UNIVERSITA DEGLI STUDI “G. d’Annunzio”
CHIETI - PESCARA

SCUOLA SUPERIORE “G. d’Annunzio”

DOTTORATO DI RICERCA in SCIENZE
Ciclo XXVI

Software Verification and Synthesis
using Constraints and Program
Transformation

Dipartimento di Economia
Settore Scientifico Disciplinare INF/01

DOTTORANDO COORDINATORE
Dott. Emanuele De Angelis Prof.ssa Claudia Ceci
TUTOR

Prof. Fabio Fioravanti

Anni Accademici 2011/2013

Contents

Contents

|Acknowledgements|

[Introduction|

[Verification

1 Software Model Checking by Program Transformation|

[L.1 A Transformation-based Verification Frameworkl

|2 Transtformation of Constraint Logic Programs|

2.1 Constraint Logic Programming|

[2.1.1 Syntax of Constraint Logic Programs|

[2.1.2 Semantics of Constraint Logic Programs|
2.2 Transformation Ruled

|3 Generating Verification Conditions by Specializing Interpreters|

3.1 Encoding Imperative Programs into CLP|
3.2 Encoding Operational Semantics into CLP|.
3.3 Encoding Partial Correctness into CLP|
3.4 Soundness of the CLP Encoding|
3.0 'T'he Specialization Strategy|

13.5.1 Termination and Soundness of the Specialization Strategy|
B.6 Related Workl

13

15
18
26

29
29
29
31
32

|4 Veritying Programs by Specializing Verification Conditions| 53

4.1 The Verification Methodl 55
[4.2 The Specialization Strategy| 60
[4.2.1 Generalization Operators| 62

[4.2.2 Generalization Strategy| 65

4.2.3 Termination and Soundness of the Specialization Strategy| 67

[4.3 Experimental Evaluation|. 67
4.4 Related Worklo 70

[5 Tterated Program Specialization| 73
(5.1 The Verification Methodl 74
(5.2 The Iterated Specialization Strategy| 76
[5.2.1 Propagation of Constraints| 76

15.2.2 Lightweight Correctness Analysis[. 82

0.2.3 The Reverse Transformationl 84

[5.2.4 Soundness of the Iterated Specialization Strategyl 88

[>.3 Experimental Evaluation|. 0000 88
b4 Related Workl o 100

[6 Verifying Array Programs| 103
[6.1 Constraint Logic Programs on Arrays| 104
6.2 The Verification Methodl 105
[6.3 The Transformation Strategy| 111
[6.3.1 Termination and Soundness of the Transformation Strategy|l15

[6.4 Experimental Evaluation|. 118
6.5 Related Workl 124

|7 Recursively Defined Properties| 127
8 The VeriMAP Software Model Checker] 133
81 Architecturel.o 134

8 Usage] e 136
[8.3 Proving Partial Correctness with the VeriMAP Tool| 136

[IT " Synthesis|

1 Synthesizing Concu

rrent Programs using Answer Set Programming]

TT Dok =

1. > TOUPS

[1.1.3 Computation Tree Logic|

[1.1.4 Answer

oet Programming|

|2 Specifying Concurrent Programs|

I3 Synthesizing Concu

rrent Programs|

|4 Synthesis examples|

4.1 Comparison of

ASP Solvers on the Synthesis Examples|.

5 Proofs

6 Source code

[Conclusions!

145

147
148
148
149
150
151

153
159

165
170
174

179
191
195

199

g ot Donidl

Acknowledgements

This is the hardest part to write, especially for a shy person like me. I will start
with three invaluable persons: Fabio Fioravanti, Maurizio Proietti, and Alberto
Pettorossi, without whom this thesis would not be possible.

Fabio, my tutor and supervisor, deserves my deep respect and admiration for
the devotion he puts in his role of supervisor. He everyday places a lot of effort,
and frequently spends his free time, in teaching and helping me to improve my
skills. His advices and constant presence are invaluable. On a personal level,
I would like to thank him for his understanding, patience, and generosity. His
friendship is really important to me. He is an extraordinary person, I found
more than an outstanding supervisor, Fabio is the big brother that I never had.

I am indebted to Maurizio, my supervisor, for supporting me everyday since
I started to work with him during my master degree. He always believed in me,
encouraging me to apply for a PhD position. I will never be able to pay him
back for all the precious time he spent with me. The passion he puts in his work
is a source of inspiration. In addition to his generosity and patience in sharing
with me its expertise, I would like to thank him for his friendship and also for
the kind understanding shown during some difficult moments of my life.

Alberto has been the supervisor of both my bachelor and master degrees. 1
would like to thank Alberto for having taught me so much. His devotion for
students and the remarkable care he puts in his work inspire me everyday to be
more hard working and pursue higher academic achievement.

I would like to thank Prof. John Gallagher and Prof. Michael Leuschel
for their comments on the preliminary version of the thesis. I would also to
thank Prof. Maria Chiara Meo, Prof. Claudia Ceci and Prof. Cristina Caroli
Costantini who are the Director of the Computer Science Program, the Head of
the PhD Program, and her predecessor, respectively.

