, S2i, I2, S2)← N2≥I2, U=S2i+I2, K=I2+1, s3(N2, U,K, S2)

Fig. 7. Translation into constrained Horn clauses of the relational property LeqS .

1. false ← 1≤E, E<A, D>F, B=0, C=0, s1s2(A,B,C,D,E, F )
2. s1s2(A,B,C,D,E, F )← A<C, B=D, E<C, s3(A,B,C, F )
3. s1s2(A,B,C,D,E, F )← A<C, B=D, E≥C, G=B+C, H=C+1,

s2(E,A,G,H, F )
4. s1s2(A,B,C,D,E, F )← A≥C, E<C, G=B+C, H=C+1,

s1s3(A,G,H,D,B,C, F )
5. s1s2(A,B,C,D,E, F )← A≥C, E≥C, G=B+C, H=C+1,

s1s2(A,G,H,D,E, F )
6. s1s3(A,B,C,D,E, F,G)← A<C, B=D, A<F, E=G
7. s1s3(A,B,C,D,E, F,G)← A<C,B=D,A≥F,H=E+F, I=E+1, s3(A,H, I,G)
8. s1s3(A,B,C,D,E, F,G)← A≥C,A<F,E=G,H=B+C, I=C+1, s1(A,H, I,D)
9. s1s3(A,B,C,D,E, F,G)← A≥C, A≥F, H=B+C, I=C+1, J=E+F, K=F+1,

s1s3(A,H, I,D, J,K,G)

Fig. 8. Output of the Predicate Pairing transformation for property LeqS .

The clauses of Figure 8 can be further simplified. For instance, by propa-
gating the constraints that occur in clause 1, we can discover that clause 2 can
be removed, because it refers to values of the loop index for which sum1 has
terminated and the second while-loop of sum2 is still in execution, and this is
impossible with the given pre-relation. Similarly, clauses 3, 7, and 8 can be re-
moved. This form of post-processing of the clauses obtained by Predicate Pairing
can be performed by Constraint Propagation, through the use of CHC special-
ization [12]. In Section 5 we will demonstrate the positive effects of Constraint
Propagation after Predicate Pairing, and indeed the satisfiability of the clauses
of Figure 8 is easily proved by Eldarica and Z3 after Constraint Propagation.

5 Implementation and Experimental Evaluation
We have implemented the techniques presented in Sections 3 and 4 as a part
of the VeriMAP verification system [14], and we have used the SMT solvers
Eldarica and Z3 (collectively called CHC solvers) for checking the satisfiability
of the CHCs generated by VeriMAP.

In particular, our implementation consists of the following three modules.
(1) A front-end module, based on the C Intermediate Language (CIL) [33], that
translates the given verification problem into the facts defining the predicates
at, initConf, and finalConf, by using a custom implementation of the CIL visitor



16 E. De Angelis et al.

pattern. (2) A back-end module realizing the CHC Specialization and Predicate
Pairing transformation strategies. (3) A module that translates the generated
CHCs to the SMT-LIB format for the Eldarica and Z3 solvers.

We have considered 100 problems4 referring to relational properties of small,
yet non-trivial, C programs mostly taken from the literature [5,6,20]. All pro-
grams act on integers, except the programs in the arr category and 7 out of 10
in the con category which act on integer arrays. The properties we have con-
sidered belong to the following categories. The ite (respectively, rec) category
consists of equivalence properties between pairs of iterative (respectively, recur-
sive) programs, that is, we have verified that, for every pair of programs, the
two programs in the pair compute the same output when given the same input.
The i-r category consists of equivalence properties between an iterative and a
recursive (non-tail recursive) program. For example, we have verified the equiv-
alence of iterative and recursive versions of programs computing the greatest
common divisor of two integers and the n-th triangular number Tn =

∑n
i=1 i.

The arr category consists of equivalence properties between programs acting
on integer arrays. The leq category consists of inequality properties stating that
if the inputs of two programs satisfy some given preconditions, then their out-
puts satisfy an inequality postcondition. For instance, we have verified that, for
all non-negative integers m and n: (i) if n≤m, then Tn≤n×m (see the example
of Section 2), and (ii) n2 ≤ n3. The mon (respectively, inj) category consists
of properties stating that programs, under some given preconditions, compute
monotonically non-decreasing (respectively, injective) functions. For example, we
have verified monotonicity and injectivity of programs computing the Fibonacci
numbers, the square of a number, and the triangular numbers. The fun category
consists of properties stating that, under some given preconditions, some of the
outputs of the given programs are functionally dependent on a proper subset of
the inputs. The comp category consists of equivalence and inequality properties
relating two programs that contain compositions of different numbers of loops
(see the example in Section 4.3).

