
Fundamenta Informaticae – Preprint (2017)

DOI 10.3233/FI-2017-1461

IOS Press

Program Verification using
Constraint Handling Rules and Array Constraint Generalizations∗

Emanuele De Angelis
University of Chieti-Pescara, Viale Pindaro 42, 65127, Pescara, Italy, emanuele.deangelis@unich.it

Fabio Fioravanti
University of Chieti-Pescara, Viale Pindaro 42, 65127, Pescara, Italy, fabio.fioravanti@unich.it

Alberto Pettorossi
University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy pettorossi@info.uniroma2.it

Maurizio Proietti
IASI-CNR, Via dei Taurini 19, 00185 Rome, Italy, maurizio.proietti@iasi.cnr.it

Abstract. The transformation of constraint logic programs (CLP programs) has been shown to be an
effective methodology for verifying properties of imperative programs. By following this method-
ology, we encode the negation of a partial correctness property of an imperative program prog as
a predicate incorrect defined by a CLP program T , and we show that prog is correct by trans-
forming T into the empty program (and thus incorrect does not hold) through the application
of semantics preserving transformation rules. We can also show that prog is incorrect by trans-
forming T into a program with the fact incorrect (and thus incorrect does hold). Some of the
transformation rules perform replacements of constraints that are based on properties of the data
structures manipulated by the program prog . In this paper we show that Constraint Handling Rules
(CHR) are a suitable formalism for representing and applying constraint replacements during the
transformation of CLP programs. In particular, we consider programs that manipulate integer arrays
and we present a CHR encoding of a constraint replacement strategy based on the theory of arrays.
We also propose a novel generalization strategy for constraints on integer arrays that combines CHR
constraint replacements with various generalization operators on integer constraints, such as widen-
ing and convex hull. Generalization is controlled by additional constraints that relate the variable
identifiers in the imperative program prog and the CLP representation of their values. The method
presented in this paper has been implemented and we have demonstrated its effectiveness on a set of
benchmark programs taken from the literature.

Keywords: Constraint Handling Rules, Constraint logic programming, Program transformation,
Program verification

∗This work has been partially supported by the National Group of Computing Science (GNCS-INDAM). E. De Angelis,
F. Fioravanti, and A. Pettorossi are research associates at IASI-CNR, Rome, Italy.

2 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

1. Introduction

It has long been recognized that Constraint Logic Programming (CLP) is a formalism that provides a
powerful inference mechanism for the verification of properties of imperative programs. In the landmark
paper by Peralta et al. [1] the authors show that the operational semantics of an imperative programming
language can be defined by providing an interpreter I for that language, written in CLP. By specializing
that interpreter with respect to a given imperative program prog , we get a CLP program, say Iprog , that
has no reference to the imperative constructs of the program prog . Then, by analyzing the specialized
CLP program Iprog , we can discover properties of the imperative program prog .

The approach of Peralta et al. [1] has been extended by De Angelis et al. [2] who show how to encode
into a CLP program, say T , any partial correctness property specified by a Hoare triple, that is, a triple
consisting of a precondition, an imperative program, and a postcondition. The CLP program T contains
a predicate incorrect that is equivalent to the negation of the partial correctness property, defined in
terms of the operational semantics of the programming language. Then, by specializing T with respect a
given triple {ϕ} prog {ψ} one can generate a new CLP program, say VC, which provides the so-called
verification conditions for prog [3]. Indeed, the Hoare triple is valid if and only if the query incorrect

does not hold in the program VC. However, to check whether or not incorrect holds in VC, is often a
hard task for standard (either top-down or bottom-up) CLP query evaluation techniques, as it may require
the discovery of properties of the execution of prog and, in particular, the loop invariants of prog .

In order to overcome this difficulty, many verification methods extending the standard CLP evalua-
tion strategies have been proposed. Some methods, directly following the approach presented in [1], are
based on abstract interpretation [4] and compute an over-approximation of the least model of the CLP
program VC by a bottom-up evaluation of an abstraction of the program [5, 6, 7]. Other methods use goal
directed evaluation of the CLP program VC combined with other symbolic techniques such as interpola-
tion [8, 9, 10]. Some other methods presented in various papers [11, 12, 13, 14, 15], combine CLP (also
called constrained Horn clauses in those papers) with different reasoning techniques developed in the ar-
eas of Software Model Checking and Automated Theorem Proving, such as the CounterExample-Guided
Abstraction Refinement (CEGAR) and the Satisfiability Modulo Theories (SMT).

In this paper we consider C-like imperative programs on integer and array variables and we follow
the approach based on the transformation of CLP programs that was first presented in De Angelis et
al. [2] for the case of programs on integer variables. Suppose we want to prove a partial correctness
property of an imperative program prog and assume that the negation of that property is encoded by
the predicate incorrect defined by the CLP program T . After the generation of the verification con-
ditions VC obtained by specializing T with respect to the given property (see the VCGen module in
Figure 1), the transformation-based method proceeds by applying to VC some equivalence preserving
unfold/fold transformation rules [16, 17] (see the VCTransf module in Figure 1), which propagate the
pre- and postconditions with the objective of deriving a CLP program VC ′ without facts, hence proving
that incorrect does not hold and prog is correct. In the case where we derive a CLP program VC ′ with
facts, by unfolding we try to generate the fact incorrect, hence proving that incorrect holds and prog
is incorrect. Obviously, due to the undecidability of partial correctness, it may be the case that we derive
a CLP program VC ′ with facts, and yet we are not able to generate the fact incorrect, and hence we
establish neither the correctness nor the incorrectness of prog . However, since the transformation rules
preserve equivalence of CLP programs, in the case where the transformation method is inconclusive, we
can still apply any Satisfiability Modulo Theories solver (SMT solver, for short) to VC ′ and try to prove

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 3

the property of interest (see the SMT Solver module in Figure 1). Indeed, as confirmed by the results
of our experiments that are reported in Section 7, SMT solvers are likely to be more effective when ap-
plied to VC ′, instead of VC , because of the propagation of the pre- and postconditions performed by the
unfold/fold transformation.

The most critical issue to be addressed to make CLP program transformation effective, is to design
some suitable transformation strategies that guide the application of the rules towards the goal of ver-
ifying the given partial correctness property. In particular, two transformations need special guidance:
(i) the replacement of constraints, and (ii) the introduction of new predicate definitions that facilitate
proving (or disproving) the predicate incorrect. The problem of introducing suitable new predicates,
which in the context of logic program transformation were traditionally called the eureka predicates [18],
corresponds to the problem of finding suitable inductive invariants in Hoare-style program verification.
A very well-established approach for introducing eureka predicates is based on the generalization, which
is a technique that derives predicate definitions that generalize (that is, are entailed by) different predi-
cate calls derived by the exploration, via unfolding steps, of the symbolic execution of the given logic
program. A general unfold/fold strategy for transforming the CLP verification conditions VC generated
from imperative programs that manipulate integers and integer arrays was proposed by De Angelis et
al. [19]. In the CLP verification conditions manipulated by that strategy, array properties are written as
constraints using read and write predicates that represent operations on arrays. The main limitation of
that strategy is that the crucial step for introducing new predicates is a highly nondeterministic step.

In this paper we present a new unfold/fold transformation strategy and we provide a new, much less
nondeterministic technique for introducing new predicates, thereby drastically reducing the set of poten-
tial new predicates (see the VCTransf module in Figure 1). This technique is called array constraint
generalization, because it works by finding generalizations of array constraints that are derived by un-
folding the given CLP verification conditions VC. The form of the new predicate definitions crucially
depends on the form of the constraints, and hence a key point of the transformation strategy is to make
use of suitable constraint replacement strategies. Thus, it is very important to have a formalism for
designing and implementing constraint replacements within an unfold/fold transformation framework.
Here we show that Constraint Handling Rules (CHR) [20] are very suitable for this purpose.

The novel contributions of the paper are the following.
(1) We present a set of CHR rules that formalize the theory of arrays [21] and we show how they can
be combined with unfold/fold transformation rules with the objective of proving properties of imperative
programs. We prove soundness, termination, and confluence of the CHR rules. To the best of our
knowledge, this is the first unfold/fold transformation strategy for CLP programs that makes use of CHR
rules for constraint replacement.
(2) We design a novel array constraint generalization strategy, realized by a function called Gen , that
automatically introduces, during CLP transformation, new predicate definitions that are useful for the
verification of the properties of interest. The function Gen makes use of suitable additional constraints,
called val constraints, that relate the variable identifiers occurring in the given imperative programs
and the CLP representations of their values. Specifically, val(v,V) means that the variable identifier v
occurring in an imperative program holds the value V at some point of the computation. Array gen-
eralizations are computed by matching array constraints which are associated to the same imperative
variable identifiers. Thus, val constraints can be viewed as an abstract interpretation [22] that maps
imperative variable identifiers to the sets of their possible values. While the mutual benefits of program
transformation and abstract interpretation have been exploited by many techniques, the representation

4 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

{ϕ} prog {ψ}

Semantics of Hoare triples

T
VCGen

+ addition of
val constraints

VC

VCTransf :

Unfolding

ConstraintReplacement (CHR)

Definition&Folding (usingGen)

VC ′ SMT

Solver

true

false

unknown

1

Figure 1. The transformation-based verification method.

and manipulation of abstract values via constraints during program transformation is a new idea.
(3) Finally, we present an implementation of the verification method using the VeriMAP system [23],
and we demonstrate its effectiveness on a set of benchmark programs taken from the literature. We also
show, on our benchmark, a comparison of VeriMAP with Z3 [12], which is one of the most popular
SMT-solver for Horn clauses with constraints. Our experiments show that VeriMAP and Z3 together
are more effective than each of these tools separately, and in particular it is the case that the use of Z3
after the unfold/fold transformation performed by VeriMAP, allows the verifications of some programs
for which VeriMAP alone was not able to establish neither correctness nor incorrectness.

The paper is structured as follows. In Section 2 we show how a partial correctness property of an
imperative program is encoded as a CLP program. We also briefly describe the specialization strategy
VCGen used for generating verification conditions from a partial correctness property. In Section 3
we present the transformation strategy VCTransf that we apply to transform the verification conditions
obtained by VCGen with the aim of deriving either the empty CLP program (hence proving that the im-
perative program is partially correct) or a CLP program containing the fact incorrect (hence proving
that the imperative program is not partially correct). VCTransf makes use of two auxiliary transfor-
mation strategies, one for manipulating array constraints (realized by the function Repl) and one for
introducing new predicate definitions by generalization (realized by the function Gen). The array ma-
nipulation strategy, implemented as a set of CHR rules, is presented in Section 4, and the generalization
strategy is presented in Section 5. The correctness and termination of VCTransf is proved in Section 6.
In Section 7 we present the implementation of our transformation-based verification method and its ex-
perimental evaluation. Finally, in Section 8, we compare our paper to related work in the area of program
verification.

2. Encoding Partial Correctness into Constraint Logic Programming

In this section we recall the class of Constraint Logic Programs on integers and integer arrays [19] that
we consider in this paper, and we show how partial correctness properties of imperative programs can be
encoded as programs of this class.

2.1. Constraint Logic Programs on Integer Arrays

First we need the following definitions. An atomic integer constraint is either p1=p2, or p1 6=p2, or
p1≥p2, or p1>p2, where p1 and p2 are linear polynomials with integer variables and integer coefficients.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 5

As usual, sum and multiplication are denoted by + and *, respectively, and we use the predicates≤ and<
instead of the negations of > and ≥, respectively. An integer array a (or an array, for short) is a finite
sequence of integers whose length, called the dimension of the array, is denoted dim(a). An atomic
array constraint is either read(a, i, v), denoting that the i-th element of the array a is the integer v,
or write(a, i, v, b), denoting that for k = 1, . . . , dim(a), if k 6=i the k-th element of a is equal to the
k-th element of b, and if k=i the k-th element of b is the integer v.

The read and write constraints satisfy the following axioms [21], whose variables are assumed to
be universally quantified at the front:

(A.1) I=J, read(A, I, U), read(A, J, V) → U=V (array congruence)
(A.2) I=J, write(A, I, U, B), read(B, J, V) → U=V (read-over-write: equal indexes)
(A.3) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V) (read-over-write: different indexes)

A constraint is either true, or false, or an atomic (integer or array) constraint, or a conjunction of
constraints. An atom is a formula of the form p(t1,...,tm), where p is a predicate symbol not in
{=, 6=,≥, >, read, write} and t1, . . . , tm are terms constructed out of variables, constants, and func-
tion symbols different from + and *. A CLP program is a finite set of clauses of the form A :- c, B,
where A is an atom, c is a constraint, and B is a (possibly empty) conjunction of atoms. Given a clause
A :- c, B, the atom A is called the head, and the conjunction ‘c, B’ is called the body. We assume that for
every clause head H, no variable occurs twice in H and there is no occurrence of either an integer constant,
or +, or ∗ in H. This assumption is not restrictive, as terms in the head of a clause containing integer
constants, +, or ∗ can be removed in favor of equalities in the body. This assumption also simplifies the
presentation of the unfolding rule, as the unification of an atom in the body of a clause with the head of
a (renamed apart) clause need not take into account the theory of integers (see Definition 2.1). A clause
A :- c is called a constrained fact. If c is true, then it is omitted and the constrained fact is called a fact.
A CLP program is said to be linear recursive if all its clauses are of the form A :- c, B, where B consists
of at most one atom. In a CLP program P , we say that predicate p immediately depends on a predicate q
iff in P there is a clause of the form p(...) :- c, B such that q occurs in B. The relation ‘depends on’
between predicates is the transitive closure of the relation ‘immediately depends on’.

An A-interpretation I is a set D, together with a function f in Dn→D for each function symbol f
of arity n, and a relation p on Dn for each predicate symbol p of arity n, such that: (i) the set D is the
Herbrand universe [24] constructed out of the set Z of the integers and the function symbols different
from + and *, (ii) I assigns to symbols in the set {+, *, =, >, >} the usual meaning in Z, (iii) for all
sequences a0 . . . an−1 and b0 . . . bm−1 of integers, for all integers i and v, read(a0 . . . an−1, i, v) is true
in I iff 0≤i≤n−1 and v=ai, and write(a0 . . . an−1, i, v, b0 . . . bm−1) is true in I iff 0≤i≤n−1,
n=m, bi=v, and for j=0, . . . , n−1, if j 6=i then aj=bj, (iv) I is an Herbrand interpretation [24] for
function and predicate symbols not in the set {+, *, =, >, >, read, write}.

We can identify an A-interpretation I with the set of all ground atoms that are true in I , and hence
A-interpretations are partially ordered by set inclusion. For every formula ϕ, we say that I is anA-model
of ϕ if ϕ is true in I . We say that ϕ holds in A, denoted A |= ϕ, if every A-interpretation is an
A-model of ϕ. In particular, every A-interpretation is an A-model of Axioms (A.1), (A.2), and (A.3).
A constraint c is said to be satisfiable if A |= ∃(c), where in general, for every formula ϕ, ∃(ϕ) denotes
the existential closure of ϕ. A constraint c entails a constraint d, denoted c v d, if A |= ∀(c → d),
where in general, for every formula ϕ, ∀(ϕ) denotes the universal closure of ϕ. By vars(ϕ) we denote
the set of the free variables of the formula ϕ. Likewise, by vars(ϕ1, . . . , ϕn) we denote the set of the

6 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

x, y, . . . , i, j, . . . ∈ IVars (integer variable identifiers)
a, b, . . . ∈ AVars (integer array identifiers)
k ∈ Z (integer constants)
`, `0, `1, . . . ∈ Labels (labels)
uop, bop ∈ Ops (unary and binary operators: −,+, ∗,=,≥, . . .)
prog ::= (` : cmd ;)∗ (programs)
cmd ::= x = expr | a[expr] = expr | goto ` | if (expr) `1 else `2 | halt (commands)
expr ::= k | x | uop expr | expr bop expr | a[expr] (expressions)

Figure 2. Syntax of the imperative language L.

free variables occurring in any of the formulas ϕ1, . . . , ϕn. In general, by vars(e) we denotes the set of
variables occurring in the expression (or sequence of expressions) e. The semantics of a CLP program P
is the least A-model of P , denoted M(P), constructed as usual for CLP programs [25].

2.2. The Imperative Language

We consider C-like imperative programs manipulating integers and integer arrays. In Figure 2 we de-
scribe the programming language L we use. We can deal with other commands, such as while com-
mands and for commands, by considering their translation in terms of if-else and goto commands
(see Figure 2). We assume that every program has a single halt command whose execution causes the
program to terminate. For reasons of simplicity, we will consider one-dimensional arrays only.

The operational semantics of programs is defined in terms of a transition relation, denoted =⇒, be-
tween configurations. A configuration is a pair 〈〈c, δ〉〉 of a labeled command (or a command, for short) c
and an environment δ that maps: (i) every integer variable identifier x to its value v , and (ii) every integer
array identifier a to a finite sequence a0 . . . an−1 of integers, where n is the dimension of the array a .
The transition relation specifies a ‘small step’ operational semantics in the style of Reynolds [26]. Its
definition is shown in Figure 3, where we use the following expressions.