The work presented in this thesis has been financially supported by the Uni-
versity of Chieti-Pescara, the Institute for Systems Analysis and Computer Sci-
ence (IASI-CNR), the Italian Association for Logic Programming (GULP), the
ICLP Doctoral Consortium 2012, and the National Group of Computing Science
(GNCS-INDAM).

Finally, I would like to thank Valerio Senni for his friendship and my father,
relatives and friends for their love.

Emanuele De Angelis
March 2014

Introduction

In the last decade formal methods applied to software production have received
a renewed attention as the basis of a methodology for increasing the reliability
of software artefacts (for example, source code, as well as analysis and design
models) and reducing the cost of software production (for example, by reducing
the time to market).

In particular, a massive effort has been made to devise automatic verifica-
tion techniques, such as software model checking, for proving the correctness of
programs with respect to their specifications. This thesis addresses the prob-
lem of program verification by combining and extending ideas developed in the
fields of logic programming, constraint solving, abstract interpretation, and au-
tomated theorem proving. In particular, we consider program transformation
of constraint logic programs to define a general verification framework which
is parametric with respect to the programming language and the logic used
for specifying the properties of interest. Program transformation is a software
development methodology that consists in manipulating the program text by
applying semantic preserving rules. It turns out to be a very flexible and gen-
eral methodology by which it is possible to rapidly implement modifications of
the semantics of the considered imperative language and of the logics used for
expressing the properties of interest. Moreover, constraint logic programming,
that is, logic programming extended with constraint solving, has been shown
to be a powerful and flexible metalanguage for specifying the program syntax,
the operational semantics, and the proof rules for many different programming
languages and program properties.

A complementary approach to program verification is represented by program
synthesis, which, starting from a formal specification of the intended behavior,
has the objective of automatically deriving a program that complies with the
given specification. However, program synthesis does not represent an alter-
native to verification in all cases. Indeed, synthesis techniques open up to the

possibility of producing software artefacts that satisfy their specifications by
construction, but they are much harder to put in practice, especially when scal-
ability becomes a critical factor. This thesis addresses the problem of program
synthesis by using, as done for verification of programs, techniques based on
logic and constraint solving. In particular, we consider answer set programming
to define a framework for automatically deriving synchronization protocols of
concurrent programs. The formal specification of the protocol is given by us-
ing temporal logic formulas. Design of protocols is reduced to finding stable
models, also called answer sets, of the logic program that encodes the tempo-
ral specification and the semantics of both the temporal logic and the protocol
implementation language. Then, the different protocols satisfying the given
specification can be derived by a simple decoding of the computed answer sets.

Overview of the Thesis

The first part of this thesis is devoted to the presentation of the verification
framework [37, 38, (39, 40, AT, 42) 43, 44 [45).

In Chapter [I] we introduce the reader to the verification problem and we
outline our werification framework. We also show, by developing a complete
example taken from [44], how the verification framework can be instantiated to
prove partial correctness of imperative programs written in a simple imperative
programming language. This chapter is based on the work presented in [37) 38|
A1) [42).

In Chapter [2] we recall basic notions of constraint logic programming, or CLP
programs [83]. In particular, we present the transformation rules for CLP pro-
grams [57, [60] which will be used to define transformation strategies that realize
the various steps of the verification framework presented in Chapter

In Chapter 3| we show how to generate verification conditions for proving par-
tial correctness of imperative programs written in a subset of the C programming
language. We present the CLP encoding of the imperative programs and the
CLP interpreter defining the semantics of the imperative language and the logic
to reason about partial correctness of imperative programs. We also introduce
a specialization strategy, based on the unfold/fold transformation rules, that
performs the so-called removal of the interpreter which, given as input the CLP
encoding of an incorrectness triple specifying the partial correctness problem,
returns a set of CLP clauses expressing the verification conditions for that par-
tial correctness problem (specified by the so-called incorrectness triple). This
chapter is based on the work presented in [42] 44] and lays the foundation for

10

the transformation techniques which will be used to check the satisfiability of
the verification conditions presented in the subsequent chapters.

In Chapter [4] we show how program specialization can be used not only as
a preprocessing step to generate verification conditions, but also as a means of
analysis on its own [39], as an alternative to static analysis techniques of CLP
programs. We extend the specialization strategy presented in Chapter [3] and
we introduce generalization operators which are used to both discover program
invariants and ensure the termination of the specialization process. The special-
ization strategy is an instance of the general specialization strategy presented
in [42].

In Chapter [5| we further extend the verification method by introducing the
iterated specialization strategy, which is based on a repeated application of pro-
gram specialization [42]. During the various iterations we may apply different
strategies for specializing and transforming constraint logic programs, and differ-
ent operators for generalizing predicate definitions. We also perform an extended
experimental evaluation of the method by using a benchmark set consisting of a
significant collection of programs taken from the literature, and we compare the
results with some of state-of-the-art CLP-based software model checkers [43].

In Chapter [6] we extend the verification method to perform verification of
imperative programs that manipulate arrays. We propose a transformation
strategy which is based on the specialization strategy for generating verification
conditions and the propagation of constraints as presented in Chapters The
novel transformation strategy makes use of the constraint replacement rule that
is based on an axiomatization of the array data structure. This chapter basically
reports the work presented in [44], which generalizes and extends the verification
method presented in [40] 41].