The experimental process interleaves the application of a CHC transforma-
tion strategy (performed by VeriMAP) and a CHC satisfiability check (per-
formed by Eldarica and Z3). We have considered the following strategies:
(i) the CHC Specialization, Sp for short, which is the strategy presented in
Section 4.1 that transforms the set of CHCs encoding the relational property,
(ii) the Predicate Pairing, PP for short, which is the strategy presented in Sec-
tion 4.2, and (iii) the Constraint Propagation, CP for short, which is the strat-
egy that propagates the constraints occurring in the clauses with the aim of
discovering invariant constraints by means of the widening and convex-hull op-
erators [12]. We have used the following CHC solvers for checking satisfiability
of CHCs: (i) Eldarica (v1.2-rc in standard mode5), and (ii) Z3 (version 4.4.2,

4 The sources of the problems are available at http://map.uniroma2.it/relprop
5 using the options -horn -hsmt -princess -i -abstract:oct. Running Eldarica in

client-server mode could significantly improve its performance, but requires custom
modifications for running multiple problems in parallel.

http://map.uniroma2.it/relprop
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(1) Sp + (2) Sp + (3) Sp + (4) Sp + (5) Sp + (6) Sp +
Problem Sp PP CP Eld Z3 PP + Eld PP + Z3 PP+CP+Eld PP+CP+Z3
Category M time time time N time N time N time N time N time N time

ite 21 0.10 5.32 0.46 9 23.94 6 0.88 15 19.09 12 17.00 18 16.83 21 11.36
rec 18 0.12 2.88 0.31 8 6.40 8 4.39 14 6.67 14 3.19 14 6.67 15 3.12
i-r 4 0.11 2.30 0.37 0 — 0 — 1 15.88 1 7.19 4 6.83 4 2.68
arr 5 0.33 0.10 1.07 0 — 0 — 1 11.09 3 1.74 1 11.09 3 1.74
leq 6 0.10 0.80 0.17 0 — 0 — 0 — 0 — 2 6.32 3 1.11
mon 18 0.05 2.38 (∗) 0.15 6 9.62 4 0.25 11 9.77 8 0.97 11 9.77 14 1.43
inj 11 0.05 1.31 0.15 2 11.38 0 6 55.80 5 1.89 6 55.80 10 1.70
fun 7 0.05 3.62 0.10 5 4.52 5 0.24 7 5.23 7 0.59 7 5.23 7 0.59

comp 10 0.26 0.65 19.61 0 — 0 — 3 24.40 6 4.51 6 16.15 9 3.70

Total number:
avg. time:

100
0.11 2.67 2.24

30
12.32

23
1.85

58
16.53

56
5.53

69
14.83

86
4.41

Table 1. M is the number of verification problems. N is the number of solved problems.
Times are in seconds. The timeout is 5 minutes. Sp is CHC Specialization, PP is
Predicate Pairing, CP is Constraint Propagation, Eld is Eldarica. (∗) One problem in
the category MON timed out.

master branch as of 2016-02-18) using the PDR engine [25] for programs acting
on integers and the Duality engine [32] for programs acting on arrays.

The experimental process starts off by applying the Sp strategy. Then, it uses
a CHC solver to check the satisfiability of the generated CHCs. If the CHC solver
is unable to solve the considered problem, it applies the PP strategy. Finally, if
the CHC solver is unable to solve a problem after PP, it applies the CP strategy.
In some cases the CP strategy produces a set of CHCs without constrained facts
(that is, without clauses of the form A← c, where c is a constraint), and hence
satisfiable, thereby solving the associated problems. In the other cases it applies
the CHC solver on the CHCs obtained after constraint propagation.

The experimental process has been performed on a machine equipped with
two Intel Xeon E5-2640 2.00GHz CPUs and 64GB of memory, running CentOS 7
(64 bit). A time limit of 5 minutes has been set for executing each step of the
experimental process. The verification problems have been executed in parallel
using 24 out of the 32 CPU threads. The results are summarized in Table 1.