Given any mapping g : X→A, by the expression update(g, x, a), with x∈X and a∈A, we denote
the mapping g′ that is equal to g, except that g′(x)=a. If a is a finite function denoting an array, i is an
integer in {0, . . . , dim(a)}, and v is an integer in Z, we write write(a, i, v), instead of update(a, i, v).
For any program P , for any label `, (i) at(`) denotes the command in P with label `, and (ii) nextlab(`)
denotes the label of the command, if any, that is written in P immediately after the command with label `.
For any expression e and environment δ, JeKδ denotes the value of e in δ.

We assume that the evaluation of expressions has no side effects.
Let us now introduce the notion of program correctness. An environment δ is said to satisfy a for-

mula ϕ(z1, . . . , zr) iff A |= ϕ(δ(z1), . . . , δ(zr)) holds. Given two formulas ϕinit and ϕerror that are
constraints with free variables z1, . . . , zr, we say that program prog is incorrect with respect to these for-
mulas iff there exist two environments δinit and δhalt such that: (i) δinit satisfies ϕinit , (ii) 〈〈`0 :c0, δinit〉〉
=⇒∗ 〈〈`h : halt, δhalt〉〉, and (iii) δhalt satisfies ϕerror , where `0:c0 is the first labeled command of prog
and `h:halt is the unique halt command of prog . (In a paper by De Angelis et al. [27], the reader may
find an extension of these definitions where ϕinit and ϕerror are predicates defined by any CLP program.)
A program is said to be correct (with respect to ϕinit and ϕerror) if it is not incorrect (with respect to

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 7

Assignment.
〈〈` :x=e, δ〉〉 =⇒ 〈〈at(nextlab(`)), update(δ, x, JeKδ)〉〉 if x ∈ IVars
〈〈` :a[ie]=e, δ〉〉 =⇒ 〈〈at(nextlab(`)), update(δ, a, write(δ(a), JieKδ, JeKδ))〉〉 if a ∈ AVars

Conditional.
〈〈` : if (e) `1 else `2, δ〉〉 =⇒ 〈〈at(`1), δ〉〉 if JeK δ 6=0
〈〈` : if (e) `1 else `2, δ〉〉 =⇒ 〈〈at(`2), δ〉〉 if JeK δ=0

Jump. 〈〈` :goto `′, δ〉〉 =⇒ 〈〈at(`′), δ〉〉

Figure 3. Operational semantics of the imperative language L.

ϕinit and ϕerror). Our notion of correctness is equivalent to the notion of partial correctness specified
by the Hoare triple {ϕinit} prog {¬ϕerror}.

2.3. Encoding Partial Correctness into CLP

An imperative program is translated into a set of CLP facts of the form at(L,C), meaning that the
command C has label L.

Configurations are represented as terms of the form cf(cmd(L,C),D), where: (i) L and C encode a
label and a command, respectively, and (ii) D encodes an environment. An environment is represented as
a list of pairs of the form [...,(x,X),...,(a,A),...], where x and a are (integer and array, respectively)
variable identifiers, and X and A are their values (that is, an integer and a sequence of integers, respec-
tively). The transition relation =⇒ between configurations is represented by the binary predicate tr,
which constitutes the CLP interpreter specifying the operational semantics, shown in Figure 3, of our
imperative language, shown in Figure 2. In Figure 4 we have the clauses for tr relative to: (i) assign-
ments (clauses 1i and 1a), (ii) conditionals (clauses 2t and 2f), and (iii) jumps (clause 3).

1i.tr(cf(cmd(L,iasgn(X,E)), D), cf(cmd(L1,C), D1)) :-

eval(E,D,V), update(D,X,V,D1), nextlab(L,L1), at(L1,C).

1a.tr(cf(cmd(L,aasgn(A,IE,E)), D), cf(cmd(L1,C), D1)) :- lookup(A,D,S),

eval(IE,D,I), eval(E,D,V), write(S,I,V,S1), update(D,A,S1,D1),

nextlab(L,L1), at(L1,C).

2t.tr(cf(cmd(L,ite(E,L1,L2)), D), cf(cmd(L1,C), D)) :- beval(E, D), at(L1,C).

2f.tr(cf(cmd(L,ite(E,L1,L2)), D), cf(cmd(L2,C), D)) :- beval(not(E), D), at(L2,C).

3. tr(cf(cmd(L,goto(L1)), D), cf(cmd(L1,C), D)) :- at(L1,C).

Figure 4. The CLP interpreter for the operational semantics.

The term iasgn(X,E) encodes the (integer) assignment command X = E, where X ranges over in-
teger variable identifiers and E ranges over expressions. The predicate eval(E,D,V) holds iff V is the
value of the expression E in the environment D. The predicate update(D,X,V,D1) holds iff the new
environment D1 is derived from the old environment D, by binding the variable X to the value V, using
the function update (see Section 2.2). The predicate nextlab(L,L1) holds iff L1 is the label of the
command that is written in the given imperative program immediately after the command with label L.
The term aasgn(A,I,E) encodes the (array) assignment command A[I] = E, where A ranges over array
variable identifiers, while I and E range over integer expressions. The predicate lookup(A,D,S) holds
iff the value of the array variable identifier A stored in the environment D is S. By the definitions given

8 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

in Sections 2.1 and 2.2, the constraint write(S,I,V,S1) holds iff write(S, I, V) = S1. (To improve
the readability of clause 1a, we have not written this write constraint in the leftmost position of the
body, but since conjunction is commutative, this does not modify the semantics of that clause.) The term
ite(E,L1,L2) encodes the conditional command, and labels L1 and L2 specify where to jump to, de-
pending on the value of the expression E. The predicate beval(E,D) holds iff the value of the expression
E is not 0 (that is, false) in the environment D. The term goto(L) encodes the jump to the command
with label L.

As shown above, the CLP interpreter uses a write constraint to represent an array write (see clause 1a).
Array reads are represented by read constraints, which are used in the definition of the eval and
beval predicates. For instance, the predicate eval(E,D,V), in the case where E is an array expres-
sion arr(A,IE), representing a[ie], is defined by the following clause:

eval(arr(A,IE),D,V) :- eval(IE,D,I), lookup(A,D,S), read(S,I,V).

Note that the CLP interpreter does not need any explicit representation of the arrays. Array constraints
will be dealt with by using the theory of arrays, without the need of such an explicit representation.

Now, we encode the problem of checking whether or not the program prog is incorrect into the prob-
lem of checking whether or not the atom incorrect is a consequence of the following CLP program T :

incorrect :- errorConf(Y), reach(Y). Program T
reach(Y) :- tr(X, Y), reach(X).
reach(Y) :- initConf(Y).

where: (i) initConf(Y) holds iff Y is an initial configuration, that is, a configuration of the form
〈〈`0 :c0, δinit〉〉 and δinit satisfies ϕinit , and (ii) errorConf(Y) holds iff Y is an error configuration, that is,
a configuration of the form 〈〈`h :halt, δhalt〉〉 and δhalt satisfies ϕerror . We also have that reach(Y) holds
iff the configuration Y can be reached, in zero or more steps, from an initial configuration. Program prog
is correct with respect to ϕinit and ϕerror iff incorrect 6∈M(T).

Thus, program T consists of two sets of clauses: the clauses defining the predicates incorrect,
reach, and tr, which encode the semantics of a (generic) Hoare triple (through the negation of the
postcondition), and the clauses defining the predicates at, initConf, and errorConf, which encode the
specific program and property under consideration.

2.4. Generating Verification Conditions Through CLP Program Specialization

Our verification method applies unfold/fold transformation rules to program T and consists of the follow-
ing two steps: (i) the application of the VCGen strategy (see Figure 5), which generates the Verification
Conditions VC for the given imperative program prog , and (ii) the application of the VCTransf strategy
(see Figure 8), which checks the Satisfiability of the Verification Conditions via program transformation.

If VCTransf fails to establish the satisfiability or the unsatisfiability of the Verification Conditions
(and hence the correctness or the incorrectness of prog), then an SMT solver is applied to the new
version VC ′ of the Verification Conditions derived after applying the VCTransf strategy. In Figure 1
we show a picture of the entire verification process.

Similarly to what is done in other papers [2, 19], the VCGen strategy performs the specialization
of program T with respect to: (i) the predicate at, encoding the program prog , and (ii) the predicates
initConf and errorConf, encoding the property of interest, specified by the precondition ϕ and the
postcondition ¬ψ, respectively. The output of VCGen is a CLP program VC , where the predicate tr

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 9

(see Figure 4), which encodes the interpreter for prog , does not occur, and for this reason the VCGen
strategy is also called the removal of the interpreter [2].

Now we will present the VCGen strategy, while in the next section we will present the VCTransf
strategy. In order to apply the VCGen strategy (see Figure 5) we need the following unfolding rule.

Definition 2.1. (Unfolding Rule)
Let P be a CLP program and C be a clause of the form H :- c,A,R, where H and A are atoms, c
is a constraint, and R is a (possibly empty) conjunction of atoms. By Unf (C ,P) we denote the set
{(H :- c,ci,Bi, R)ϑi | i = 1, . . . ,m}, where {Ki :- ci,Bi | i = 1, . . . ,m} is the set of the (renamed
apart) clauses of P such that, for i=1, . . . ,m, A is unifiable with Ki via the most general unifier ϑi.

In order to apply the unfolding rule during VCGen , we assume that the atoms occurring in bodies
of clauses are annotated as either unfoldable or not unfoldable. This annotation is chosen so that any
sequence of clauses that can be constructed from a given clauseC by unfolding with respect to unfoldable
atoms, is finite. In particular, we annotate the atoms with predicate initConf, errorConf, and all those
occurring in the definition of tr (see Figure 4) as unfoldable. Every atom of the form reach(cf) is
annotated as unfoldable in the case where: (i) the command in the configuration cf has label `, and (ii) in
the given imperative program there is neither a goto ` command, nor an if-else command whose left
or right arm is `. Otherwise reach(cf) is annotated as not unfoldable.

Input: CLP program T .
Output: CLP program VC such that incorrect∈M(T) iff incorrect∈M(VC).

INITIALIZATION InDefs :={incorrect :- errorConf(Y), reach(Y)}; VC :=∅ ; Defs :=∅ ;
while in InDefs there is a clause C do

• UNFOLDING

TransfC := Unf (C, T);
while in TransfC there is a clause D whose leftmost atom is annotated as unfoldable do
TransfC := (TransfC −D) ∪Unf (D,T);

• DEFINITION & FOLDING

while in TransfC there is a clause E of the form H :- c, reach(cf), where c is a constraint, do
if in Defs there is no clause whose body is reach(cf)
then add both to Defs and to InDefs the definition clause newp(V) :- reach(cf), where
newp is a new predicate name and V is the tuple of variables occurring in reach(cf);
TransfC :=(TransfC − {E}) ∪ {H:-c,newp(V)};

end-while;
InDefs := InDefs−{C}; VC := VC ∪ TransfC ;

end-while;

Figure 5. The VCGen strategy: Generating the verification conditions VC .

A distinctive feature of the approach presented in this paper is that we add to program VC obtained by
applying VCGen some additional constraints that will be used for controlling the generalization strat-
egy, which is part of the VCTransf strategy. These additional constraints are of the form val(v, V),
where v is a CLP constant representing a variable identifier occurring in the imperative program prog
and V is a logical variable holding the values that can be taken by v during the computation. Obviously,

10 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

these constraints are true and do not change the least model of VC. Their role is to identify the program
variables whose values occur in the read constraints that appear in the clauses of VC. For instance,
the constraint ‘val(a, A), val(i, I), read(A, I, U)’ expresses the property that read(A, I, U) gets the el-
ement of the array a at index i. The val constraints will be used, during the generalization strategy
(see Section 5) to match read constraints that occur in different clauses. Indeed, to do this matching
we cannot refer to the names of the logical variables, because their scope is always a single clause. In
contrast, we will be able to match the constraint ‘val(a,A),val(i,I),read(A,I,U)’ with the con-
straint ‘val(a,B),val(i,J),read(B,J,V)’, even if they occur in different clauses, because A and B

refer to the same integer array identifier a, and I and J refer to the same integer variable identifier i.
By restricting the matching of read constraints only to the read constraints which are associated with
val constraints referring to the same identifiers in prog , we drastically decrease the number of possi-
ble matching read pairs, and thus we decrease the nondeterminism of the generalization strategy. This
makes the generalization strategy more effective as confirmed by the experimental results (see Section 7).

In order to add val constraints to the clauses of VC we use the algorithm presented in Figure 6.

Input: The verification conditions VC .
Output: The verification conditions VC with added val constraints.

For every clause C in the verification conditions VC of the form:
C: newp(X) :- ..., read(A,I,V),..., newq(Y)

where X and Y are two tuples of variables, each tuple being made out of distinct variables (the two tuples
not being necessarily disjoint), for every constraint of the form read(A,I,V), for every B ∈ {A, I},
add val(b,B) to the body of C, if
either (i.1) B∈X, and (ii.1) the definition of newp introduced by VCGen is (modulo variable renaming)

of the form: Dnewp: newp(X) :- reach(cf(cmd(L,C)), [...,(b,B),...])

or (i.2) B∈Y, and (ii.2) the definition of newq introduced by VCGen is (modulo variable renaming) of
the form: Dnewq: newq(Y) :- reach(cf(cmd(L,C)), [...,(b,B),...])

where [...,(b,B),...] is a list of pairs representing the environment.

Figure 6. Algorithm for adding val constraints to the verification conditions VC .

Now let us see how the VCGen works and how the val addition is performed on an example.

Example 2.2. Let us consider the program bubble-sort-inner shown in Column (a) of Figure 7. Given
the array a[0], . . . , a[n−1] and any i∈{0, . . . , n−1}, the program bubble-sort-inner stores in a[n−i−1]
the maximum value of the prefix a[0], . . . , a[n−i−1] by iteratively swapping adjacent elements. The
translation of the program bubble-sort-inner into the language L of Figure 2 is shown in Column (b) of
Figure 7. The CLP representation of this translation is shown in Column (c).

Let us also consider the two properties ϕinit(i, n, a) ≡ 0≤ i<n and
ϕerror (i, j, n, a) ≡ ∃k ∃x ∃y 0≤ i<n ∧∧ 0≤k<j ∧∧j=n−i−1 ∧∧ read(a, k, x) ∧∧ read(a, j, y) ∧∧x>y.

The error property states that, upon termination of the program, there exists an index k smaller than
n−i−1 such that a[k] > a[n−i−1], that is, the program bubble-sort-inner has failed to store in a[n−i−1]
the maximum value of the prefix a[0], . . . , a[n−i−1].

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 11

(a) bubble-sort-inner

for (j=0; j<n−i−1; j++) {
if (a[j]>a[j+1]){
tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;

}
}

(b) bubble-sort-inner in L

0 : j=0;
1 : if(j<n−i−1) 2 else 8;
2 : if(a[j]>a[j+1]) 3 else 6;
3 : tmp = a[j];
4 : a[j] = a[j+1];
5 : a[j+1] = tmp;
6 : j = j+1;
7 : goto 1;
8 : halt

(c) clauses for bubble-sort-inner

at(0,iasgn(j,0)).

at(1,ite(lt(j,n-i-1),2,8)).

at(2,ite(gt(arr(a,j),arr(a,j+1)),3,6)).

at(3,iasgn(tmp,arr(a,j)))).

at(4,aasgn(arr(a,j),arr(a,j+1))))).

at(5,aasgn(arr(a,j+1),tmp))).

at(6,iasgn(j,j+1)).

at(7,goto(1)).

at(8,halt).

Figure 7. The C-like bubble-sort-inner program (Column (a)), its translation into the language L (Column (b)),
and its encoding CLP clauses (Column (c)).

The ϕinit and ϕerror properties are used to express the initial and error configurations in CLP as follows:

initConf(cf(cmd(0,C),[(i,I),(n,N),(j,J),(a,A),(tmp,Tmp),(k,K)])):- at(0,C), 0≤I, I<N.
errorConf(cf(cmd(8,C),[(i,I),(n,N),(j,J),(a,A),(tmp,Tmp),(k,K)])):- at(8,C),

0≤I, I<N, 0≤K, K<J, J=N-I-1, X>Y, read(A,K,X), read(A,J,Y).

Note that index variables occurring in ϕinit and ϕerror , and not in the program bubble-sort-inner (the so-
called ghost variables, like k in this example), are stored in the environment, and hence val constraints
can be added also for those variables. At the end of the VCGen strategy and the algorithm for the addition
of val constraints, we get the following CLP program VC that expresses the verification conditions for
the program bubble-sort-inner:

1. incorrect :- 0≤I, 0≤K, K≤J, J=N−I−1, X>Y, Program VC
read(A,K,X), read(A,J,Y), val(a,A), val(k,K), val(j,J), loop(I,J,N,A,Tmp,K).

2. loop(I,J1,N,A2,Tmp1,K) :- J1=1+J, J<N−I−1, J≥0, J<N−1, X>Y,
read(A,J,X), read(A,J1,Y), read(A,J,Tmp1), read(A,J1,Z), write(A,J,Z,A1),

write(A1,J1,Tmp1,A2), val(a,A), val(j,J), val(j,J1), loop(I,J,N,A,Tmp,K).