In Chapter [7] we present a further extension of the transformation strategy to
deal with recursively defined properties. In particular, we introduce the rules of
conjunctive definition introduction and conjunctive folding. We show, through
an example, that this extended method can be applied in a rather systematic
way, and is amenable to automation by transferring to the field of program ver-
ification many techniques developed in the field of program transformation [40].

In Chapter [§ we present the VeriMAP tool which implements the verification
framework and the different strategies we have proposed. This chapter, based on
the tool paper [45], also shows how to use the system by means of two examples.

In the second part of this thesis we present the synthesis framework [4] [46].
In Chapter (1| we recall basic notions of answer set programming (ASP), that
is logic programming with stable model semantics. ASP is the metalanguage

11

we use to define the synthesis framework. We also recall some basic notions
of Computational Tree Logic and group theory which will be used to specify
the behavioural and structural properties, of the concurrent programs to be
synthesized.

In Chapter [2] we present the syntax and the semantics of concurrent pro-
grams. In particular, we introduce symmetric structures and symmetric concur-
rent programs which allow us to specify structural properties shared by the pro-
cesses which compose the concurrent programs. We also introduce the usual be-
havioural properties such as mutual exclusion, starvation freedom, and bounded
overtaking.

In Chapter [3| we introduce our synthesis procedure by defining the answer
set programs which encode structural and behavioural properties. We present a
result establishing the soundness and completeness of the synthesis procedure,
and we also prove that this procedure has optimal time complexity.

In Chapter [4 we present some examples of synthesis of symmetric concurrent
programs and we compare the results obtained by using different state-of-the-art
answer set solvers.

In the Appendixes we show the proofs of the results presented, and the ASP
source code of our synthesis procedure.

12

PART |

VERIFICATION

CHAPTER 1

Software Model Checking
by Program Transformation

Software model checking is a body of formal verification techniques for impera-
tive programs that combine and extend ideas and techniques developed in the
fields of static program analysis and model checking (see [90] for a recent survey).

Unfortunately, even for small programs manipulating integer variables, an
exhaustive exploration of the state space generated by the execution of pro-
grams is practically infeasible, and simple properties such as safety (which es-
sentially states that ‘something bad never happens’) are undecidable. Despite
these limitations, software model checking techniques work in many practical
cases [9, 90, [I14]. Indeed, in order to tackle these issues, many software model
checking techniques follow approaches based on abstraction [30], by which the
data domain is mapped into an abstract domain so that reachability is preserved,
in the sense that if a concrete configuration is reachable, then the corresponding
abstract configuration is reachable. By a suitable choice of the abstract domain
one can design reachability algorithms that terminate and, whenever they prove
that an abstract error configuration is not reachable from any abstract initial
configuration, then the program is proved to be correct. However, due to the
use of abstraction, the reachability of an abstract error configuration does not
necessarily imply that the program is indeed incorrect. It may happen that the
abstract reachability algorithm produces a spurious counterexample, that is, a
sequence of configurations leading to an abstract error configuration which does
not correspond to any concrete computation. Hence, constructing such an ab-
straction is a critical aspect of software model checking, as it tries to meet two

15

somewhat conflicting requirements. On one hand, in order to make the verifica-
tion process of large programs viable in practice, it has to construct a model by
abstracting away as many details as possible. On the other hand, it would be
desirable to have a model which is as precise as possible to reduce the number
of spurious error detections.

Notable abstractions are those based on convex polyhedra, that is, conjunc-
tions of linear inequalities, also called constraints. In many software model
checking techniques, the notion of constraint has been shown to be very effec-
tive, both for constructing models of programs and for reasoning about them [13]
16l (17, [34], (421, [49] (63, [74), [87), [861, [85), [TT9] 123]. Several types of constraints have
been considered, such as equalities and inequalities over the booleans, the inte-
gers, the reals, the finite or infinite trees. By using constraints we can represent
in a symbolic, compact way (possibly infinite) sets of values computed by pro-
grams and, more in general, sets of states reached during program executions.
Then, we can use constraint solvers, that is, ad-hoc theorem provers, specifically
designed for the various types of constraints to reason about program properties
in an efficient way.

In particular, Horn clauses and constraints have been advocated by many
researchers as suitable logical formalisms for the automated verification of im-
perative programs [16| 73, [I19]. Indeed, the verification conditions (VC’s) that
express the correctness of a given program, can often be expressed as constrained
Horn clauses [17], that is, Horn clauses extended with constraints in specific do-
mains such as the integers or the rationals. For instance, let us consider the
following C-like program:

int x, y, n;
while (x<n) {
x=x+1;
y=y+2;
}
Listing 1.1: Program double

and let us assume that we want to prove the following Hoare triple:
{r=0Ay=0An>1} double {y>zx}.
This triple holds if the following three verification conditions are satisfiable:
l.z2=0Ay=0An>1— P(z,y,n)
2. P(x,y,n)ax<n — Plx+1,y+2,n)
3. P(z,y,n)az>n — y>z

that is, if there exists an interpretation for P such that, for all x, y and n, the

16

three implications hold. Constraints such as the equalities and inequalities in
clauses 1-3, are formulas defined in a background (possibly non-Horn) theory.