The first two columns report the names of the categories and the number
M of problems in each category, respectively. Columns Sp, PP, and CP report
the average time taken for applying those CHC transformation strategies. The
Sp and PP strategies terminate before the timeout for all problems, while the
CP strategy does not terminate before the timeout for one problem belonging
to the mon category. In the remaining columns we report the number of prob-
lems solved by the Eldarica and Z3 solvers after the application of our CHC
transformation strategies. We also report the average time taken for each solved
problem, which includes the time needed for applying the CHC transformation
strategies. In the last two rows we indicate the total number of solved problems
and the overall average time.
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Columns 1 (Sp + Eld) and 2 (Sp + Z3) report the results for the problems that
were solved by applying Eldarica and Z3, respectively, on the CHCs generated
by the Sp strategy. Columns 3 (Sp + PP + Eld) and 4 (Sp + PP + Z3) report
the results obtained by applying Eldarica and Z3, respectively, on the CHCs
obtained by the Sp strategy, followed by the PP strategy in the cases where the
CHC solvers were unable to produce an answer on the CHCs generated by the
Sp strategy. Columns 5 (Sp + PP+ CP + Eld) and 6 (Sp + PP+ CP + Z3) report
the results obtained by applying Eldarica and Z3, respectively, on the CHCs
produced by the Sp strategy, followed by the PP and CP strategies.

The use of the PP and CP strategies significantly increases the number of
problems that have been solved. In particular, the number of problems that
can be solved by Eldarica increases from 30 (see Column 1) to 69 (Column 5).
Similarly for Z3 from 23 (Column 2) to 86 (Column 6). We observe that the
application of the PP strategy alone is very effective in increasing the number
of solved problems. For instance, it allows Eldarica to solve 28 more problems
(see Columns 1 and 3). Also the application of the CP strategy turns out to be
very useful for solving additional problems. For instance, for Z3 the CP strategy
allows the solution of 30 additional problems (see Columns 4 and 6).

Note that the set of CHCs produced as output by the PP and CP strategies
can be larger than the set of CHCs provided as input. In our benchmark we have
observed that the increase of size is, on average, about 1.88× for PP and 1.77×
for CP (these numbers drop down to 1.77× for PP and 1.16× for CP when we
remove from the benchmark 4 examples out of 100 for which the increase of size
is very high). However, despite the increase of size, the PP and CP strategies
are very effective at improving the efficacy of the considered CHC solvers.

Now, let us compare our experimental results with the ones obtained by
Rêve [20] (the most recent version of the tool is available on-line6). For the
problems belonging to the ite and rec categories, we have that if Rêve suc-
ceeds, then also our tool succeeds by using the strategies presented in this paper.
As regards the remaining problem categories, an exhaustive comparison with
Rêve is not possible because this tool needs a manual annotation of programs
with ‘marks’, representing synchronization points between programs. Neverthe-
less, the categories mon, fun, arr, and leq consist of pairs of programs with a
similar control structure (in particular, the programs in mon and fun are mostly
taken from the ite and rec categories, but with different relational properties),
and therefore the approach proposed by Felsing et al. [20] is generally expected
to perform well. However, it is worth noting that the problems in i-r and comp
consist of pairs of programs that do not exhibit a similar control structure, and
therefore the approach of Rêve with marks cannot be directly applied for solving
problems belonging to those categories.

6 Related Work
Several logics and methods have been presented in the literature for reasoning
about various relations which may hold between two given programs. Their pur-
6 http://formal.iti.kit.edu/improve/reve/index.php

http://formal.iti.kit.edu/improve/reve/index.php
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pose is the formal, possibly automated, validation of program transformations
and program analysis techniques.

A Hoare-like axiomatization of relational reasoning for simple while programs
has been proposed by Benton [6], which however does not present any technique
for automating proofs. In particular, program equivalence is one of the relational
properties that has been extensively studied (see [5,10,11,20,23,37,38] for some
recent work). Indeed, during software development it is often the case that one
may want to modify the program text and then prove that its semantics has not
been changed (this kind of proofs is sometimes called regression verification [20]).