3. loop(I,J1,N,A,Tmp,K) :- J1=J+1, J<N−I−1, J≥0, J<N−1, X≤Y,
read(A,J,X), read(A,J1,Y), val(a,A), val(j,J), val(j,J1), loop(I,J,N,A,Tmp,K).

4. loop(I,J,N,A,Tmp,K) :- 0≤I, I<N, J=0.

In program VC the predicate symbol loop is a new predicate symbol introduced during the VCGen
strategy (that is, loop is an instance of the predicate symbol newp which we used in Figure 5). The
predicate loop is associated with the if-else command of line 1 of the program in Column (b) of
Figure 7, corresponding to the for command of the given program bubble-sort-inner. In particular, we
have that (see the underlined constraints): clauses 1 and 4 represent the exit and the entry of the for

statement, respectively, and clauses 2 and 3 represent the execution of the conditional of the body of the
for statement in the two mutually exclusive cases: (i) a[j]>a[j+1], and (ii) a[j]≤a[j+1], respectively.

The val constraints are derived from the environment occurring in the following (renamed apart)
definition of the loop predicate, which has been introduced by VCGen:

D: loop(I,J1,N,A,Tmp,K) :- reach(cf(cmd(1,ite(lt(j,n-i-1),2,8)),

[(i,I),(j,J1),(n,N),(a,A),(tmp,Tmp),(k,K)])).

12 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

Indeed, in clause 3 we have added the constraint val(a,A), because: (i) the variable A of the constraint
read(A,J1,Y) occurs in the head of clause 3, and (ii) in the environment in definition D there is the
pair (a,A). In clause 3 we have added also the constraint val(j,J1), because: (i) the variable J1 of
the constraint read(A,J1,Y) occurs in the head of clause 3, and (ii) in the environment in definition D
there is the pair (j,J1). Finally, in clause 3 we have added the constraint val(j,J), because: (i) the
variable J of the constraint read(A,J,X) occurs in the body atom loop(I,J,N,A,Tmp,K) of clause 3,
and (ii) in the environment in definition clause D, once renamed by the substitution J1/J, there is the
pair (j,J). �

The termination and correctness of VCGen are established by using the same techniques used by
De Angelis et al. [2]. In particular, termination is derived from the fact that, since for any program
the sets of labeled commands and variable identifiers are finite, we get that the set of possible new
definitions that can be introduced is finite. The correctness is derived from the fact that the unfold/fold
transformations preserve the least model of the given initial CLP program T [16]. We omit the details
for lack of space.

3. A Transformation Strategy for Verification

The VCTransf strategy of our verification method transforms the verification conditions derived at the
end of the VCGen strategy, that is, the CLP program VC , into a program VC ′ such that incorrect∈
M(VC) iff incorrect∈M(VC ′). This transformation makes use of transformation rules that preserve
the least A-model semantics of CLP programs. In particular, we apply the following rules, which are
collectively called unfold/fold rules: (i) UNFOLDING, (ii) CONSTRAINT REPLACEMENT, (iii) CLAUSE

REMOVAL, (iv) DEFINITION, and (v) FOLDING. These rules are an adaptation to CLP programs on integer
arrays of the unfold/fold rules for general CLP programs, and hence inherit the correctness properties of
the general rules as described in the paper by Etalle et al. [16].

During the VCTransf strategy we apply the unfold/fold rules according to a strategy whose effect
is the propagation throughout the program VC of the constraints constituting the property ϕerror , which
occur in the clauses defining the predicate incorrect. The objective of VCTransf is to derive a pro-
gram VC ′ without any constrained fact, thereby proving that incorrect does not hold, and hence that
prog is correct with respect to ϕinit and ϕerror . If, otherwise, we derive a CLP program VC ′ with
some constrained facts, then we try to generate by unfolding the fact incorrect, hence proving that
incorrect holds and prog is incorrect. Obviously, due to the undecidability of partial correctness, it
may be the case that we derive a CLP program VC ′ with constrained facts, and yet we are not able to
generate the fact incorrect, and hence we can establish neither correctness nor incorrectness of prog .

However, since incorrect∈M(VC) iff incorrect∈M(VC ′), we can still apply an SMT solver to
the program VC ′ derived by the VCTransf strategy, and by doing so, we can hope to show correctness
or incorrectness of prog . Indeed, this is what we have done in the experiments presented in Section 7. In
particular, we have run the SMT solver Z3 [12] on the program VC ′ produced by the VCTransf strategy
and we have been able to verify the correctness of some programs which could have not been verified by
using the VCTransf strategy alone (see Processes GT and GTZ in Table 1 of Section 7).

The VCTransf strategy is performed by applying the unfold/fold transformation rules according to
the VCTransf strategy shown in Figure 8. Let us briefly describe how the various transformation rules
are used within the VCTransf strategy.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 13

Input: A linear recursive CLP program VC and a positive integer MaxUnf .
Output: Program VC ′ such that incorrect∈M(VC) iff incorrect∈M(VC ′).

INITIALIZATION Let InDefs be the set of all clauses of VC whose head is the atom incorrect.
VC ′ :=∅ ; Defs :=InDefs ;
while in InDefs there is a clause C of the form H :- c,A do

• UNFOLDING TransfC := Unf (C,VC) ;

• CONSTRAINT REPLACEMENT TransfC :=
⋃

D∈TransfC Repl(D);

• REMOVAL OF SUBSUMED CLAUSES Remove from TransfC every clause H :- d,B such that
there exists a different clause H :- e in TransfC with d v e ;

• DEFINITION & FOLDING

while in TransfC there is a clause E of the form H :- e(V,X), p(X), where V and X are tuples
of variables, e(V,X) is a constraint and p is a predicate defined in VC do

if in Defs there is a clause D of the form newp(X) :- c(X), p(X), where c(X) is a
constraint such that e(V,X) v c(X)

then TransfC := (TransfC − {E}) ∪ {H :- e(V,X), newp(X)};
else let Gen(E,Defs) be newq(X) :- gen(X), p(X).

Defs := Defs ∪ {Gen(E,Defs)};
InDefs := InDefs ∪ {Gen(E,Defs)};
TransfC := (TransfC−{E}) ∪ {H :- e(V,X), newq(X)};

end-while;
VC ′ := VC ′ ∪ TransfC ; InDefs := InDefs−{C};

end-while;

• REMOVAL OF USELESS CLAUSES Remove from VC ′ all clauses with head predicate p, if in VC ′

there is no constrained fact q(. . .) :- c, where q is either p or a predicate on which p depends.

• POST-UNFOLDING Let Facts be the set of constrained facts in VC ′ and Rules be the set VC ′−Facts .

DerivedFacts := Facts;
for i=1, . . . ,MaxUnf do

UnfVC := ∅;
for each clause C in Rules do
UnfVC := UnfVC ∪Unf (C,Facts);

end-for;
Facts := {f | f is a constrained fact in UnfVC with head predicate p and

there is no constrained fact in DerivedFacts with head predicate p} ;
DerivedFacts := DerivedFacts ∪{f | f is a constrained fact in UnfVC};

end-for;
VC ′ := VC ′ ∪DerivedFacts;

Figure 8. The VCTransf strategy: Checking the satisfiability of the verification conditions VC and deriving the
new verification conditions VC ′.

14 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

• The UNFOLDING rule performs one step of propagation of the constraint ϕerror . We can view this step
as a backward propagation, as we start from the final, error configuration and, by unfolding, we generate
the predecessor configurations, moving backward towards the initial configuration.

• The CONSTRAINT REPLACEMENT rule infers new constraints on the variables occurring in the single
atom of the body of each clause derived by UNFOLDING. CONSTRAINT REPLACEMENT makes use of
a function Repl that, given a clause C of the form H :- c0, B, returns a set {H :- c1, B, . . . , H :- cn, B}
of clauses (with n≥0), where c1, . . . , cn are constraints such that A |=∀(c0↔ (c1 ∨. . .∨ cn)) holds. In
particular, if c0 is unsatisfiable, then n= 0 and clause C is removed. The function Repl is implemented
by a CHR∨ program as described in Section 4.

• The rule REMOVAL OF USELESS CLAUSES and the rule REMOVAL OF SUBSUMED CLAUSES remove
clauses that do not contribute to the least A-model of the CLP program at hand.

• The DEFINITION rule introduces new predicate definitions by suitable generalizations of the con-
straints. All new predicate definitions are collected in the set Defs . Generalization is performed by using
a function Gen such that, for any clause E of the form H :- e(V,X), p(X), Gen(E,Defs) is a clause
of the form newq(X) :- gen(X), p(X), where: (i) newq is a new predicate symbol, and (ii) gen(X) is a
constraint such that e(V,X)v gen(X). The details of the function Gen will be presented in Section 5.
We will see that the function Gen guarantees the termination of the VCTransf strategy and allows us to
prove the correctness of non-trivial programs.

• The FOLDING rule replaces a clause of the form H :- e(V,X), p(X) by a clause of the form H :- e(V,X),

newq(X), where the predicate newq(X) is defined by a clause that: (i) has been introduced in the set Defs
by the DEFINITION rule, and (ii) is of the form newq(X) :- gen(X), p(X), with e(V,X)v gen(X).

• The POST-UNFOLDING phase adds to VC ′ (zero or more) constrained facts derived by repeatedly
unfolding the clauses of VC ′ with respect to constrained facts. Termination is guaranteed by the fact
that, for each predicate p, the unfolding of all clauses with respect to p is performed at most a fixed
number of times and this number is provided by the value of the parameter MaxUnf .

If the REMOVAL OF USELESS CLAUSES phase removes all clauses for incorrect, then prog is
correct with respect to ϕinit and ϕerror . If the POST-UNFOLDING phase derives a constrained fact
incorrect :- c and c is satisfiable, then incorrect holds and prog is not correct with respect to ϕinit

and ϕerror .

Note that the input program VC of the VCTransf strategy is a linear recursive CLP program. In-
deed, during the VCGen strategy the atoms different from reach are unfolded and hence a linear recur-
sive program is generated.

The new predicates introduced by the DEFINITION rule can be understood as over-approximations
of the sets of configurations that are backward-reachable from the error configuration. Note, however,
that when a new definition is used by the folding rule, the new predicate is called in a context that
guarantees the preservation of the leastA-model. In particular, with reference to Figure 8, e(V,X), p(X)
is equivalent to e(V,X), newq(X). More in general, Theorem 6.2 shows that VCTransf preserves the
leastA-model, and hence a program is correct with respect toϕinit andϕerror if and only if incorrect 6∈
M(VC ′). Thus, no false positives are possible, that is, no derivations of the atom incorrect are possible
for programs which are correct.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 15

4. Constraint Replacement via CHR

In this section we show how programs written in the language of Constraint Handling Rules with dis-
junction, denoted CHR∨ (or CHR, for short), can be used to perform the constraint replacements which
are consequences of the axioms (A.1), (A.2), and (A.3) of the theory of arrays. These replacements are
performed during the CONSTRAINT REPLACEMENT phase of the VCTransf strategy.

Now we formally define the particular class of CHR∨ programs we consider in this paper for the
manipulation of integer and array constraints. First we need the following definitions.

A CHR∨ integer constraint (or a integer constraint, for short) either true, or false, or an atomic
integer constraint (see Section 2.1), or a conjunction of integer constraints. As usual, conjunction is
denoted by comma, while ‘=’ and ‘=/’ denote integer equality and disequality, respectively. A CHR∨ ar-
ray constraint (or an array constraint, for short) is either true, or false, or an atomic array constraint
(that is, a read or a write constraint), or a conjunction of array constraints. A CHR∨ constraint (or a
constraint, for short) is either true, or false, or an atomic (integer or array) constraint, or a conjunction
of constraints (this notion coincides with the one we have introduced for Constraint Logic Programs in
Section 2.1). A CHR∨ goal (or a goal, for short) is either true, or false, or an atomic (integer or array)
constraint, or a conjunction of goals, or a disjunction of goals. Disjunction is denoted by ‘∨’.

A CHR∨ rule is an expression of the form: r @ H1\H2 ⇔ G | B, where: (i) @ is a symbol separating
the optional rule identifier r on the left from the rest of the rule on the right, (ii) H1 and H2, called
the kept head and the removed head, respectively, are conjunctions of atomic array constraints, (iii) G,
called the guard, is a conjunction of constraints, each of which is either an integer constraint or a syntactic
identity, denoted ‘==’, and (iv) B, called the body, is a goal. We assume that H1 and H2 are not both
empty conjunctions. If H2 is empty, then the rule is called a propagation rule and is simply written as:
r @ H1 ⇒ G | B. The variables occurring in any CHR∨ rule are implicitly universally quantified at the
front.

Given any CHR∨ rule of the form: r @ H1\H2 ⇔ G | B, its logical meaning is the universally quan-
tified formula: ∀(G→ ((H1 ∧ H2)↔(H1 ∧ ∃Y B))), where Y is vars(B) − vars(H1 ∧ H2 ∧ G). A CHR∨

program is a set of CHR∨ rules, each of which rewrites old goals into new goals (and thus old states into
new states) as specified by the operational semantics defined below (this semantics is a variant of the one
presented in a paper by Frühwirth [20]). Note that the CHR∨ rules do not refer to the val constraints,
and these val constraints are taken into consideration only during the execution of the generalization
strategy (see Section 5).

Here is the CHR∨ program, call it Arr, that replaces the array constraints read and write by new
constraints during the CONSTRAINT REPLACEMENT phase.

ac @ read(A1,I,U) \ read(A2,J,V) ⇔ A1 == A2, I=J | U=V. Program Arr

nac @ read(A1,I,U), read(A2,J,V) ⇒ A1 == A2, U=/V | I=/J.

row @ write(A1,I,U,A2) \ read(A3,J,V) ⇔ A2 == A3 | (I=J, U=V) ∨ (I=/J, read(A1,J,V)).

Program Arr encodes the axioms (A.1), (A.2), and (A.3) presented in Section 2. We have that: (i) rule ac
encodes axiom (A.1), (ii) rule nac encodes the implication U=/V, read(A,I,U), read(A,J,V)→ I=/J

(even if this implication is logically equivalent to axiom (A.1), the addition of rule nac may make the
verification process more effective because it allows the deduction of disequalities that cannot be deduced
by rule ac alone), and (iii) rule row encodes the two read-over-write axioms (A.2) and (A.3) (note that
a single CHR∨ rule is enough for these two axioms because the goal of rule row is a disjunction of the

16 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

two mutually exclusive constraints (I=J, U=V) and (I=/J, read(A1,J,V))).
The operational semantics of a CHR∨ program is defined in terms of a transition relation, denoted 7→,

between CHR∨ states [28]. In order to present this relation, we introduce the following definitions.
A CHR∨ state (or a state, for short) is a triple 〈g, u, b〉, where: (i) g is a goal, (ii) u is a conjunction of

array constraints, and (iii) b is a conjunction of constraints, each of which is either an integer constraint
or a syntactic identity. An initial state is a state of the form 〈g, true, true〉. Starting from any given state
〈g, u, b〉, we derive a new state by one of the following transition (or rewriting) rules T1–T4 defining the
transition (or rewriting) relation 7→. In these rules, by CT we denote the theory of the integer constraints
and syntactic identities. Thus, in particular, for all logical variables X, CT |= X == X. We assume that
in every A-interpretation the predicate == is interpreted as the identity on the domain, and since every
A-interpretation is a model of the theory of the integer constraints, we also have that A |= CT .

T1. Introduce: 〈a∧g, u, b〉 7→ 〈g, u, a∧b〉 if a is an atomic integer constraint
〈a∧g, u, b〉 7→ 〈g, a∧u, b〉 if a is an atomic array constraint

T2. Simplify using H1\H2⇔ G | B: 〈g, H1′∧H2′∧u, b〉 7→ 〈Bϑ ∧ g, H1′∧u, b〉
if CT |= b→ Gϑ, where (H1∧H2)ϑ == (H1′∧H2′)

T3. Propagate using H⇒ G | B: 〈g, H′∧u, b〉 7→ 〈Bϑ∧g, H′∧u, b〉
if CT |= b→ Gϑ, where Hϑ == H′

T4. Split: 〈(g1∨g2)∧g, u, b〉 7→ 〈g1∧g, u, b〉
〈(g1∨g2)∧g, u, b〉 7→ 〈g2∧g, u, b〉

When applying the transition rules T2 and T3, the CHR∨ rules H1\H2 ⇒ G | B and H ⇒ G | B are
assumed to have no variables in common with the current state. In the Simplify rule T2 the equality
(H1∧H2)ϑ == (H1′∧H2′) means that: ϑ is a substitution, with domain vars(H1∧H2), such that (H1∧H2)ϑ
is syntactically identical to (H1′∧H2′). Likewise, the equality Hϑ == H′ in the Propagate rule T3 means
that: ϑ is a substitution, with domain vars(H), such that Hϑ is syntactically identical to H′. Disjunctions
in goals are taken into account by the Split rule T4. When applying rules T1–T4 we assume that ∧ is an
associative and commutative operator, and true is the identity element of ∧. Thus, for instance, when
applying rule T1 the atomic constraint a is considered to be the same as a∧true, and when applying
rule T4 the goal g1∨g2 is considered to be the same as (g1∨g2)∧true. As usual, by 7→+ we denote
the transitive closure of 7→, and by 7→∗ we denote the reflexive, transitive closure of 7→.