The correctness of a program is implied by the satisfiability of the verification
conditions. Various methods and tools for Satisfiability Modulo Theory (see, for
instance, [47]) prove the correctness of a given program by finding an interpre-
tation (that is, a relation specified by constraints) that makes the verification
conditions true. For instance, one such interpretation for the VC’s of the pro-
gram double is:

P(z,y,n) = (z=0Ay=0an>1)vy>zx

It has been noted (see, for instance, [17]) that verification conditions can also
be viewed as constraint logic programs, or CLP programs [83]. Indeed, clauses 1
and 2 above can be considered as clauses of a CLP program over the integers,
and clause 3 can be rewritten as the following goal:

4. P(z,y,n) nx>n Ay<x — false

Various verification methods based on constraint logic programming have been
proposed in the literature (see, for instance, [2, 42, 49 63, [79, 119] and the
papers on which this thesis is based [39, 40, 42], 44]). These methods consist of
two steps: (i) the first one is the translation of the verification task into a CLP
program, and (ii) the second one is the analysis of that CLP program.

In this thesis we will show how program transformation of constraint logic
programs can be used as a means to prove the satisfiability of the verification
conditions. In particular, in Chapters 4 and [5] we will see that in many cases it is
helpful to transform a CLP program (expressing a set of verification conditions)
into an equisatisfiable program whose satisfiability is easier to show. For in-
stance, if we propagate, according to the transformations which will see in next
section and, in detail, in Chapter |5 the two constraints representing the initial-
ization condition (x=0Ay =0 An>1) and the error condition (z>n A y<x),
then from clauses 1, 2, and 4 we derive the following new verification conditions:

5. Qz,y,n) Ax<naz>yay>0 = Qz+ 1,y+2,n)
6. Qz,y,n) Az>naz>yAay>0an>1 — false

This propagation of constraints preserves the least model, and hence, by the
extension of the van Emden-Kowalski Theorem [I37] to CLP programs and
constrained Horn clauses, the verification conditions expressed by clauses 5 and
6 are satisfiable iff clauses 1-3 are satisfiable. Now, proving the satisfiability of
clauses 5 and 6 is trivial because they are made true by simply taking Q(z,y,n)
to be the predicate false.

17

1.1 A Transformation-based Verification Framework

Program transformation is a software development methodology that consists in
manipulating the program text by applying semantics preserving rules [24] 12T,
135).

We consider program transformation techniques as a basis for building a gen-
eral verification framework in which software model checking of programs can be
performed in a very agile, effective way. The main advantage of the transforma-
tional approach to program verification over other approaches is that it allows
one to construct highly configurable verification tools. Indeed, transformation-
based verification techniques can easily be adapted to the various syntaxes and
semantics of the programming languages under consideration and also to the
various logics in which the properties of interest may be expressed.

The verification framework exploits a variety of transformation techniques
(i) to generate a set of verification conditions for proving the correctness of a
program, and (ii) to check the satisfiability of the generated verification condi-
tions. In particular, it makes use of a notable program transformation technique,
called program specialization, whose objective is the adaptation of a program to
the specific context of use with the aim of deriving an equivalent program where
the verification task may be easily carried out. Indeed, by following this ap-
proach, which can be regarded as a generalization of the one proposed in [119],
given a program Prog written in a programming language L, and a property
@ specified in a logic M, we can verify whether or not ¢ holds for Prog by:
(i) writing the interpreter I, in a suitable metalanguage, defining the semantics
of L and M, (ii) specializing the interpreter with respect to Prog and ¢, thus
deriving a specialized interpreter I’, and finally (iii) analyzing I’. In particular,
the interpretation overhead is compiled away by specialization, and in I’ no ref-
erence to statements of the program Prog is present, thereby representing the
verification conditions for Prog in purely logical form. Moreover, since the out-
put of a program transformation is a semantically equivalent program where the
properties of interest are preserved, we can apply a sequence of transformations,
more powerful than those needed for program specialization, thereby refining
the analysis to the desired degree of precision.

In this thesis we develop an instance of the general transformation-based ver-
ification framework for proving partial correctness of imperative programs. We
reduce the problem of verifying the partial correctness to a reachability problem,
and we adopt constraint logic programming as a metalanguage for representing
imperative programs, their executions, and their properties. We assume that

18

the imperative program Prog is written in an imperative language L whose se-
mantics is defined by a transition relation, denoted =, between configurations.
Each configuration is a pair {c, e})) of a command c and an environment e. An en-
vironment e is a function that maps variable identifiers to their values. We also
assume that the property ¢ is specified as a pair of formulas @, and @epror, de-
scribing a set of initial and error configurations, respectively. Then, we address
the problem of verifying whether or not, starting from any initial configuration
(that is, satisfying the property @), the execution of Prog eventually leads to a
error configuration (that is, satisfying the property @epror). This problem is for-
malized by defining an incorrectness triple of the form {@ini} Prog {veror}-
We say that a program Prog, whose free variables are assumed to be among