The idea of reducing program equivalence to a standard verification task
by using the cross-product construction was presented by Zaks and Pnueli [38].
However, this method only applies to structurally equivalent programs. A more
refined notion of program product has been proposed by Barthe et al. [5] to
partially automate general relational reasoning by reducing this problem, simi-
larly to the method proposed by Zaks and Pnueli [38], to a standard program
verification problem. The method requires human ingenuity: (i) for generating
program products via suitable program refinements and also (ii) for providing
suitable invariants to the program verifier. Also the Differential Assertion Check-
ing technique proposed by Lahiri et al. [30] makes use of the notion of a program
composition to reduce the relative correctness of two programs to a suitable
safety property of the composed program.

Among the various methods to prove relational properties, the one which is
most related to ours is the method proposed by Felsing et al. [20], which presents
proof rules for the equivalence of imperative programs that are translated into
constrained Horn clauses. The satisfiability of these clauses which entails equiva-
lence, is then checked by state-of-the-art CHC solvers. Although the proof rules
are presented for the case of program equivalence, they can be extended to more
general relational properties (and, indeed, the tool that implements the method
supports a class of specifications comparable to the one presented in this pa-
per). The main difference of our approach with respect to the one of Felsing et
al. [20] is that we generate the translation of the relational properties into CHCs
from the semantics of the language, and hence we do not need special purpose
proof rules that depend on the programming language and the class of proper-
ties under consideration. Instead, we use general purpose transformation rules
for CHCs. As demonstrated by our experimental evaluation, our approach gives
results that are comparable with the ones by Felsing et al. when considering sim-
ilar examples, but we are able to deal with a larger class of programs. Indeed,
besides being more parametric and flexible, an advantage of our approach is
that it is able to verify relations between programs that have different structure,
because the transformation rules are independent of the syntax of the source
programs (unlike the proof rules). For instance, we have shown that we are able
to verify relations between while-loops and non-tail recursive functions without
a preliminary conversion into tail-recursive form (see Section 2). We are also
able to verify relations between programs consisting of the composition of two
(or more) while-loops and programs with one while-loop only (see Section 4.3).
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The method presented by Felsing et al. is not able to deal with the above two
classes of verification problems.

The idea of using program transformations to help the proof of relational
properties relating higher-order functional programs has been explored by Asada
et al. [3]. The main difference between this approach and ours is that, besides the
difference of programming languages, we transform the logical representation of
the property to be proved, rather than the two programs under analysis. Our
approach allows higher parametricity with respect to the programming language,
and also enables us to use very effective tools for CHC solving.

Our notion of the Predicate Pairing is related to that of the mutual summaries
presented by Hawblitzel et al. [24]. Mutual summaries relate the summaries of
two procedures, and can be used to prove relations between them, including rel-
ative termination (which we do not consider in our technique). Similarly to the
already mentioned papers by Barthe et al. [5] and Lahiri et al. [30], this approach
requires human ingenuity to generate suitable proof obligations, which can then
be discharged by automated theorem provers. As regards reusing available ver-
ification techniques to prove program equivalence, we want also to mention the
paper by Ganty et al. [22], where the authors identify a class of recursive pro-
grams for which it is possible to precisely compute summaries. This technique
can be used to reduce the problem of checking the equivalence of two recursive
programs to the problem of checking the equivalence of their summaries.

Finally, we want to mention that in the present paper we have used (variants
and extensions of) transformation techniques for constrained Horn clauses pro-
posed in the area of program verification in previous papers [1,12,13,15,16,29,34].
However, the goal of those previous papers was the verification of the (partial
and total) correctness of single programs, and not the verification of relations
between two programs which has been the objective of our study here.

7 Conclusions
We have presented a method for verifying relational properties of programs writ-
ten in a simple imperative language with integer and array variables. The method
consists in: (i) translating the property to be verified into a set of constrained
Horn clauses, then (ii) transforming these clauses to better exploit the inter-
actions between the predicates that represent the computations evoked by the
programs, and finally, (iii) using state-of-the-art constrained Horn clause solvers
to prove satisfiability that enforces the property to be verified.

Although we have considered imperative programs, the only language-specific
element of our method is the constrained Horn clause interpreter that we have
used to represent in clausal form the program semantics and the property to
be verified. Indeed, our method can also be applied to prove relations between
programs written in different programming languages. Thus, our approach is
basically independent of the programming language used.
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