A state is said to be transient if at least one of the transition rules T1–T4 is applicable in that
state. Thus, for any transient state s, there exists at least one state s′ such that s 7→ s′. We assume the
following: if the Propagate rule T3 is applied using the CHR∨ rule H⇒ G | B in a state s= 〈g, H′∧u, b〉
to the conjunction H′ of array constraints, thereby deriving the new state s′ = 〈Bϑ∧g, H′∧u, b〉, where
Hϑ == H′, then the Propagate rule T3 is not applicable to the same conjunction H′ in any state s̃ such that
s 7→+ s̃. This assumption makes it impossible to construct a trivial infinite sequence of states of the form:
s0 7→ s1 7→ s2 7→ . . . , by applying rule T3 to an occurrence of the conjunction H′ in s0 and also to an
occurrence of H′ in every state si, for i>0, of that sequence. (Note that an application of rule T3 adds a
goal to the current state.)

A state is said to be failed if it is of the form 〈c∧g, u, b〉, where c is an integer constraint and
CT |= (c∧b)↔ false. A state is said to be successful if it is neither transient nor failed. As a conse-
quence of rules T1 and T4, a successful state is of the form 〈true, u, b〉 and, since a successful state is

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 17

not transient, it cannot be rewritten using rules T1–T4.
A state is said to be final if it is either successful or failed. Note that, contrary to a successful state, a

failed state may in general be rewritten using rules T1–T4.
The computation tree for a CHR∨ program P and an initial state 〈g0, u0, b0〉 is a maximal tree T of

states constructed in a nondeterministic way as follows. (Maximality holds in the sense that, if a node
may have a child, then it has that child.) The root of T is 〈g0, u0, b0〉. Given a non-failed, transient state
〈g, u, b〉 in T , its children are constructed by choosing either (i) an applicable rule Tk among T1, T2, T3,
if at least one of these rules is applicable, or (ii) rule T4, if this rule is applicable. In case (i) the
state 〈g, u, b〉 has exactly one child 〈g′, u′, b′〉, where 〈g, u, b〉 7→ 〈g′, u′, b′〉 by applying Tk using P . In
case (ii) the state 〈g, u, b〉 has the two children 〈g′, u′, b′〉 and 〈g′′, u′′, b′′〉, where 〈g, u, b〉 7→ 〈g′, u′, b′〉
and 〈g, u, b〉 7→ 〈g′′, u′′, b′′〉 by applying T4. Note that, if during the construction of the computation
tree T we get a final state, then that state is a leaf of T (hence the qualification ‘final’ also for failed states
which may be rewritten using rules T1–T4).

A CHR∨ program P terminates starting from an initial state s if all computation trees for P and s
are finite.

The construction of a computation tree T reflects the committed choice semantics of CHR∨. Indeed,
the construction of T is nondeterministic, but once a rule that can be applied to a state has been chosen,
it is not possible to perform backtracking on that choice. Thus, at every step of the construction of a
computation tree, the choice of an applicable rule to any given state is fixed. Any two computation trees
among those that can be nondeterministically constructed, have equivalent sets of leaves in the sense of
Proposition 4.1 below.

Proposition 4.1. (Soundness and Confluence of Program Arr)
Let us assume that program Arr terminates starting from the initial state 〈d,true,true〉, for some
constraint d. Let 〈true,u1,b1〉, . . . , 〈true, un, bn〉 be all successful final states of any computation
tree for program Arr and 〈d,true,true〉. For i=1, . . . , n, let di be the conjunction ui ∧ bi. Then,
(α) A |= ∀(d↔ (d1∨. . .∨ dn)), and (β) for any two computation trees whose successful final states are
〈true,u1,b1〉, . . . , 〈true, un, bn〉 and 〈true,u′1,b′1〉, . . . , 〈true, u′m, b′m〉 (modulo reordering), respec-
tively, we have that n=m and, for i = 1, . . . , n, (β.1) ui = u′i, and (β.2) CT |= ∀(bi↔b′i).

Now we prove the termination of Arr.
First we introduce the following relation �. Given a constraint c, we define the relation � on

vars(c) as follows: A�B iff the constraint write(A, I, U, B) occurs in c. A constraint c is said to be
non-circular iff the transitive closure�+ of the relation� is irreflexive. Since vars(c) is a finite set,
�+ is a well-founded ordering on vars(c).

Proposition 4.2. (Termination of Arr)
The CHR∨ program Arr terminates for all initial states 〈c, true, true〉, where c is a non-circular con-
straint.

Now we define the function Repl that is used in the CONSTRAINT REPLACEMENT phase in the
VCTransf strategy (see Figure 8). Let us consider a clauseD of the form H :- d, B, and let 〈true, u1, b1〉,
. . . , 〈true, un, bn〉 be all successful final states of any computation tree for the program Arr and the ini-
tial state 〈d, true, true〉. For i=1, . . . , n, let di be the conjunction ui∧bi (which, as usual, is written
as ‘ui,bi’, when occurring in bodies of clauses). Then, Repl(D) = {H :- d1, B, . . . , H :- dn, B}.

18 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

As a consequence of Proposition 4.1 (α), if we view a set of clauses as a conjunction of clauses, we
have that A |= ∀(D)↔∀(Repl(D)). This result is used in the proof of Theorem 6.2 below. Moreover,
by Proposition 4.1 (β), we also have that the result of the function Repl(D) is independent, modulo
equivalence up to CT , of the computation tree used for its evaluation.

Proposition 4.3. (Termination of Constraint Replacement)
Every application of the function Repl during the VCTransf strategy terminates.

To see how CONSTRAINT REPLACEMENT works, let us consider the following example which is relative
to the application of the VCTransf strategy to the program VC , derived from the bubble-sort-inner
program (see Section 2) after the application of the VCGen strategy.

Example 4.4. (Applying the CONSTRAINT REPLACEMENT rule)
After executing once the body of the outer while-loop of the VCTransf strategy (see Figure 8), we start
a new execution of that body by considering the following definition clause 5 in Defs:
5. new2(I,J,N,A,Tmp,K) :- J≤N-I-1, J>K, I≥0, K≥0, J≥N-I-2, X>Y,

read(A,J,Y), read(A,K,X), val(a,A), val(j,J), val(k,K), loop(I,J,N,A,Tmp,K).

After unfolding clause 5, we get a set of clauses, among which we have the following one:
6. new2(I,J1,N,A2,W,K) :- J1=J+1, J<N-I-1, J≥K, Z<W, I≥0, K≥0, J≥N-I-3, X>Y,

write(A,J,Z,A1), write(A1,J1,W,A2), read(A,J,W), read(A,J1,Z),

read(A2,K,X), read(A2,J1,Y),

val(a,A), val(a,A1), val(a,A2), val(j,J), val(j,J1), val(k,K), loop(I,J,N,A,Tmp,K).

The CHR∨ program Arr rewrites the constraint occurring in this clause by some applications of the
row rule, and thus the CONSTRAINT REPLACEMENT rule derives the following clause for the case K=/J

(together with another clause not listed here, for the case K=J):
7. new2(I,J1,N,A2,W,K) :- J1=J+1, J<N-I-1, J≥K, Z<W, I≥0, K≥0, J≥N-I-3, X>Y,

write(A,J,Z,A1), write(A1,J1,W,A2), read(A,J,Y), read(A,J1,Z),

J>K, J1>K, read(A,K,X), Y=W,

val(a,A), val(a,A1), val(a,A2), val(j,J), val(j,J1), val(k,K), loop(I,J,N,A,Tmp,K).

where: (i) by a single application of the rule row, the constraint read(A2,J1,Y) has been replaced
by the constraint Y=W (see the constraints with one underline), and (ii) by two applications of the rule
row the constraint read(A2,K,X) has been replaced by read(A,K,X) (see the constraints with two
underlines), where A2 denotes the array a after the two write operations associated with the constraint
‘write(A,J,Z,A1), write(A1,J1,W,A2)’, and A denotes the array a before these two operations (this
replacement is justified because the additional constraint ‘J>K, J1>K’ implies ‘K=/J, K=/J1’). �

5. The Generalization Strategy

The most critical step of the VCTransf strategy is the introduction of new predicates during the DEFINI-
TION & FOLDING phase. In particular, we should make sure that only a finite number of new predicates
are introduced during the execution of the outer while-loop of VCTransf , because otherwise the strat-
egy may not terminate. For this reason, as usual in many program transformation techniques (see, for
instance, the paper by Fioravanti et al. [29]), during the execution of the VCTransf strategy we collect
in a set, which we call Defs , all predicate definitions that are introduced so far. Then, before introducing

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 19

a new predicate definition C, we compare it with the predicate definitions we have collected in Defs .
If C is ‘similar’ to a predicate definition A in Defs (and this similarity relation is formalized via the
embedding relation C we will define below), then the function Gen introduces, instead of C, a new
predicate definition which is a generalization of C with respect to A and is computed by using a suitable
generalization operator op (see Figure 9).

Following the approach of Fioravanti et al. [29], the termination of the VCTransf strategy is a
consequence of the following two facts: (1) the embedding relation is a well-binary relation [30], and
hence generalization is eventually applied, and (2) the function Gen uses of a constraint generalization
operator op by which only a finite number of different generalizations can be computed, and hence only
a finite number of new predicates can be introduced during the VCTransf strategy.

The specific definitions of the embedding relation C and the generalization operator op we use, are
based on the val constraints that relate: (i) the logical variables occurring in the read constraints, and
(ii) the associated (integer or array) variable identifiers of the imperative language.

Before introducing the formal definitions of the embedding relation and of the generalization func-
tion, let us present a simple example which shows the role of the val constraints when applying gener-
alization.

Suppose that during the execution of VCTransf we are about to introduce a new predicate defined
by a clause of the form:

C: newp(...) :- U≥0, V≤0, read(A,I,U), read(A,J,V), val(a,A), val(i,I), val(j,J),...
while in Defs the following clause is already present:

A: newq(...) :- X=Y-1, read(B,K,X), read(B,L,Y), val(a,B), val(i,K), val(j,L),...

Clause A is similar to C in the sense that they have the same conjunction of read constraints, modulo
variable renaming. Now, suppose that we apply a generalization strategy using the widening opera-
tor [22] for generalizing integer constraints. If the strategy matches the read constraints in A against
the ones in C by taking into account the val constraints, then the variables A,I,J,U,V are renamed to
B,K,L,X,Y, respectively, and hence the integer constraint of C is renamed to X≥0,Y≤0. The widening
of X=Y-1 with respect to X≥0,Y≤0 is X≥Y-1 (indeed, X=Y-1 is split into ‘X≥Y-1, X≤Y-1’ and then
X≤Y-1 is discarded because it is not implied by X≥0,Y≤0), and thus the new generalized definition is
of the form:

G: newg(...) :- X≥Y-1, read(B,K,X), read(B,L,Y), val(a,B), val(i,K), val(j,L),...
Now suppose that the generalization strategy does not consider the val constraints. Besides the one
computed above, another possible matching of the read constraints is the one that renames A,I,J,U,V
to B,L,K,Y,X, respectively, and hence renames the integer constraint ofC to Y≥0,X≤0. The widening of
X=Y-1 with respect to Y≥0,X≤0 is the constraint true, and we get a different new generalized definition
of the form:

G1: newg1(...) :- read(B,K,X), read(B,L,Y),...

Thus, the use of the val constraints allows us to reduce the number of possible matchings for the read

constraints, and hence the number of possible generalizations (from two to one, in our example above).
Although in our example the generalization G seems more informative then G1, in general, there is no
guarantee that our technique always allows to get the best generalization. However, the experimental
evaluation of Section 7 shows that our heuristics based on val constraints work well in many examples
in practice.

Notation. In the following we will denote constraints as conjunctions of the form i, r, w, v, where i

20 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

is an integer constraint, and r, w, and v are conjunctions of read, write, and val constraints, respec-
tively. Conjunctions of constraints will also be represented as sequences. If a constraint c occurs in a
conjunction d of constraints, we will write c∈d. �

Without loss of generality, we assume that, when the generalization function Gen is applied during
the application of the VCTransf strategy to a CLP program P , we first modify P so to satisfy the
following conditions: in every clause C of P , (i) the integer variables occurring in read constraints
are all distinct, and (ii) these integer variables do not occur in any non-constraint atom of clause C.
Obviously, these conditions can always be fulfilled by adding some new variables and some equalities
between these new variables and the old variables.

Note that different integer variable identifiers of the imperative program may get the same value,
and thus it may be the case that a clause contains distinct val constraints that refer to the same logical
variable. However, two array variable identifiers cannot refer to the same logical variable, because our
theory of arrays does not include an extensionality axiom that is needed to prove the equality of two
arrays. These facts justify the following definition.

Definition 5.1. (Decorated read constraints)
Let us consider a clause C of the form H :- i, r, w, v, B. For every constraint read(A, K, U) ∈ r, we
construct a decorated read constraint of the form read(Aa, KS, U), where:
- the decoration a is an array variable identifier such that val(a, A)∈v, and
- the decoration S is the set of all integer variable identifiers k in L such that for some J, val(k, J)∈ v

and i v (J=K). �

Definition 5.2. (Embedding relation C between read constraints and clauses)
Given any reflexive, binary relation C between sets of identifiers, called an embedding relation, we
extend it to decorated read constraints as follows: read(Aa, KS1, U) C read(Ba, HS2, V) iff S1CS2.
We further extend the relation C to clauses as follows. Given two clauses C1 and C2, we stipulate that:

C1=H1 :- i1,r1,w1,v1,B1 C C2 = H2 :- i2,r2,w2,v2,B2 iff
let r11, ..., r1m be the decorated read constraints of r1, and
let r21, ..., r2n, with m≤n, be the decorated read constraints of r2,
there exist m distinct indexes i1, ..., im in {1,...,n} such that, for j=1, ..., m, r1jC r2ij . The conjunction
r2i1 ,...,r2im is denoted by r2C. �

In our program verification experiments we have considered the two embedding relations C on
clauses based on the following two relations on sets of identifiers: (i) S1≡S2, which holds iff S1 = S2,
and (ii) S1eS2, which holds iff (S1=S2=∅) ∨ (S1∩S2) 6=∅. Note that, since S1≡S2 implies S1eS2,
generalized predicate definitions are introduced more often when the generalization function Gen usese,
instead of ≡. In Section 7 we will see the effects of using different embedding relations.

Now let us present the definition of the generalization function Gen (see Figure 9). That definition
is parametric with respect to: (i) a given embedding relation C between two clauses, and (ii) a given
generalization operator op on integer constraints. Given two integer constraints i0 and i1, the constraint
i0 op i1, called the generalization of i1 with respect to i0, is such that i1 v (i0 op i1). In what follows,
we will consider various generalization operators op based on widening and convex hull [22, 29, 31].

The function Gen takes as input, together with a clause, sayE, to be generalized, also the set Defs of
the predicate definitions introduced so far during the execution of the VCTransf strategy (see Figure 8).
In the definition of the function Gen , we need the following notion of an ancestor clause of a given
clause in Defs . A clause A is said to be an ancestor of a clause B if A is B itself or A is the parent of

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 21

Input: (i) A clause E of the form H :- e(V,X), p(X), obtained by unfolding and constraint replacement
from a definition clause C while executing the VCTransf strategy. Let e(V,X) be the conjunction
i,r,w,v of constraints.
(ii) A tree Defs of predicate definitions with clause C as a leaf.
Output: A definition clause newq(X) :- gen(X), p(X), where newq is a new predicate symbol, and
gen(X) is a constraint such that e(V,X) v gen(X).

Let E be the clause H :- i,r,w,v, p(X) and let EX, called the candidate definition clause for E, be the
clause newq(X):-iX, rX, vX, p(X), where:
- vX is the conjunction of all constraints val(j, J)∈v such that, for some K, iv(J=K) and K occurs in X,
- rX is the conjunction of all constraints read(A, J, V) ∈ r such that, for some identifiers a and j,

val(a, A)∈vX and val(j, J)∈vX, and
- iX is the projection of i onto vars(rX) ∪ vars(X).
If in Defs there is a variant A of an ancestor of the definition clause C such that

(i) A = H0 :- i0, r0, v0, p(X) C EX = newq(X) :- iX, rX, vX, p(X), and
(ii) r0 is equal to the subconjunction rCX of the read constraint rX,

Then let i1 be the projection of iX onto vars(r0) ∪ vars(X);
define the constraint gen(X) to be (i0 op i1), r0, v0;

Else define the constraint gen(X) to be iX, rX, vX (which is the constraint of the candidate definitionEX).