Z1,- .- 2y 18 incorrect with respect to @it and @error if there exist environments
einit and epqy such that: (1) @imit(€mit(21), - ., €mir(2r)) holds, (i) (co, €init)
=" (halt, epqu), and (iii) ©error(€hait(21), - - -, €nait(2r)) holds, where cq is the

first command of Prog, halt is the (unique) command of Prog which, when
executed, causes the termination of Prog, and =" is the reflexive, transitive
closure of =>. A program is said to be correct with respect to @i and Yepror
if and only if it is not incorrect with respect to @i and @error. Note that
this notion of correctness is equivalent to the usual notion of partial correctness
specified by the Hoare triple {@nit} Prog {—©error}-

We translate the problem of checking whether or not the program Prog is in-
correct with respect to the properties @i and @error into the problem of check-
ing whether or not the nullary predicate incorrect (standing for the predicate
false) is a consequence of the CLP program I defining the interpreter for proving
the partial correctness of Prog with respect to the properties @, and Yepror-
Therefore, the correctness of Prog is defined as the negation of incorrect. The
CLP interpreter I defines the following predicates:

(i) incorrect, which holds iff there exists an execution of the program Prog
that leads from an initial configuration to an error configuration;

(ii) tr (short, for transition relation), which encodes the semantics of the im-
perative language L. In particular, the predicate tr encodes the transition
relation = from any given configuration to the next one.

Given an incorrectness triple {@ni } Prog {@eror }} and the interpreter I, the
following four steps are performed:

Step 1: CLP Translation. The given incorrectness triple is translated into the
CLP program T, where Prog is encoded as a set of CLP facts, and
Yinit and Qepror are encoded by CLP predicates defined by (possibly
recursive) clauses.

19

Step 2: Verification Conditions Generation. A set of verification conditions is gen-
erated by specializing the interpreter I with respect to the CLP program
T, thereby deriving a new CLP program V where tr does not occur ex-
plicitly (in this sense the interpreter is removed or compiled-away and
V represents a set of verification conditions for the given incorrectness
triple). We have that Prog is incorrect with respect to @it and @epor
if and only if incorrect holds in V.

Step 3: Verification Conditions Transformation. By applying a sequence of pro-
gram transformations the constraints encoding the properties ¢, and
Yerror are propagated through the structure of the CLP program V. This
step has the effect of modifying the structure of the program V and
explicitly adding new constraints that denote invariants of the compu-
tation, thereby producing a new CLP program S such that incorrect
holds in V if and only if incorrect holds in S. During this step we apply
transformation techniques that are more powerful than those needed for
program specialization and, in particular, for the removal of the inter-
preter performed by the Verification Conditions Generation step.

Step 4: Verification Conditions Analysis. The CLP program 8 is transformed into
an equivalent CLP program Q where one of the following conditions
holds: either (i) Q contains the fact incorrect, and the verification
process stops reporting that Prog is incorrect with respect to @, and
WYerror, OF (ii) Q contains no clauses for the predicate incorrect, and the
verification process stops reporting that Prog is correct with respect to
Yinit and Yepror, or (ill) Q contains a clause of the form incorrect :-
G, where G is not the empty goal, and the verification process returns
to Step 3.

Obviously, due to undecidability limitations, it may be the case that we never
get a program Q such that either Property (i) or Property (ii) holds, and hence
the verification process does not terminate.

In order to give the reader a snapshot of our method for performing software
model checking, we develop the example presented in the previous section by
providing the output of each step of the verification framework in Figure
and the sketches of the program transformations we will present in detail in the
following chapters of this thesis.

Example 1 (Proving correctness of the double program). Let us consider
again the program double presented in Listing and let us suppose that we
want to prove the partial correctness of double with respect to Yinit(z,y,n) =4ef

20

Program Prog

Translate Prog CLP < (written in L)

Step 1 Pinit and Perror -I_ I . .
into CLP ransiation Propertles Pinit and Perror

(specified in M)

Encoding of the incorrectness triple T

Y

Interpreter I

o Verlflc.ajclon <«—— (Semantics of L)
Step 2: Specialize I w.rt. T Condition
Generation [€—— (Semantics of M)

Verification Conditions (VC’s) V

Y

Verification
Step 3: Transform V Condition
Transformation

Transformed VC’s S unknown

Y

Verification
Step 4: Check whether or not ..
) . Condition
incorrect holds in S)
Analysis
true false

Figure 1: Verification Framework. The verification framework relies on the sub-
sidiary modules, represented by rectangular boxes, responsible for the operations
associated with Step 1-Step 4.

21

r=0Ay=0An>1and @eror(z,y,n) =gef y <x. That is, we want to show
that, if a configuration satisfies @i (x,y,n), by executing the program double,
no configuration satisfying ¢epror (2, y,n) is reached.

In order to check whether or not {@imi(x,y,n)} double {werror(z,y,n)}
holds, we instantiate the verification framework of Figure [I] and we show the
verification method in action on the given incorrectness triple.

We start off by executing the CLP Translation step which translates the in-
correctness triple {@init(z, y,n)} double {Yerror(z,y,n)} into a CLP program
where the predicates at, phiInit, and phiError represent the commands of
double, and the initial ¢, and the error pepor properties.

First, the commands in double are translated into a set of CLP facts of the
form at(L,C), where L is the label associated with the command C.

7. at(0,ite(bexp(1t(exp(id(x)),exp(id(n))),1,h)).

8. at(1l,asgn(id(x),exp(plus(exp(id(x)),exp(int(1)))),2)).

9. at(2,asgn(id(y) ,exp(plus(exp(id(y)),exp(int(2))),0)).
10. at(h,halt).

The C-like commands are translated into commands of a simpler non structured
core language consisting of conditionals, assignments, and jumps. For instance,
the while loop of double is translated into the conditional (ite) at line |7l The
first argument of ite represents the expression in the while loop, where: (i) 1t
represents the ‘<’ operator, (ii) bexp and exp represent boolean and arithmetic
expressions, respectively, and (iii) id represents program identifiers. The second
and third argument of ite represent the labels of the first command occurring
in the conditional branches.

Then, the initial and error properties are translated into the following CLP
clauses defining the predicates phiInit and phiError, respectively.

11. phiInit([[int(x),X], [int(y),Y], [int(n),N]]) :- X=0, Y=0, N>1.
12. phiError([[int(x),X], [int(y),Y], [int(n),N]1]) :- Y<X.

Now, in order to proceed with the Verification Conditions Generation step,
we need to define the CLP interpreter I for proving partial correctness of C-
like programs. This will be done by introducing the predicates below. The
partial correctness is defined as the negation of the predicate incorrect specified
by the following CLP clauses which encode the reachability relation between
configurations:

13. incorrect :- initConf(X), reach(X).
14. reach(X) :- tr(X,X1), reach(X1).

22

15. reach(X) :- errorConf(X).
16. initConf (cf (cmd(0,C),E)) :- at(0,C), phiInit(E).
17. errorConf (cf (cmd (h,halt) ,E)) :- phiError(E).

where: (i) initConf encodes the initial configuration (that is, initConf (X)
holds if X is a configuration consisting of the first command of the impera-
tive program and an environment E where the initial property phiInit holds),
(ii) reach encodes the reachability of a configuration (that is, reach(X) holds
if an error configuration can be reached from the configuration X), (iii) tr en-
codes the transition relation corresponding to the operational semantics of the
C-like language (see clauses[1823|below), and (iv) errorConf encodes the error
configurations (that is, errorConf (X) holds if X is a configuration consisting of
the command halt and an environment E where the error property phiError
holds). The predicate tr is defined as follows.

18. tr(cf(cmd(L,asgn(Id,Ae,L1)),E), cf(cmd(L1,C),Ep)) :-
eval(Ae,E,Val), update(Id,Val,E,Ep), at(L1,C).

19. tr(cf(cmd(L,ite(Be,L1,L2)),E),cf(cmd(L1,C),E)) :-
eval(Be,E), at(L1,C).

20. tr(cf(cmd(L,ite(Be,L1,L2)),E),cf(cmd(L2,C),E)) :-
eval (not(Be) ,E), at(L2,C).

21. eval(exp(plus(Ael,Ae2),E,Val) :- Val=Vall+Val2,
eval (Ael,E,Vall), eval(Ae2,E,Val2).

22. eval(exp(id(1)),E,X) :- X=Y, lookup(I,E,Y).

23. eval(exp(int(C)),E,V) :- V=C.

where each configuration cf (cmd(L,C),E) consists of (i) a labelled command
cmd(L,C), and (ii) an environment E. The environment E is a function that
maps program variables to their values and for the program double is repre-
sented by the list [[int(x),X], [int(y),Y], [int(n) ,N]]. The environment is
manipulated by two auxiliary predicates: (i) update(Id,Val,E,Ep) updates the
environment E by binding the variable Id to the value Val, thereby constructing
a new environment Ep, and (ii) lookup(I,E,Y) retrieves the value Y associated
with the program variable I in the environment E.

In order to derive the verification conditions for the program double, we
perform the Verification Conditions Generation step by specializing clauses
with respect to the clauses in T that encode the given incorrectness triple. This
step is performed also in other specialization-based techniques for the program
verification (see, for instance, [I19]). We get the CLP program V consisting of

23

the following clauses:

24. incorrect :- X=0, Y=0, N>1, newl1(X,Y,N).
25. newl(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, newl(X1,Y1,N).
26. newl (X,Y,N) :- X>N, Y<X.

where newl is a new predicate symbol automatically introduced by the special-
ization algorithm. We have that the satisfiability of clauses implies the
satisfiability of the corresponding VC’s of the example

Unfortunately, it is not possible to check by direct evaluation whether or not
incorrect is a consequence of the above CLP clauses. Indeed, the evaluation
of the query incorrect using the standard top-down strategy enters into an
infinite loop. Tabled evaluation [35] does not terminate either, as infinitely
many tabled atoms are generated. Analogously, bottom-up evaluation is unable
to return an answer, because infinitely many facts for newl should be generated
for deriving that incorrect is not a consequence of the given CLP clauses.

Our verification method avoids the direct evaluation of the above clauses, and
applies some symbolic evaluation methods based on program transformation.
In particular, starting from the CLP program V obtained by the removal of the
interpreter, we execute the Verification Conditions Transformation step, which per-
forms further transformations, called the propagation of the constraints. These
transformations propagate the constraints ‘X=0, Y=0, N>1" and ‘Y<X’, charac-
terizing the initial and error configurations, respectively.