Figure 9. The Generalization Function Gen(E,Defs). It is parameterized by the embedding relation C and the
generalization operator op.

an ancestor clause of B, where the parent relation between two clauses in Defs is defined as follows. A
clause C is the parent of every clause Gen(E,Defs), where: (i) C is any clause considered in the outer
while-loop of the VCTransf strategy (the one with double vertical lines in Figure 8), and (ii) E is any
clause considered in the inner DEFINITION & FOLDING while-loop (the one with a single vertical line in
Figure 8) executed for that clause C. The parent relation allows us to view the set Defs of definitions as
a tree in a natural way: (i) the set of nodes of that tree is Defs itself, and (ii) the set of arcs of that tree is
{〈A,B〉 | A is the parent of B} ⊆ Defs×Defs .

Actually, since upon initialization of the VCTranf strategy, the set Defs may have, in general, more
than one clause (this happens when incorrect is defined by multiple clauses), the parent relation allows
us to view Defs as a forest, rather than a tree. However, that forest can trivially be transformed into a
tree by considering an extra node which is the parent of all those clauses that are initially in Defs , so that
the roots of the trees of the forest are all sons of that extra node. By abuse of language, in what follows
we will feel free to refer to Defs as a tree of clauses, rather than a forest of clauses.

The function Gen uses a projection operator (see Figure 9) that, for any integer constraint i and
set X of variables, computes an integer constraint ip, called the projection of i onto X, such that we have:
Q |= ∀ X(ip ↔ ∃ Y i), where Q denotes the usual model of the rational numbers and Y = vars(i) − X.
Thus, considering the integer numbers, instead of the rationals, we also have that A |= ∀(i→ ip).

Lemma 5.3. (Correctness of the Gen function)
Let E be a clause of the form H :- e(V,X),p(X) and Defs be a tree of definition clauses which are
the inputs of the function Gen , and let Gen(E,Defs) be the clause newq(X) :- gen(X), p(X). Then
e(V, X) v gen(X).

22 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

Now, to fix our ideas, let us see an example of application of the generalization strategy.

Example 5.4. Consider clause 7, which was derived in Example 4.4 starting from the definition clause 5
by applying the UNFOLDING, CONSTRAINT REPLACEMENT, and REMOVAL OF SUBSUMED CLAUSES

phases of the VCTransf strategy. The candidate definition for clause 7 is the following clause 8:

8. new3(I,J,N,A,Tmp,K) :- J<N-I-1, I≥0, K≥0, J≥N-I-3, J>K, X>Y,
read(A,J,Y), read(A,K,X), val(a,A), val(j,J), val(k,K), loop(I,J,N,A,Tmp,K).

Here and below, for reasons of brevity, we allow ourselves to write read constraints with integer vari-
ables that are in common with the non-constraint atoms. In particular, in clause 8 we have written
read(A,J,Y), with the variable J in common with the non-constraint atom loop(I,J,N,A,Tmp,K),
instead of ‘J=H, read(A,H,Y)’, where H is a new variable.

At this point of execution of the VCTransf strategy we have that the set Defs of definitions contains
an ancestor of the definition clause 5 (see Example 4.4) (again, for reasons of brevity, we do not show all
the execution steps of that strategy) and that ancestor A (modulo variable renaming) is:

A. new2(I,J,N,A,Tmp,K) :- J<N-I-1, I≥0, K≥0, J≥N-I-2, J>K, X>Y,
read(A,J,Y), read(A,K,X), val(a,A), val(j,J), val(k,K), loop(I,J,N,A,Tmp,K).

That ancestor definition has been inserted into Defs as the result of a previous execution of the DEFINI-
TION & FOLDING phases of the VCTransf strategy.

Now, definition A and clause 8 have the same conjunction read(Aa, J{j}, Y), read(Aa, K{k}, X) of
decorated read constraints, and thus definition A is embedded into the candidate definition clause 8 via
the relation ≡ (actually A is embedded into clause 8 also via the relation e). We have that:

(i) in clause 8: rCX = read(A,J,Y), read(A,K,X),
(ii) in clauseA: i0 = J<N-I-1, I≥0, K≥0, J≥N-I-2, J>K, X>Y, and

(iii) in clause 8: iX=i1 = J<N-I-1, I≥0, K≥0, J≥N-I-3, J>K, X>Y.
The function Gen(clause 7,Defs) returns the integer constraint g which is J<N-I-1, I≥0, K≥0, J>K,
X>Y. The constraint g is a generalization of the integer constraint i1 of the candidate definition clause 8
with respect to the constraint i0 of A, and in our case we compute g by the widening operator, that is, by
taking the conjunction of all atomic constraints c of i0 such that i1 v c. The resulting definition clause
computed by the generalization function Gen is the following one:

9. new3(I,J,N,A,Tmp,K) :- J<N-I-1, I≥0, K≥0, J>K, X>Y,
read(A,J,Y), read(A,K,X), val(a,A), val(j,J), val(k,K), loop(I,J,N,A,Tmp,K).

Note that the underlined constraint J≥N-I-2 occurring in definition A has been deleted because it is not
entailed by the integer constraints of clause 8. Then, clause 9 is added to the set Defs of definitions, and
is used for folding clause 7 (see Example 4.4). Then, we begin a new execution of the body of the outer
while-loop of the VCTransf strategy. �

6. Termination and Correctness of VCTransf

In this section we prove that the VCTransf strategy always terminates and preserves the least A-model
semantics.

The following notion is needed to prove the termination of VCTransf .

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 23

Definition 6.1. (Well-binary relation �)
Given any set C, a reflexive, binary relation �⊆ C×C is said to be a well-binary relation (wbr) on C if
for every infinite sequence C1, C2, . . . of elements in C, there exist two integers i and j, such that i < j
and Ci�Cj . A wbr � is downward-finite if for every C∈C, the set {C ′ | C ′ �+ C} is finite, where �+

denotes the transitive closure of �.
It is easy to see that any embedding relation C on clauses is a wbr.
In order to get the termination of VCTransf we assume that there exists a downward-finite wbr�int

on the set of integer constraints, modulo variable renaming, such that the following property holds:
(W) (i0 op i1) �int i0, for all integer constraints i0, i1

where op is the generalization operator which is a parameter of the function Gen . For the generalization
operators we have used in our experiments, such wbr �int exists [29].

The preservation of the least A-model after the VCTransf transformation is guaranteed by general
correctness results for the unfold/fold transformation rules [16, 17].

Theorem 6.2. (i) The VCTransf strategy terminates. (ii) Let program VC ′ be the output of VCTransf
applied to the input program VC . Then, incorrect∈M(VC) iff incorrect∈M(VC ′).

Now let us conclude our bubble-sort-inner example of Section 2. After a few iterations of the body of
the outer while-loop, the VCTransf strategy terminates and produces the following set VC ′ of clauses
(that we list here as they were generated by our automatic VeriMAP verification system [23]):

Program VC ′
incorrect :- A =−1+B−C, D =−1+B−C, E−F ≤−1, G ≥ 0, C ≥ 0, B−G−C ≥ 2,

read(H, D, E), read(H, G, F), val(a, H), val(j, A), val(k, G), new1(C, A, B, H, I, G).
new1(A, B, C, D, E, F) :- G ≥ F+1, H ≥ F+1, A =−2+C−G, B = 1+G, I = 1+G, H = 1+G,

J = 1+G, K = 1+G, F−G ≤ 0, L−E ≤−1, F ≥ 0, C−G ≥ 2, M−E ≥ 1,
read(N, F, M), read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(a, N), val(j, G), val(k, F), val(j, B), new2(A, G, C, N, P, F).

new1(A, B, C, D, E, F) :- G ≥ F+1, A =−2+C−G, B = 1+G, H = 1+G, I = 1+G, F−G ≤ 0,
F ≥ 0, C−G ≥ 2, J−K ≥ 1, K−L ≥ 0, read(D, G, L), read(D, F, J), read(D, H, K),
val(a, D), val(j, G), val(k, F), val(j, B), new2(A, G, C, D, E, F).

new2(A, B, C, D, E, F) :- G ≥ F+1, H ≥ F+1, B = 1+G, I = 1+G, H = 1+G, J = 1+G,
K = 1+G, A−C+G ≤−2, F−G ≤ 0, L−E ≤−1, A ≥ 0, F ≥ 0, A−C+G ≥−3, M−E ≥ 1,
read(N, F, M), read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(a, N), val(j, G), val(k, F), val(j, B), new3(A, G, C, N, P, F).

new2(A, B, C, D, E, F) :- G ≥ F+1, B = 1+G, H = 1+G, I = 1+G, A−C+G ≤−2, F−G ≤ 0,
A ≥ 0, F ≥ 0, A−C+G ≥−3, J−K ≥ 1, K−L ≥ 0, read(D, G, L), read(D, F, J),
read(D, H, K), val(a, D), val(j, G), val(k, F), val(j, B), new3(A, G, C, D, E, F).

new3(A, B, C, D, E, F) :- G ≥ F+1, H ≥ F+1, B = 1+G, I = 1+G, H = 1+G, J = 1+G,
K = 1+G, A−C+G ≤−2, F−G ≤ 0, L−E ≤−1, A ≥ 0, F ≥ 0, M−E ≥ 1, read(N, F, M),
read(N, K, L), read(N, G, E), write(O, H, E, D), write(N, G, L, O),
val(a, N), val(j, G), val(k, F), val(j, B), new3(A, G, C, N, P, F).

new3(A, B, C, D, E, F) :-G ≥ F+1, B = 1+G, H = 1+G, I = 1+G, A−C+G ≤−2, F−G ≤ 0,
A ≥ 0, F ≥ 0, J−K ≥ 1, K−L ≥ 0, read(D, G, L), read(D, F, J), read(D, H, K),
val(a, D), val(j, G), val(k, F), val(j, B), new3(A, G, C, D, E, F).

24 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

Since this set contains no constrained facts, by performing the REMOVAL OF USELESS CLAUSES we re-
move all clauses from VC ′ and the VCTransf strategy outputs the empty program. Thus, incorrect 6∈
M(VC ′) and we conclude that the program bubble-sort-inner is correct with respect to the given ϕinit

and ϕerror formulas.

7. Experimental Evaluation

Now we present the results of the experimental evaluation we have performed for assessing the verifi-
cation techniques presented in this paper. We also compare our results with those obtained by the Z3
system1, which is one of the most popular SMT solvers for Horn clauses with constraints [12].

Implementation. We have implemented our techniques using the VeriMAP verification system [23],
a software model checker based on CLP program transformation and written in SICStus Prolog2. Our
prototype implementation consists of three modules. (1) A front-end module, based on the C Interme-
diate Language (CIL) [32], that compiles a verification problem into a set of Horn clauses (including
the clauses for the predicates at, initConf, and errorConf) using a custom implementation of the
CIL visitor pattern. (2) A back-end module, based on VeriMAP, realizing the transformation strategy
VCTransf (see Section 3). (3) A module that translates a CLP program on integers and integer arrays
into the input format for the SMT solver Z3.

In the back-end module the Repl function of the VCTransf strategy has been implemented by using
the chr module3 of SICStus Prolog. Using that module we have computed from an input constraint d,
the set {d1, . . . , dn} of output constraints, which are the constraints occurring in all successful final states
derived from the initial state 〈d, true, true〉 by the CHR∨ rules of program Arr.

Verification problems. We have considered a benchmark set of 88 verification problems written in
the programming language C (63 of which are safe and the remaining 25 are unsafe). They have been
taken from the TACAS Software Verification Competition (65 problems) and from the literature [33,
34, 35, 36, 37] (the source code of those problems is available at http://map.uniroma2.it/smc/
array-chr). The benchmark set consists of programs that make use of: (i) if-then-else commands,
(ii) sequential composition of loops (for instance, the array initialization program and the array copy
program), and (iii) nested loops (for instance, the bubble sort program and the selection sort program).
In our verification tasks we were able to prove correctness of the selection sort program and to prove
incorrectness of faulty versions of the selection sort and bubble sort programs.

Technical resources. The experiments have been performed on an Intel Xeon CPU E5-2640 2.00GHz
processor with 64GB of memory under the GNU Linux operating system CentOS 7 (64 bit).

Experimental setup. Our experimental evaluation consists of the following four processes: (i) G ,
(ii) GZ , (iii) GT , and (iv) GTZ , that are defined as follows.

(i) G =VCGen . In this process we have applied the VCGen strategy (see Figure 5) to the benchmark
set, thereby generating the verification conditions VC for the problems in that benchmark. VCGen
terminated for every problem in that benchmark within 0.3 s, taking an average time of 0.1 s.

1https://github.com/Z3Prover
2The prototype is available at: http://map.uniroma2.it/smc/array-chr/VeriMAP-FI16-linux_x86_64.tar.gz
3https://sicstus.sics.se/sicstus/docs/3.12.5/html/sicstus/CHR.html

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 25

(ii) GZ =VCGen ; Z3. In this process, after the execution of the VCGen strategy, we have run Z3 using
the Duality engine4 on the verification conditions VC generated by VCGen .

(iii) GT =VCGen ;VCTransf . In this process, after the execution of the VCGen strategy, we have
executed the VCTransf strategy (see Figure 8) using as input the verification conditions VC generated
by VCGen .

(iv) GTZ =VCGen ;VCTransf ; Z3. In this process, after the execution of the VCGen and VCTransf
strategies, as in Process GT , we have run the SMT solver Z3 on the verification conditions VC ′ for which
satisfiability or unsatisfiability was not proved at the end of the VCTransf strategy.

We have used a time limit of 5 minutes for the execution of the individual phases of the processes,
that is, the VCGen strategy, the VCTransf strategy, and the Z3 solver.

During the application of the VCTransf in Processes GT and GTZ we have also considered, be-
sides the decorated read constraints (see Definition 5.1), also fully decorated read constraints, in the
sense that, for every read(A, I, V) constraint, (i) we have added val constraints, not only for the ar-
ray variable A and the index variable I, but also for the value variable V (using the algorithm of Fig-
ure 6 for B∈{A, I, V}, rather than B∈{A, I}), and (ii) we have considered a read atom of the form
read(Aa, IS, VT), where, besides the decorations for a and S, we have the decoration T that is defined by
considering the val constraints for the value variable V, in the same way that the decoration S has been
defined (see Definition 5.1) by considering the val constraints for the index variable I.

We have also used the generalization function Gen with different generalization operators that com-
bine the widening and convex hull operators together with various embedding relations. By abuse of
language, we will refer to these different versions of Gen as different generalization functions.

Different embedding relations are obtained: (1) by selecting different sets of variable identifiers for
the introduction of the val constraints, and (2) by using different ways of comparing sets of identifiers. In
particular, we have considered the following eight generalization functions: (i) GenW,I ,e, (ii) GenW,I ,≡,
(iii) GenW,A,e, (iv) GenW,A,≡, (v) GenH ,I ,e, (vi) GenH ,I ,≡, (vii) GenH ,A,e, and (viii) GenH ,A,≡,
where the subscripts should be understood as follows.

The first subscript denotes the generalization operator used: W stands for the widening opera-
tor, and H stands for the widening-and-convex-hull operator [22, 29, 31]. The second subscript de-
notes the selected sets of identifiers for defining the embedding relation C between decorated (or fully
decorated) read constraints (see Definition 5.2). In particular, I refers to the array indexes, so that
read(Aa, KS1, U) C read(Ba, HS2, V) iff S1C S2, and A refers to the array indexes and array values, so
that read(Aa, KS1, UT1)C read(Ba, HS2, VT2) iff (S1C S2) ∧ (T1C T2). The third subscript denotes the
embedding relation C that we have used: it is either e or ≡ (see Section 5).

Results. The results of our experiments are summarized in Tables 1 and 2 below. In Table 1 we report the
results we have obtained by executing of Processes G , GZ , GT , and GTZ on the whole benchmark set.
In particular, we report: (i) the verification precision, that is, the number of problems which were solved
within the time limit, and (ii) the average time taken for solving any of them. For the Processes GT
and GTZ , we report in different columns the results obtained when applying the VCTransf strategy
using the generalization function Gen , with the different parameters specified in the table.

For Process GT , the precision obtained when VeriMAP uses the widening-and-convex-hull opera-
tor H is considerably higher than the precision obtained for Process GZ (up to 74 vs. 49). The situation
is reversed when VeriMAP uses the widening operator W (down to 31 vs. 49).
4http://research.microsoft.com/en-us/projects/duality/default.aspx

26 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

(1) G =VCGen

average time 0.1

(2) GZ = VCGen ; Z3

verification precision 49
average time 3.5

(3) GT =VCGen ; VCTransf
Gen function parameters H , I ,e H , I ,≡ H ,A,e H ,A,≡ W, I ,e W, I ,≡ W,A,e W,A,≡
verification precision 60 70 74 71 34 35 34 31
average time 7.8 18.3 5.3 23.6 3.8 10.4 21.1 24.0

(4) GTZ = VCGen ; VCTransf ; Z3

Gen function parameters H , I ,e H , I ,≡ H ,A,e H ,A,≡ W, I ,e W, I ,≡ W,A,e W,A,≡
verification precision 67 75 78 75 76 72 80 67
average time 16.8 22.0 8.3 26.3 3.8 7.7 20.2 16.1

Table 1. Verification results using VeriMAP and Z3 on a set of 88 verification problems: the verification precision
(that is, the number of solved problems) and the average time. Times are in seconds.

For Process GTZ , we obtain a precision which is always higher than the precision obtained for Pro-
cess GZ (both for safe and unsafe programs), whatever generalization operator is used by the VCTransf
strategy (up to 80 vs. 49). This increase of precision is an experimental evidence that the propagation
of constraints from the error property throughout the verification conditions performed by VCTransf ,
often improves the effectiveness of the SMT solver.

In terms of precision, for Process GTZ the generalization functions based on the widening operator
are competitive with those based on the widening-and-convex-hull operator. Actually, the most precise
generalization function is GenW,A,e (80 problems solved out of 88), immediately followed by GenH ,A,e

(78 problems solved), and GenW ,I ,e (76 problems solved).
When we use the ≡ operator for comparing sets of identifiers, the verification time is almost always

higher than the verification time required when we use the e operator instead (the other parameters being
left unchanged). Thus, while the≡ operator can in principle be more precise than the e operator because
≡ triggers generalizations less often than e, it may be the case in practice that ≡ introduces too many
definitions and this may prevent the verification process from completing within the time limit.

A similar argument holds when comparing generalization functions based on the set A of identifiers
with those based on the set I of identifiers. However, in this case, the increase of verification time
generally does not deteriorate the precision of A which is higher than that of I (except for the cases
when we use the generalization functions GenW,A,≡ and GenW,I ,≡).

In order to assess the relative performance of VeriMAP and Z3, we have compared the time they take
on those problems of the benchmark set which can be solved by both systems. In Table 2 we report the
results of this comparison.

Row (A) of Table 2 reports: (i) the number of problems which were solved by both Process GZ and
Process GT , with three distinct sets of parameters for the generalization function Gen (see Columns 1–3),
and (ii) the number of problems which were solved by both Process GZ and Process GTZ , with the same

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 27

three sets of parameters (see Columns 4–6, respectively).

The three generalization functions used by the VCTransf strategy during Processes GT and GTZ ,
are: (i) the most precise generalization function for Process GT which is GenH ,A,e (see entry 74 in
Table 1), (ii) the most precise generalization function for Process GTZ which is GenW,A,e (see entry 80
in Table 1), and (iii) the generalization function with the lowest average time which is GenW,I ,e, both
for GT and GTZ (see the two entries 3.8 in Table 1).

Row (B) of Table 2 reports the average verification time required by Processes GZ , GT , and GTZ
when solving the problems of Row (A).

1 2 3 4 5 6

Gen function
parameters

GZ

−

GT

H ,A,e

GZ

−

GT

W,A,e

GZ

−

GT

W, I ,e

GZ

−

GTZ

H ,A,e

GZ

−

GTZ

W,A,e

GZ

−

GTZ

W, I ,e

(A) problems solved
by both systems 42 26 26 44 45 46

(B) average time 3.4 3.9 3.5 27.2 3.1 4.6 3.8 9.2 3.7 16.7 3.7 3.1

Table 2. Results using VeriMAP and Z3 on sets of problems solved by both systems. We used Processes GZ ,
GT , and GTZ , and different parameters for the generalization function Gen . Times are in seconds.

We observe that when the VCTransf strategy is applied by using GenW,A,e, which is the most
precise generalization function for Process GTZ , the average time is higher than that of Process GZ
(see the two entries of Row (B) and Column 5).

A good trade-off between the number of solved problems and average verification time is provided
by the use of GenH ,A,e (see the two entries of Row (B) and Column 1). In this case Process GT
has an average time that is very close to that of Process GZ . When considering Process GTZ , the
use of GenW,I ,e determines an average time that is even lower than that of Process GZ (see the two
entries of Row (B) and Column 6). Finally, note that there are some problems that are verified by Z3
using Process GZ , but cannot be verified, within the time limit, by Z3 after applying the VCTransf
strategy, that is, using Process GTZ (see entry 49 for the verification precision of Process GZ in Table 1
and entry 46 in Column 6 of Table 2). In general, due to well known decidability limitations, it is
impossible to provide a formal characterization of when the VCTransf strategy is guaranteed to improve
the effectiveness of a given solver. In practice, it may be hard to predict the cases where there is a negative
impact of VCTransf on the Z3 solver, due to the intricacies of the interaction of the transformation with
the interpolation-based abstraction refinement heuristic implemented by Z3.

In summary, from our experimental evaluation we may conclude that the program transformation
technique implemented in the VeriMAP system is complementary to the fixpoint-based Horn clause
solving techniques of Z3 and, when VeriMAP is combined with Z3, there is a substantial synergic ef-
fect that results in an increase of the verification precision at the expenses of an acceptable increase of
verification time.

28 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

8. Related Work and Conclusions
Already in the Introduction we mentioned some CLP-based program verification methods. Here we
briefly recall other methods, not based on CLP, for the verification of array programs.

Some of these methods use abstract interpretation. In one such method [36], which is based on
a previous work [38], Halbwachs et al. show how invariants can be discovered by: (i) partitioning the
arrays into symbolic slices, and then (ii) associating an abstract variable with each slice. A similar ap-
proach is followed by Cousot et al. who present a scalable framework for the automatic analysis of array
programs [34]. Flanagan et al. [39] and Lahiri et al. [40] present a predicate abstraction technique for
inferring universally quantified properties of array elements. Gulavani et al. present a similar technique
which uses template-based quantified abstract domains [41]. Seghir et al. use a backward reachabil-
ity analysis, based on predicate abstraction and abstraction refinement, for the verification of assertions
which are universally quantified over array indexes [42].

The methods based on abstract interpretation construct over-approximations, that is, invariants im-
plied by the program executions. These methods have the advantage of being quite efficient, because
they fix in advance a finite set of basic assertions from which the invariants can be constructed. However,
for this same reason, these methods may lack flexibility as the abstraction should be re-designed when
verification fails.

Also theorem provers have been applied to the derivation of invariants and the proof of the verification
conditions once they have been derived. In particular, Bradley et al. [21] present a satisfiability decision
procedure for a decidable fragment of the theory of arrays. That fragment is expressive enough to prove
arrays properties such as sortedness. Other authors [43, 44, 45] present various techniques that use
theorem proving for generating array invariants. Theorem proving techniques for program verification
based on Satisfiability Modulo Theories (SMT) have also been studied [37, 46, 47]. The approaches based
on theorem proving and SMT are more flexible with respect to those based on abstract interpretation,
because no finite set of assertions is fixed in advance and, instead, the suitable assertions needed for the
proofs can be generated on demand.

Although the approach based on CLP program transformation shares many ideas and techniques with
abstract interpretation and automated theorem proving, we believe that it offers a higher degree of flex-
ibility and parametricity. Indeed, the transformation-based method for the generation of the verification
conditions and their proof, is very much independent of: (i) the imperative program, (ii) the operational
semantics of the language in which the program is written, and (iii) the property to be verified. Thus, one
can easily extend our technique to programs written in an imperative language with additional features
(for instance, exception handling) as long as a CLP interpreter the operational semantics is provided for
that language. Some experiments on the generation of verification conditions by specialization of CLP
interpreters handling various language features have been presented in De Angelis et al. [48].

The use of CHR∨ rules further enhances the flexibility of our transformation-based approach because
CHR∨ rules transform the constraints that represent operations on the data structures (such as the read
and write operations in the case of arrays), while the unfold/fold rules transform the non-constraint atoms
of the CLP programs. The experimental results we have reported in this paper, demonstrate that the
combination of the two kinds of transformation rules, those for constraints and those for non-constraint
atoms, is a promising, powerful technique for proving program properties.

As future work we plan to extend our transformation-based method to the verification of programs
which manipulate dynamic data structures such as lists, trees, and heaps. To this aim, for instance, we

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 29

may combine the CHR∨ axiomatization of heaps proposed by Duck et al. [8] with the generalization
functions based on widening and convex hull considered in this paper.

Acknowledgements

We would like to thank the anonymous referees of CILC 2014 and of the Special Issue of Fundamenta In-
formaticae for their helpful comments and constructive criticism. This work has been partially supported
by the National Group of Computing Science (GNCS-INDAM).

References

[1] J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs through analysis of constraint
logic programs. In Proc. SAS ’98, LNCS 1503, pages 246–261. Springer, 1998. doi:10.1007%2F3-540-
49727-7_15.

[2] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Program verification via iterated specialization.
Science of Computer Programming, 95, Part 2:149–175, 2014. doi:10.1016/j.scico.2014.05.017.

[3] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. The MIT Press, Cam-
bridge, Massachusetts. 1993. ISBN 0-262-23169-7.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction of approximation of fixpoints. In Proc. POPL ’77, pages 238–252. ACM, 1977.
doi:10.1145/512950.512973.

[5] E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java bytecode using analysis
and transformation of logic programs. In Proc. PADL ’07, LNCS 4354, pages 124–139. Springer, 2007.
doi:10.1007/978-3-540-69611-7_8.

[6] B. Kafle and J. P. Gallagher. Constraint Specialisation in Horn Clause Verification. In Proc. PEPM ’15,
pages 85–90. ACM, 2015. doi:10.1145/2678015.2682544.

[7] M. Méndez-Lojo, J. A. Navas, and M. V. Hermenegildo. A flexible, (C)LP-based approach to the anal-
ysis of object-oriented programs. In Proc. LOPSTR ’07, LNCS 4915, pages 154–168. Springer, 2008.
doi:10.1007/978-3-540-78769-3_11.

[8] G. J. Duck, J. Jaffar, and N. C. H. Koh. Constraint-based program reasoning with heaps and separation. In
Proc. CP ’13, LNCS 8124, pages 282–298. Springer, 2013. doi:10.1007/978-3-642-40627-0_24.

[9] C. Flanagan. Automatic software model checking via constraint logic. Science of Computer Programming,
50(1–3):253–270, 2004. doi:10.1016/j.scico.2004.01.006.

[10] J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal. In Proc. CP ’09, LNCS 5732,
pages 454–469. Springer, 2009. doi:10.1007/978-3-642-04244-7_37.

[11] N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability modulo theories.
In Proc. SMT-COMP ’12, EPiC Series, vol. 20, pages 3–11, 2013. http://www.easychair.org/

publications/download/Program_Verification_as_Satisfiability_Modulo_Theories

[12] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. TACAS ’08, LNCS 4963, pages
337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

30 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

[13] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko. HSF(C): A software
verifier based on Horn clauses. In Proc. TACAS ’12, LNCS 7214, pages 549–551. Springer, 2012.
doi:10.1007%2F978-3-642-28756-5_46.

[14] A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model checking with abstraction
refinement. In Proc. PADL ’07, LNCS 4354, pages 245–259. Springer, 2007. doi:10.1007/978-3-540-69611-
7_16.

[15] P. Rümmer, H. Hojjat, and V. Kuncak. Disjunctive interpolants for Horn-clause verification. In Proc. CAV ’13,
LNCS 8044, pages 347–363. Springer, 2013. doi:10.1007/978-3-642-39799-8_24.

[16] S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer Science, 166:101–146,
1996. doi:10.1016/0304-3975(95)00148-4.

[17] F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally stratified constraint logic pro-
grams. In K.-K. Lau and M. Bruynooghe, editors, Program Development in Computational Logic, LNCS
3049, pages 292–340. Springer, 2004. doi:10.1007/978-3-540-25951-0_10.

[18] A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and techniques. Journal of
Logic Programming, 19,20:261–320, 1994. doi:10.1016/0743-1066(94)90028-0.

[19] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. A rule-based verification strategy for array
manipulating programs. Fundamenta Informaticae, 140(3-4):329–355, 2015. doi:10.3233/FI-2015-1257.

[20] T. Frühwirth. Theory and practice of Constraint Handling Rules. Journal of Logic Programming, 37(1–3):
95–138, Oct 1998. doi:10.1016/S0743-1066(98)10005-5.

[21] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about arrays? In Proc. VMCAI ’06,
LNCS 3855, pages 427–442. Springer, 2006. doi:10.1007/11609773_28.

[22] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In Proc.
POPL ’78, pages 84–96. ACM, 1978. doi:10.1145/512760.512770.

[23] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP: A tool for verifying programs through
transformations. In Proc. TACAS ’14, LNCS 8413, pages 568–574. Springer, 2014. Available at: http:

//www.map.uniroma2.it/VeriMAP. doi:10.1007%2F978-3-642-54862-8_47.

[24] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second Edition. ISBN
3-540-18199-7.

[25] J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic programming. Journal of
Logic Programming, 37:1–46, 1998. doi:10.1016/S0743-1066(98)10002-X.

[26] C. J. Reynolds. Theories of Programming Languages. Cambridge University Press, 1998. ISBN
9780521594141.

[27] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Proving correctness of imperative programs by
linearizing constrained Horn clauses. Theory and Practice of Logic Programming, 15(4-5):635–650, 2015.
doi:10.1017/S1471068415000289.

[28] S. Abdennadher and H. Schütz. CHR∨: A flexible query language. In Proc. FQAS ’98, LNCS 1495, pages
1–14. Springer, 1998. doi:10.1007/BFb0055987.

[29] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies for the verifica-
tion of infinite state systems. Theory and Practice of Logic Programming, 13(2):175–199, 2013.
doi:10.1017/S1471068411000627.

[30] M. Leuschel. On the power of homeomorphic embedding for online termination. In Proc. SAS ’98, LNCS
1503, pages 230–245. Springer, 1998. doi: 10.1007/3-540-49727-7_14.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 31

[31] J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP programs. In Proc.
LOPSTR ’02, LNCS 2664, pages 90–108. Springer, 2003. doi:10.1007/3-540-45013-0_8.

[32] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis and
transformation of C programs. In Proc. CC ’02, LNCS 2304, pages 209–265. Springer, 2002. doi:10.1007/3-
540-45937-5_16.

[33] N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified Horn clauses. In Proc.
SAS ’13, LNCS 7935, pages 105–125. Springer, 2013. doi:10.1007/978-3-642-38856-9_8.

[34] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully automatic and scalable
array content analysis. In Proc. POPL ’11, pages 105–118. ACM, 2011. doi:10.1145/1926385.1926399.

[35] I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak updates. In Proc. ESOP ’10, LNCS
6012, pages 246–266. Springer, 2010. doi:10.1007/978-3-642-11957-6_14.

[36] N. Halbwachs and M. Péron. Discovering properties about arrays in simple programs. In Proc. PLDI ’08,
pages 339–348. ACM, 2008. doi:10.1145/1379022.1375623.

[37] D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant generation. In Proc.
VMCAI ’13, LNCS 7737, pages 169–188. Springer, 2013. doi:10.1007/978-3-642-35873-9_12.

[38] D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array operations. In Proc.
POPL ’05, pages 338–350. ACM, 2005. doi:10.1145/1040305.1040333.

[39] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In Proc. POPL ’02, pages 191–
202. ACM, 2002. doi:10.1145/565816.503291.

[40] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates. ACM Transactions on Compu-
tational Logic, 9(1), 2007. doi:10.1145/1297658.1297662.

[41] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically refining abstract interpreta-
tions. In Proc. TACAS ’08, LNCS 4963, pages 443–458. Springer, 2008. doi:10.1007%2F978-3-540-78800-
3_33.

[42] M. N. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quantified array assertions. In Proc.
SAS ’09, LNCS 5673, pages 3–18. Springer, 2009. doi:10.1007/978-3-642-03237-0_3.

[43] R. Jhala and K. L. McMillan. Array abstractions from proofs. In Proc. CAV ’07, LNCS 4590, pages 193–206.
Springer, 2007. doi:10.1007/978-3-540-73368-3_23.

[44] L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using a theorem prover. In
Proc. FASE ’09, LNCS 5503, pages 470–485. Springer, 2009. doi:10.1007/978-3-642-00593-0_33.

[45] K. L. McMillan. Quantified invariant generation using an interpolating saturation prover. In Proc. TACAS ’08,
LNCS 4963, pages 413–427. Springer, 2008. doi:10.1007/978-3-540-78800-3_31.

[46] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI: SMT-based abstraction for
arrays with interpolants. In Proc. CAV ’12, LNCS 7358, pages 679–685. Springer, 2012. doi:10.1007/978-3-
642-31424-7_49.

[47] F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array properties. In Proc. TACAS ’14,
LNCS 8413, pages 15–30. Springer, 2014. doi:10.1007/978-3-642-54862-8_2.

[48] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Semantics-based generation of ver-
ification conditions by program specialization. In Proc. PPDP ’15, pages 91–102. ACM, 2015.
doi:10.1145/2790449.2790529.

[49] G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems. Journal of
ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.

32 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

Appendix: Proofs

Proof of Proposition 4.1

Proof:
Proof of Point (α).

Let L(Arr) be the set of logical meanings of the rules ac, nac, and row of program Arr. Let CT be
the theory of the integer constraints and syntactic equalities. Let T be any computation tree for Arr and
the initial state 〈d, true, true〉, and let {〈true, u1, b1〉, . . . , 〈true, un, bn〉} be the set of all successful
final states of any computation tree that can be constructed for program Arr and 〈d,true,true〉.