We execute the Verification Conditions Transformation step which transforms
the program V by propagating the constraint ‘X=0, Y=0, N>1’ and we get the
following program S:

27. incorrect :- X=0, Y=0, N>1, new2(X,Y,N).

28. new2(X,Y,N) :- X=0, Y=0, N>1, Xi=1, Y1=2, new3(X1,Y1,N).

29. new3(X,Y,N) :- X<N, X1=X+1, Y1=Y+2, X1>1,Y1>2, new3(X1,Y1,N).
30. new3(X,Y,N) :- X>N, Y<X, Y>0, N>1.

where new2 and new3 are new predicate symbols introduced by the transforma-
tion algorithm.

This step produces a new program whose constraints are those occurring in
the CLP program V enriched with new constraints derived by various constraint
manipulation operations which we will see in Chapters [and [5] The reader
may see the effect of this transformation on clauses where we have the
extra constraints (underlined in the program) ‘X1=1, Y1=2’, ‘X1>1, Y1>2’ and
‘Y>0, N>1’, respectively.

24

Now, we perform the Verification Conditions Analysis step. This step is para-
metric with respect to the analyzer which is used (see Chapters 4 and 5 for two
possible choices). Here, we use a lightweight analyzer which is based on a sim-
ple inspection of the program S and is guaranteed to terminate. Unfortunately,
the analyzer is unable to check whether or not incorrect is a consequence of
the above CLP clauses. (Note that a different analyzer, for instance, based
on bottom-up evaluation, does not terminate because infinitely many facts for
new3 should be generated for deriving that incorrect is not a consequence of
the given CLP clauses). Therefore, we proceed with a further transformation
by executing again Step 3 on a new CLP program, say R, obtained from the
CLP program S by reversing the direction of the state space exploration of the
reachability relation reach. In particular, the CLP program S, which checks the
reachability of the error configurations from the initial configurations, is trans-
formed into the following CLP program R, which checks the reachability of the
initial configurations from the error configurations.

31. incorrect :- X>N, Y<X, Y>0, N>1 new3(X,Y,N).

32. new3(X1,Y1,N) :- X=0, Y=0, N>1, X1=1, Y1=2, new2(X,Y,N).

33. new3(X1,Y1,N) :- X<N, X1=X+1, Yi1=Y+2, X1>1,Y1>2, new3(X,Y,N).
34. new2(X,Y,N) :- X=0, Y=0, N>1.

The Verification Conditions Transformation step, applied to the CLP program
R, propagates the constraints ‘X>N, Y<X, Y>0, N>1’ (that is, the constraint
‘Y<X’ representing @eqor together with the constraints added by the previous
execution of the Step 3). By doing so, we get the following clauses:

35. incorrect :- X>N, Y<X, Y>0, N>1, newd4(X,Y,N).
36. newd(X1,Y1,N) :- X<N, X1=X+1, Y1=Y+2, X>Y, Y>0, newd(X,Y,N).

where new4 is a new predicate symbol introduced by the transformation algo-
rithm, corresponding to the predicate @ of the verification condition [5, encoded
by clause and the verification condition [6] encoded by clause Since
among these final clauses [35] and |36 there are no constrained facts, their least
model is empty. Thus, incorrect does not hold in the least model of the clauses
and Then, by the correctness of the CLP encoding (Theorem [2| on page
and by the correctness of CLP program specialization with respect to the
least model semantics (Theorem |3 on page and Theorem 4| on page we
get, as desired, that the given imperative program double is correct with respect

to Pinst and Perror- O

25

1.2 Related Work

The use of logic programming techniques for program analysis is not novel. For
instance, Datalog (the function-free fragment of logic programming) has been
proposed for performing various types of program analysis such as dataflow
analysis, shape analysis, and points-to analysis [22, 125, [139]. In order to encode
the properties of interest into Datalog, all these analysis techniques make an
abstraction of the program semantics. In contrast, our transformational method
manipulates a CLP program which encodes the full semantics (up to a suitable
level of detail) of the program to be analyzed. An advantage of our method is
that the output of a transformation-based analysis is a new program which is
equivalent to the initial one, and thus the analysis can be iterated to the desired
degree of precision.

Program verification techniques based on constraint logic programming, or
equivalently constrained Horn clauses, have gained increasing popularity during
the last years [I7), 74, 119]. As an evidence of the expressive power and flexibility
of constraints we want to point out that CLP programs have been recently
proposed in [I6] as a common intermediate language for exchanging program
properties between software verifiers. In the same line of work, [74] presents
a method for the automatic synthesis of software verification tools that use
proof rules for reachability and termination written in a formalism similar to
Horn clauses. Moreover, the use of the CLP-based techniques allows one to
enhance the reasoning capabilities within Horn clause logic because one may
take advantage of the many special purpose solvers that are available for various
data domains, such as integers, arrays, and other data structures.