Now for each state 〈g, u, b〉 in T we have the following two facts.
(i) If 〈g′, u′, b′〉 is obtained from 〈g, u, b〉 by an application of any of the rules T1, or T2, or T3, then

L(Arr) ∪ CT |= ∀((g ∧ u ∧ b)↔ (g′ ∧ u′ ∧ b′)).
(ii) If 〈g′, u′, b′〉 and 〈g′′, u′′, b′′〉 are obtained from 〈g, u, b〉 by an application of the rule T4, then

L(Arr) ∪ CT |= ∀((g ∧ u ∧ b)↔ ((g′ ∧ u′ ∧ b′) ∨ (g′′ ∧ u′′ ∧ b′′))).
Thus, by transitivity of equivalence, L(Arr)∪CT |= ∀(d↔ (d1∨ . . .∨dn)). SinceA |= L(Arr)∪CT ,
we get Point (α).

Proof of Point (β).
In this proof we view the construction of a computation tree by using rules T1–T4 as a process of

rewriting multisets of states, rather than states. In particular, the initial state is rewritten, possibly in
several steps, into the multiset of the leaf states of the computation tree. Note that we consider multisets,
rather than sets, of states because we want to prove a one-to-one correspondence between the successful
final states of any two computation trees.

Let us first introduce the following definition.

Definition 8.1. (Equivalence of Multisets of States up to CT)
We say that two multisets S and S′ of states are equivalent up to CT if the following conditions hold
(curly brackets denote multisets):
– S is of the form {〈g1, u1, b1〉, . . . , 〈gn, un, bn〉} ∪ F , where F is a multiset of failed states,
– S′ is of the form (modulo reordering of states) {〈g′1, u′1, b′1〉, . . . , 〈g′n, u′n, b′n〉} ∪ F ′, where F ′ is a

multiset of failed states, and
– for i=1, . . . , n, (1) gi = g′i, (2) ui = u′i, and (3) CT |= bi ↔ b′i.

In order to prove Point (β), we have to show that, for any two computation trees with the same initial
state, the multisets of their leaf states are equivalent up to CT .

The proof of Point (β) is based on the fact that rules T1, T2, T3, and T4 are confluent modulo
equivalence up to CT in the following sense:

if a multiset of states S can be rewritten into a multiset of states S1 by a (possibly empty) sequence
of applications of the rules, and a multiset S′ equivalent to S up to CT , can be rewritten into a
multiset of states S2 by a (possibly empty) sequence of applications of the rules,

then there exist multisets of states S3 and S4 and (possibly empty) sequences σ1 and σ2 of applica-
tions of the rules such that: (i) S1 can be rewritten via σ1 into S3, (ii) S2 can be rewritten via σ2
into S4, and (iii) S3 is equivalent to S4 up to CT .

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 33

Since by Proposition 4.2 Arr terminates (that is, the rewriting relation 7→ defined by the rules T1–T4
using program Arr, is a noetherian relation), in order to prove the property of confluence modulo equiv-
alence up to CT for the rules T1–T4 using program Arr, it is enough to show the property of local
confluence modulo equivalence up to CT (this is a consequence of Lemma 2.7 of a paper by Huet [49]).
In our case this local confluence property reduces to the following properties (A) and (B):
(A) if a multiset S of states is rewritten into a multiset S1 of states by a single application of a rule, and S

is rewritten into a multiset S2 of states by a single application of a rule,
then there exist multisets of states S3 and S4 and (possibly empty) sequences σ1 and σ2 of applica-

tions of the rules such that: (i) S1 can be rewritten via σ1 into S3, (ii) S2 can be rewritten via σ2
into S4, and (iii) S3 is equivalent to S4 up to CT , and

(B) if a multiset S of states is rewritten into a multiset S1 of states by a single application of a rule, and
S is equivalent up to CT to a multiset S2,

then there exist multisets of states S3 and S4 and (possibly empty) sequences σ1 and σ2 of applica-
tions of the rules such that: (i) S1 can be rewritten via σ1 into S3, (ii) S2 can be rewritten via σ2
into S4, and (iii) S3 is equivalent to S4 up to CT .

Before proving Properties (A) and (B), we state the following failure preservation property, called FP,
which we will need below (the easy proof of this property is left to the reader):
(FP) any of the rules T1–T4 using program Arr, rewrites a failed state into one failed state or two failed

states.
Now let us prove Property (A).
If the redexes of the two applications of the rules which produce the multisets S1 and S2 occur in two

distinct states of S, then property (A) trivially holds. Thus, we may restrict ourselves to the case where
the two applications of the rules have redexes occurring in the same state of S. In this case, in order to
show Property (A), since each rule in {T1, T2, T3, T4} rewrites a single state, it is enough to show the
following instance (A1) of Property (A):
(A1) if a state s is rewritten into a multiset S1 of states by a single application of a rule, and s is rewritten

into a multiset S2 of states by a single application of a rule,
then there exist (possibly empty) sequences of applications of the rules such that S1 and S2 are

rewritten into multisets S3 and S4 of states, respectively, and S3 is equivalent to S4 up to CT.
Note that any multiset obtained from a state s by a single application of a rule in {T1, T2, T3, T4}, has
at most two states.

We will only consider the following two cases of overlapping redexes in the same state. The other
cases have proofs that are all much simpler than the one of Case 2 and are left to the reader.
(Case 1: redex of rule T4 and redex of rule T3-nac)

Suppose that s is rewritten into two new states s1 and s2 by using T4, and s is rewritten into s3 by
using T3. Suppose also that s is a state of the form 〈(g1 ∨ g2) ∧ g3, u, b〉, and by rule T4 we get the two
states s1: 〈g1 ∧ g3, u, b〉 and s2: 〈g2 ∧ g3, u, b〉. Furthermore, suppose that by applying rule T3 to u in s
we get a state of the form s3: 〈Bϑ∧ (g1 ∨ g2)∧ g3, H′ ∧ u, b〉. Now, on one hand, by applying rule T3 to
the two occurrences of u in s1 and s2 we get s4: 〈Bϑ∧g1∧g3, H′∧u, b〉 and s5: 〈Bϑ∧g2∧g3, H′∧u, b〉.
On the other hand, by applying T4 to s3 we get again s4 and s5. Obviously, {s4, s5} is equivalent to
itself up to CT. Thus, Property (A1) holds.

Similar to this Case 1, are the other cases relative to an application of a rule in {T1, T4} and an
application of a rule in {T2, T3}. Indeed, (i) any application of rule T1 or T4 cannot eliminate redexes

34 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

for the application of rule T2 or T3, because: (i.1) the redexes for rules T2 and T3 depend only on
the second component of the states, and (i.2) every application of T1 or T4 does not delete constraints
from the second component, and symmetrically, (ii) any application of rule T2 or T3 cannot eliminate
redexes for the application of rule T1 or T4 because: (ii.1) the redexes for rules T1 and T4 depend only
on the first component of the states, and (ii.2) every application of T2 or T3 adds a constraint to the first
component.

Similar to Case 1, are also the cases relative to the application of two (not necessarily distinct) rules in
{T1, T4}. In all these cases the redexes of the second rule to be applied is preserved after the application
of the first rule.

(Case 2: redex of rule T2-row and redex of rule T3-nac)
Let us consider a state s of the form 〈g, u, b〉, where the constraint u has the subconjunction u′ =

‘write(A,I,U,B), read(B,J,V), read(B,K,W)’, and CT |= b→ V=/W. By keeping only the relevant
information and forgetting about goal g, because it is irrelevant in our proof, we will write a state of
that form as: true || u′ || V=/W. We will also feel free to write ‘c’, instead of the conjunction ‘true, c’.
In u′ the redex ‘write(A,I,U,B), read(B,J,V)’ for rule T2-row overlaps (as shown by the above
underlinings) with the redex ‘read(B,J,V), read(B,K,W)’ for rule T3-nac.
From state s by applying once T2-row, we get the following state:

(r) (I=J, U=V) ∨ (I=/J, read(A,J,V)) || write(A,I,U,B), read(B,K,W) || V=/W
From state s by applying once T3-nac, we get the state:

(n) J=/K || write(A,I,U,B), read(B,J,V), read(B,K,W) || V=/W
Now we have to show that by applying a sequence of rules in T1–T4 starting from state (r), we get a
multiset of states that are equivalent up to CT to a multiset of states that can be obtained by applying a
sequence of rules in T1–T4 starting from state (n).
From (r) by applying T4, we get the states:

(r1) true || write(A,I,U,B), read(B,K,W) || I=J, U=V, V=/W
(r2) true || write(A,I,U,B), read(B,K,W), read(A,J,V) || I=/J, V=/W

From (r1) by applying T2-row, we get the state:

(r1∨) (I=K, U=W) ∨ (I=/K, read(A,K,W)) || write(A,I,U,B) || I=J, U=V, V=/W
from which, by applying T4 and a sequence of T1 (so to move all the integer constraints to the third
components of the states), we get the following two states (note that state (r11) is a failed state due to the
underlined constraints):

(r11) true || write(A,I,U,B) || I=K, U=W, I=J, U=V, V=/W (failed state)

(r12) true || write(A,I,U,B), read(A,K,W) || I=/K, I=J, U=V, V=/W (1)

From (r2) by applying T2-row to the underlined constraints, we get the state:

(r2∨) (I=K, U=W) ∨ (I=/K, read(A,K,W)) || write(A,I,U,B), read(A,J,V) || I=/J, V=/W
from which, by applying T4 and a sequence of T1 (so to move all the integer constraints to the third
components of the states), we get the following two states:

(r21) true || write(A,I,U,B), read(A,J,V) || I=K, U=W, I=/J, V=/W (2)

(r22) true || write(A,I,U,B), read(A,J,V), read(A,K,W) || I=/K, I=/J, V=/W
From (r22) by applying T3-nac to the underlined constraints, we get the state:

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 35

(r221) true || write(A,I,U,B), read(A,J,V), read(A,K,W) || J=/K, I=/K, I=/J, V=/W (3)

Now we start the application of the rules from state (n). If we apply T2-row from (n), we get the state:

(n∨) J=/K, ((I=J, U=V) ∨ (I=/J, read(A,J,V))) || write(A,I,U,B), read(B,K,W) || V=/W
from which, by applying T4 and a sequence of T1 (so to move all the integer constraints to the third
components of the states), we get the following two states:

(n1) true || write(A,I,U,B), read(B,K,W) || J=/K, I=J, U=V, V=/W
(n2) true || write(A,I,U,B), read(B,K,W), read(A,J,V) || J=/K, I=/J, V=/W

From (n1) by applying T2-row, we get the state:

(n1∨) (I=K, U=W) ∨ (I=/K, read(A,K,W)) || write(A,I,U,B) || J=/K, I=J, U=V, V=/W
from which, by applying T4 and a sequence of T1 (so to move all the integer constraints to the third
components of the states), we get the following two states (note that state (n11) is a failed state due to
the underlined constraints):

(n11) true || write(A,I,U,B) || I=K, U=W, J=/K, I=J, U=V, V=/W (failed state)

(n12) true || write(A,I,U,B), read(A,K,W) || I=/K, J=/K, I=J, U=V, V=/W (1′)

From (n2) by applying T2-row, we get the state:

(n2∨) (I=K, U=W)∨ (I=/K, read(A,K,W)) || write(A,I,U,B), read(A,J,V) || J=/K, I=/J, V=/W
from which, by applying T4 and a sequence of T1 (so to move all the integer constraints to the third
components of the states), we get the following two states:

(n21) true || write(A,I,U,B), read(A,J,V) || I=K, U=W, J=/K, I=/J, V=/W (2′)

(n22) true || write(A,I,U,B), read(A,J,V), read(A,K,W) || J=/K, I=/K, I=/J, V=/W (3′)

At this point, from state (r) we have derived the non-failed states (1), (2), and (3), while from state (n)
we have derived the non-failed states (1′), (2′), and (3′).

Now, for k= 1, 2, 3, the first two components of the states (k) and (k′) are equal, and for the third
components, we have that: CT |= (k)3 ↔ (k′)3, where CT is the theory of the integer constraints
and syntactic identities, and by (k)3 and (k′)3 we indeed denote the integer constraint which is the third
component of the states (k) and (k′), respectively. In particular, we have that: CT |= (1)3 ↔ (1′)3,
because the underlined constraint ‘J=/K’ in (1′) follows from the constraint ‘I=/K, I=J’ in (1′). Similarly,
we have that: CT |= (2)3 ↔ (2′)3, because the underlined constraint ‘J=/K’ in (2′) follows from the
constraint ‘I=K, I=/J’ in (2′).

Thus, the multisets of states {(1), (2), (3)} and {(1′), (2′), (3′)} are equivalent up to CT . This
completes the proof of Case 2.

The other cases relative to the application of two (not necessarily distinct) rules in {T2, T3}, that
is: (i) 〈T2-ac, T2-ac〉, (ii) 〈T2-ac, T3-nac〉, (iii) 〈T2-ac, T2-row〉, (iv) 〈T3-nac, T3-nac〉, and
(v) 〈T2-row, T2-row〉, are all similar (and simpler) to Case 2 and, as already said, their proofs are
left to the reader. Note that symmetry holds, that is, a proof for the pair 〈r, r′〉 of rules is also a proof for
the pair 〈r′, r〉.

This concludes the proof of Property (A1), and also the proof of Property (A).

Now let us prove Property (B).
Since each rule in {T1, T2, T3, T4} rewrites a single state, it is enough to prove the following

instance (B1) of Property (B):

36 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

(B1) if a state s is rewritten into a multiset S1 of states by a single application of a rule, and s is equivalent
up to CT to a state s2,

then there exist multisets of states S3 and S4 and (possibly empty) sequences σ1 and σ2 of applica-
tions of the rules such that: (i) S1 can be rewritten via σ1 into S3, (ii) s2 can be rewritten via σ2
into S4, and (iii) S3 is equivalent to S4 up to CT .

Let s be of the form 〈g, u, b〉 and s2 be of the form 〈g, u, b2〉, where CT |= b↔ b2.
(Case 1). By applying to s any rule in {T1, T2, T3}, we get the multiset S1 is of the form {〈g1, u1, b∧c〉},
for some goals g1, u1, and some (possibly true) integer constraint c. Now, we can apply the same rule
to the state s2 and we get the multiset S4 of the form {〈g1, u1, b2 ∧ c〉}. If we take σ1 to be the empty
sequence, we have that S3 =S1. Since CT |= (b ∧ c) ↔ (b2 ∧ c), we get that S3 and S4 are equivalent
up to CT .
(Case 2). By applying to s rule T4 we have that S1 is of the form {〈g1, u, b〉, 〈g′1, u, b〉}. Now by
applying rule T4 to the state s2, we get S4 of the form {〈g1, u, b2〉, 〈g′1, u, b2〉}. If we take σ1 to be the
empty sequence, we have that S3 = S1. Since CT |= b ↔ b2, we have that: (i) 〈g1, u, b〉 is failed iff
〈g1, u, b2〉 is failed and (ii) 〈g′1, u, b〉 is failed iff 〈g′1, u, b2〉. Thus, we get that S3 and S4 are equivalent
up to CT .

This concludes the proof of Property (B1), and also the proof of Property (B).
Having proved Properties (A) and (B), from the termination of program Arr (see Proposition 4.2

whose proof is given below) we get confluence modulo equivalence up to CT of the rules T1–T4, using
program Arr. Thus, for any two computation trees with initial state 〈d,true,true〉, the multisets, say
L1 and L2, of their leaf states are such that: (i) there exist two multisets L3 and L4, with L1 7→∗ L3 and
L2 7→∗ L4, and (ii) L3 and L4 are equivalent up to CT .

When rewriting L1 into L3, only failed states can be rewritten. Thus, by Property (FP) above, L1

and L3 have the same multiset of successful states. For the same reason, also the multisets L2 and L4

have the same multiset of successful states. Since L3 and L4 are equivalent up to CT , we get that L1

and L2 are equivalent up to CT , and Point (β) is proved. ut

Proof of Proposition 4.2

Proof:
We have to show that the rewriting relation defined by the rules T1–T4 using program Arr is a noetherian
relation. We will reason by reductio ad absurdum.

Let us consider an infinite sequence of states generated by applying a sequence σ of transition rules
in {T1, T2, T3, T4} using the CHR∨ rules in Arr. The sequence σ should be of the form (T1∗ (T2+T3)
(T1+T4)∗)ω (here we have used the notation of infinite regular expressions), that is, σ should have an
infinite subsequence of not necessarily contiguous applications of rules in {T2, T3}, because for each
application of either T1 or T4, the size of the first component of a state, strictly decreases. (A suitable
notion of a size for proving this decrease is the number of ∧’s plus the number of ∨’s occurring in the
first component of a state.) Now we show that such an infinite subsequence of applications of rules in
{T2, T3} cannot exist, because, for any n≥ 0, the state generated immediately after an application of
a rule in {T2, T3} is greater, in a well-founded measure, than the state generated immediately after the
next application of a rule in {T2, T3}.

First, we observe that for any sequence of states starting from a state 〈g0, u0, b0〉, generated by
applying any sequence of transition rules in {T1, T2, T3, T4} using a CHR∨ rule in Arr, the set of

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 37

variables in every state of that sequence is vars(〈g0, u0, b0〉). Call this set Var . Let� be the relation
defined on Var×Var as we have indicated immediately before Proposition 4.2.

Let us introduce the following measures for a state s = 〈g, u, b〉 such that vars(s) is Var :
(1) µn(s), which is the number of read constraints in g∧u,
(2) µr(s), which is the sum, for all constraints of the form read(B, ..., ...) in g∧u, of the number of

variables A in Var such that A�∗B, where�∗ denotes the reflexive, transitive closure of�, and
(3) µp(s), which is the number of pairs of distinct read constraints which are available for applying the

rule T2 using the CHR∨ rule nac.
Let us assume that we apply one of the rules in {T2, T3} to a state si = 〈gi, ui, bi〉, thereby deriving
a new state si+1. (Note that any initial state of the form 〈c, true, true〉 is a particular instance of the
state si.) Now, there are three cases.
Case (i): we apply rule T2 using ac. In this case the measure µn(si) decreases and no other application

of a rule in {T1, T2, T3, T4} using a CHR∨ rule in Arr increases this measure.
Case (ii): we apply rule T2 using row. In this case the measure µr(si) decreases and no other appli-

cation of a rule in {T1, T2, T3, T4} using a CHR∨ rule in Arr increases this measure. Indeed, in
this case, if write(A1, I, X, A2) occurs in ui, then a constraint read(A2, J, Y) is replaced by a con-
straint read(A1, J, Y) with A1�+A2. Note also that no other rule application modifies any write

constraint.
Case (iii): we apply rule T3 using nac. In this case the measure µp(si) decreases and no other application

of a rule in {T1, T2, T3, T4} using a CHR∨ rule in Arr increases this measure. Indeed, (1) the
number of new distinct read constraints that can be generated by subsequent applications of the
rule T2 using row, is not greater than µr(si), (2) the Propagation rule cannot be applied to the same
pair of read constraints, and (3) the number of pairs of distinct read constraints is not greater than
µr(si) (µr(si)−1)/2.

Since µn(si)+µp(si)+µr(si) > µn(si+1)+µp(si+1)+µr(si+1), we get the thesis. ut

Proof of Proposition 4.3

Proof:
By Proposition 4.2 it is enough to show that every constraint occurring in a clause derived during the
VCTransf strategy is non-circular.

First, we have to show that all constraints in the set VC of clauses derived by the VCGen strategy
are non-circular. In the CLP program T which is the input for VCGen , a write constraint occurs in
clause 1a only (see Figure 4), and it is non-circular. Conjunctions of two or more write constraints
may be derived by the UNFOLDING phase starting from a definition of the form H :- reach(cf), only
if during this phase we unfold twice or more times a tr atom using clause 1a. The sequence of clauses
generated by the UNFOLDING phase will be of the form:
C1. H :- reach(cf)...
C2. H :- ..., reach(cf1)

C3. H :- ..., tr(cf2,cf1), reach(cf2)

C4. H :- ..., write(S2,...,...,S1), ..., reach(cf2)

Looking at the clauses for reach and tr (clause 1a), the variable S1 does not occur in cf2. Similarly,
when a subsequent unfolding derives a second write constraint, we will have a sequence of clauses of

38 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

the form:
C5. H :- ..., write(S2,...,...,S1),..., reach(cf3)

C6. H :- ..., write(S2,...,...,S1),..., tr(cf4,cf3), reach(cf4)

C7. H :- ..., write(S2,...,...,S1),..., write(S4,...,...,S3),..., reach(cf4)

where S1 does not occur in cf3 (by induction), and hence S1 does not occur in write(S4,...,...,S3).
(Note that S2 could be equal to S3, and this case occurs when the unfolding of the predicate reach

corresponds to the execution of two consecutive write operations on the same array, but this is irrelevant
for our argument here.) Thus, the constraint in clause C7 is non-circular. The variable S3 does not occur
in cf4, and the above argument can be generalized to show (by induction) that all constraints derived
during the UNFOLDING phase are non-circular.

During the DEFINITION & FOLDING phase the write constraints are not modified, and thus at the
end of the VCGen strategy, we get a set VC of clauses whose constraints are non-circular.

The same argument goes through for VCTransf by using the additional observations that the write
constraints are not modified during the CONSTRAINT REPLACEMENT phase, and during the DEFINI-
TION & FOLDING phase the generalization function Gen can only introduce new definitions without
write constraints (see Section 5). ut

Proof of Lemma 5.3

Proof:
e(V,X) is the conjunction i,r,w,v. We have that i, r, w, v v iX, rX, vX, because iX is obtained by
projection from i and rX, vX is a subconjunction of r,w,v. In the case where gen(X) is computed in
the Then branch, gen(X) is g, r0, v0 and iX, rX, vX v g, r0, v0, because iX v i1 (i1 is obtained by
projection from iX) and i1 v g (g is obtained by applying op), and hence we get the thesis. In the case
where gen(X) is computed in the Else branch, we get immediately the thesis, as gen(X) is iX, rX, vX. ut

Proof of Theorem 6.2

First we need some preliminary notions and lemmata.

Lemma 8.2. Any embedding relation C on clauses is a wbr.

Proof:
(i) By Definition 5.2 it is enough to show that C is a wbr on sets of variable identifiers. The variable
identifiers used in any given program are taken from a finite set Id ⊆ IVars ∪ AVars . Thus, for any
infinite sequence S1, S2, . . . of finite sets of identifiers in Id , there exist two indexes i, j, with i<j, such
that Si= Sj, and hence SiC Sj. ut

Given two clauses C1 and C2, we write C1 �int C2 if i1 �int i2, where i1 and i2 are the integer
constraints occurring in C1 and C2, respectively.

Let C be an embedding relation. We write x B y if y C x, and we write xCB y if x C y and x B y.
Given two clauses C1 and C2, we write C1 -int C2 if C1 CB C2 and C1 �int C2. Now we define a
relation on clauses as follows: we write C1 �cl C2 if (i) C1 C C2 and C1 6B C2 or (ii) C1 -int C2.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 39

Lemma 8.3. Let Defs be a set of clauses of the form: newp(V) :- i, r, v, p(X), where (i) V is a tuple of
variables occurring in i, r, v, p(X), (ii) p ∈ Π, where Π is a finite set of predicate names, and (iii) no
two clause bodies are variants of each other. Then, (α) �cl is a wbr on Defs . Moreover, (β) -int is a
downward-finite wbr on Defs .

Proof:
(α) �cl is a wbr on Defs . Let us consider an infinite sequence σ=C1, C2, . . . of clauses in Defs . We
construct a new sequence σ′=C ′1, C

′
2, . . . by deleting from C1, C2, . . . every Ck for which there exists

h, with h < k, such that Ch CB Ck and the set {C | C in σ and Ch CB C} is finite. σ′ is an infinite
sequence, and since, by Lemma 8.2, C is a wbr, there exist i and j such that i < j and C ′i C C ′j . Now,
we consider two cases:
Case C ′i 6B C ′j . By the definition of �cl , we get that C ′i �cl C

′
j .

Case C ′i B C ′j . By construction of σ′, the set Σj = {C ′ | C ′ in σ′ and C ′j CB C ′} is infinite. Let us
consider an infinite subsequence σ′′ of σ′ made out of all the elements of Σj . From σ′′ we can extract an
infinite subsequence σ′′′=C ′′′1 , C

′′′
2 , . . . such that for every pair C ′′′u , C

′′′
v of clauses in σ′′′, we have that

C ′′′u CB C
′′′
v . This fact is proved by the following Points (i)–(iii).

(i) By the definition of CB, all clauses in Σj have the same number t of atomic read constraints.
(ii) We define the equivalence relation .

= as follows.
Given two decorated atomic read constraints,

read(Aa, KS1, U)
.
= read(Ba, HS2, V) iff S1=S2

Given two clauses C1 and C2 in σ′′ (hence with the same number t of atomic read constraints),
C1=H1 :- i1,r1,v1,B1

.
= C2 = H2 :- i2,r2,v2,B2 iff

let r11, ..., r1t be the decorated read constraints of r1, and
let r21, ..., r2t, be the decorated read constraints of r2,
there exists a permutation i1, ..., it of {1,...,t} such that, for j=1, ..., t, r1j

.
= r2ij .

Clearly, C1
.
= C2 implies C1 CB C2.

(iii) From (i) and the finiteness of the set of variable identifiers in the given imperative program, it follows
that .= has a finite set of equivalence classes. Thus, it is possible to construct an infinite subsequence σ′′′

of σ′′ whose elements all belong to the same equivalence class of .=, and hence all elements of σ′′′ are in
the relation CB.

Now, since �int is a wbr, there exist C ′′′m and C ′′′n in σ′′′, with m<n, such that im �int in, where im
and in are the integer constraints in C ′′′m and C ′′′n , respectively. Since, by construction of σ′′′, we also
have C ′′′m CB C

′′′
n , by definition of �cl , we get C ′′′m -int C

′′′
n , and thus C ′′′m �cl C

′′′
n .

(β) -int is a downward-finite wbr on Defs . This fact follows immediately from: (β.1) the hypothe-
ses (i)–(iii) of this lemma, (β.2) the fact that C1 CB C2 implies that the constraints r1 in C1 and r2
in C2 may only differ for the names of the logical variables (in particular the two constraints have the
same cardinality), (β.3) the finiteness of the set of constants in Defs denoting (integer or array) variable
identifiers of the given imperative program, and (β.4) the assumption that�int is a downward-finite wbr
on Defs . ut

Now we are ready to prove Theorem 6.2.

Proof:
(i) Termination. Each of the UNFOLDING, CONSTRAINT REPLACEMENT, REMOVAL OF SUBSUMED

40 E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations

CLAUSES, DEFINITION & FOLDING; REMOVAL OF USELESS CLAUSES, and POST-UNFOLDING phases
terminates. In particular, the termination of CONSTRAINT REPLACEMENT has been proved in Propo-
sition 4.3. The termination of POST-UNFOLDING follows from the fact that the maximal number of
unfolding steps is determined by MaxUnf . The termination of the other phases is straightforward.

Now we note that the while-loop of the VCTransf strategy terminates if and only if the set of new
predicate definitions that is introduced by executions of the DEFINITION & FOLDING phase is finite.
Indeed, each new predicate definition is added to InDefs and processed in one execution of the body of
the while-loop, and the while-loop terminates when InDefs is the empty set.

In order to prove that the set of new predicate definitions is finite, let us consider a path D1, D2, . . .
in the tree Defs of definitions. The proof proceeds by contradiction: we assume that D1, D2, . . . is an
infinite sequence and we derive a contradiction.

By the definition of the Gen function we have that the clauses in Defs satisfy the hypothesis of
Lemma 8.3, and hence �cl is a wbr on Defs and -int is a downward-finite wbr on Defs . Now we
show that, from the infinite sequence D1, D2, . . . , of clauses we can construct an infinite subsequence
E1, E2, . . ., such that, for all i, j, if i<j, then Ei 6�cl Ej , and by doing so we derive a contradiction.

Let E1 be D1. Suppose that we have constructed the sequence E1, E2, . . . , Ek such that, for 1 ≤
i, j ≤ k, Ei 6�cl Ej . Let Ek be Dm and let Dn, with m<n, be the first clause in the infinite sequence
D1, D2, . . . such that, for every D̃ ∈ {D1, D2, . . . , Dm}, Dn -

+
int D̃ does not hold. Such Dn exists

because -int is a downward-finite wbr. We take Ek+1 to be Dn, and hence, for all i ∈ {1, . . . , n−1},
Ek+1 -int Di does not hold.

Now we show that for all i ∈ {1, . . . , k}, we have that Ei 6�cl Ek+1. We proceed by contradiction.
Suppose that, for some i ∈ {1, . . . , k}, Ei �cl Ek+1. Clause Ek+1, that is, clause Dn in the sequence
D1, D2, . . . , has been computed by applying the Gen function as follows, for some clauseEX of the form
newq(X):-iX,rX,vX,p(X) (see the candidate definition clause in the definition of the function Gen in
Figure 9):

If there exists a clause D in D1, . . . , Dn−1 of the form newp(X):-i0,r0,v0,p(X) such that DCEX

Then Dn is the clause newq(X):- (i0 op i1),r0,v0,p(X), for some integer constraint i1
Else Dn is EX

Now clause Dn cannot be computed by the Else branch, because if Dn =EX, then there exists a clause
D in D1, . . . , Dn−1, such that D C EX (indeed, take D = Ei and recall that EX = Dn = Ek+1 and
Ei �cl Ek+1 and �cl implies C), and the condition of the If-Then-Else holds. Thus, Dn must have been
computed by the Then branch and, by the Property (W) we have assumed on the operator op, we have
that Dn -int D, where D ∈ {D1, . . . , Dn−1}, thereby reaching a contradiction. Thus, we have shown
that, for all i ∈ {1, . . . , k}, Ei 6�cl Ek+1.

By iterating the previous construction we can construct an infinite sequence E1, E2, . . . such that, for
all i, j, if i<j, then Ei 6�cl Ej . This infinite sequence contradicts the hypothesis that�cl is a wbr. Thus,
every path of the tree Defs is finite, and since Defs is finitely branching, it is a finite tree. We conclude
that the VCTransf strategy terminates.

(ii) Correctness. First we recap and adapt to our context known results on the correctness of unfold/fold
transformation rules that can be found in [16, 17], where the rules refer to a generic theory of constraints.
Moreover, here we consider linear recursive CLP programs only.
A transformation sequence is a sequence of CLP programs P0, P1, . . . , Pn, where, for i = 0, . . . , n−1,
Pi+1 is derived from Pi by an application of one of the following rules. Let p be a predicate in P0.

E. De Angelis, F. Fioravanti, A. Pettorossi, M. Proietti / Verification using CHR and Array Constraint Generalizations 41

(R1) Definition Introduction. We derive Pi+1 by adding to Pi a clause of the form newp(X) :- c,A, where
newp is a new predicate symbol, X is the tuple of variables occurring in the atom A, and c is a constraint.
(R2) Definition Elimination. We derive Pi+1 by removing from Pi all clauses whose head predicate is h
and p does not depend on h.
(R3) Unfolding. We derive Pi+1 by replacing a clause C in Pi by the set Unf (C,Pi) as in Definition 2.1.
(R4) Constraint Replacement. Let us consider a clause C in Pi of the form: H :- c0, B, and some
constraints c1, . . . , cn such that A |= ∀ (c0↔ (c1 ∨ . . . ∨ cn)). Then, we derive Pi+1 by replacing C by
{H :- c1, B, . . . , H :- cn, B}.
(R5) Folding. Given a clause E: H :- e, B in Pi and a clause D: K :- c, A introduced by the definition
rule in a previous transformation step. Suppose that, for some substitution ϑ, (i) B = Aϑ, and (ii) ev cϑ.
Then we derive Pi+1 by replacing E by H :- e, Kϑ.
(R6) Clause Removal. We derive Pi+1 from Pi by removing a clause C: H :- c,B such that one of the
following holds:
(1. Subsumed Clause) there exists a different clause H :- d in Pi with c v d;
(2. Useless Clause) the head predicate of H is h and there is no constrained fact q(. . .) :- c, where q is
either h or a predicate on which h depends.

We have the following property [16, 17].
Theorem: Correctness of a Transformation Sequence. Let P0, P1, . . . , Pn be any transformation sequence
such that every clause introduced by the definition rule is unfolded in this sequence. Then, for every
ground atom A with predicate p, A∈M(P0) iff A∈M(Pn).

The execution of the VCTransf strategy can easily be viewed as the construction of a transformation
sequence using rules R1–R6, where, for i=0 . . . , N , program Pi in the sequence is the program derived
after the i-th execution of the body of the outer while-loop, and N is the number of iterations of the body
of that while-loop during the execution of VCTransf strategy.

We have that program Pi = InDefs i ∪VC ∪VC ′i, where: (i) InDefs i is the value of the set InDefs
after the i-th iteration, (ii) VC is the set of clauses of VC whose head predicate is not incorrect (this
set is not modified during the execution of the while-loop), and (iii) VC ′i is the value of the set VC ′

after the i-th iteration. In particular, we have that InDefs0 is the the set of clauses of VC whose head
predicate is the atom incorrect, InDefsN =∅, and VC ′0=∅.

Note that, at the end of the execution of the outer while-loop of the VCTransf strategy, all clauses in
VC are removed by a final application of rule R2, as incorrect does not depend on the head predicates
of those clauses. Note also that in order to show that VCTransf constructs a transformation sequence,
we also use Proposition 4.1, which guarantees that the CONSTRAINT REPLACEMENT phase is indeed an
application of rule R4.

The transformation sequence constructed by VCTransf satisfies the hypothesis of the above theorem
stating the correctness of a transformation sequence, because every new predicate definition is added to
the current value of InDefs and it is unfolded during one of the subsequent UNFOLDING phases. Thus,
by the correctness of the transformation sequence, we have that:

incorrect∈M(VC) iff incorrect∈M(VC ′). ut