This renewed attention to program verification techniques based on CLP can
also be explained as a consequence of the development of very efficient con-
straint solving tools [127]. Indeed, several CLP-based verification tools are cur-
rently available. Among them, ARMC [123], Duality [I13], ELDARICA [82],
HSF [73], TRACER [85)], uZ [81], implement reasoning techniques within CLP
by following approaches based on interpolants, satisfiability modulo theories,
counterexample-guided abstraction refinement, and symbolic execution of CLP
programs.

As pointed out in the first section of this chapter, defining suitable program
models that capture the properties of interest is a critical step in the software
model checking process. In constructing such models, a software model checker
may follow two dual approaches. It may start from a concrete model and then
progressively abstract away some irrelevant facts. This is the approach followed

26

by the verification method we propose in this thesis and, in a broader sense, by
approaches based on symbolic execution [86]. Conversely, it may start from a
coarse model and then progressively refine it by incorporating new facts. This
approach is represented by the well established and widely used technique, called
Counter-Example Guided Abstraction Refinement (CEGAR) [90], which is im-
plemented by several software model checkers (that is, SLAM and BLAST).
In particular, given a program P and a property ¢, CEGAR uses an abstract
model a(P) to check whether or not P satisfies ¢. If a(P) satisfies ¢ then P
satisfies , otherwise a counterexample, i.e., an execution which that leads to
an error configuration, is produced. The counterexample is then analyzed: if it
turns out to correspond to a real execution of P (genuine counterexample) then
the program is proved to be incorrect, otherwise it has been generated due to a
too coarse abstraction (spurious counterexample) and «(P) is refined to a more
concrete model.

27

CHAPTER 2

Transformation of
Constraint Logic Programs

This chapter is devoted to introduce the reader with the transformation rules for
constraint logic programs. Transformations rules represent the basic operations
for defining transformation procedures which, together with suitable strategies
to control their application, will be used to perform the following steps of our
verification framework: Verification Conditions Generation, Verification Conditions
Transformation, and Verification Conditions Analysis.

2.1 Constraint Logic Programming

We first recall some basic notions and terminology concerning constraint logic
programming. We consider CLP (D) programs, which are parametric with re-
spect to the constraint domain D. For more details the reader may refer to [83].
We assume that the reader is familiar with the basic notions of first order logic
and logic programming [105].

2.1.1 Syntax of Constraint Logic Programs

We consider a first order language £ generated by an infinite set V of variables,
a set F of function symbols with arity n > 0, and a set P of predicate symbols
with arity n > 0. We assume that F is the union of two disjoint sets: (i) the set
Fe of constraint function symbols, and (ii) the set F, of user defined function
symbols. Similarly, we also assume that P is the union of two disjoint sets:
(i) the set P, of constraint predicate symbols, including true and false, and

29

(ii) the set P, of user defined predicate symbols.

A term is either a variable in V or an expression of the form f (ty,...,tm),
where f is a symbol in F and t,...,t,, are terms.

An atomic formula is an expression of the form p(t,,...,t,,), where p is a
symbol in P and tq,...,t, are terms.

A formula of L is either an atomic formula or a formula constructed, as usual,
from already constructed formulas by means of connectives (-, A, V, <,)
and quantifiers (3, V). We also denote ‘<—’ by ‘:=" and ‘A’ by *,".

Let e be a term or a formula. The set of variables occurring in e is denoted by
vars(e). Similar notation will be used for denoting the set of variables occurring
in a set of terms or formulas. A term or a formula is ground if it contains
no variables. Given a set X = {Xi,...,X,} of variables, by VX ¢ we denote
the formula VX;...VX, ¢. By V(y) we denote the universal closure of ¢, that
is, the formula VX ¢, where X is the set of the variables occurring free in ¢.
Analogously, by () we denote the existential closure of . We denote a formula

¢ whose free variables are among X1, ...,X, also by ¢(Xi,...,X,).
An atomic constraint is an atomic formula p(t,,...,t,,), where p is a predi-
cate symbol in P, and ty,...,t, are terms.

A constraint c is either true, or false, or an atomic constraint, or a conjunc-
tion c1,co of constraints.

An atom is an atomic formula of the form p(t;,...,t,,), where p is a predicate
symbol in P, and ti,...,t, are terms.

A CLP program P is a finite set of clauses of the form A :-c, B, where A is
an atom, c is a constraint, and B is a (possibly empty) conjunction of atoms.
A is called the head and c, B is called the body of the clause. The clause A :-c¢
is called a constrained fact. When the constraint ¢ is true then it is omitted
and the constrained fact is called a fact. A goal is a formula of the form :-c, B
(standing for c AB — false or, equivalently, =(c AB)). A CLP program is said
to be linear if all its clauses are of the form A : - ¢, B, where B consists of at most
one atom.

The definition of a predicate p in a program P is the set of all clauses of P
whose head predicate is p.

We say that a predicate p depends on a predicate q in a program P if either
in P there is a clause of the form p(...) :-c, B such that q occurs in B, or there
exists a predicate r such that p depends on r in P and r depends on q in II.

The set of useless predicates in a program P is the maximal set I/ of predicates
occurring in P such that p is in U iff every clause v with head predicate p is of
the form p(...) <~ cAGyAq(...) AGy for some q in Y. A clause in a program P

30

is useless if the predicate of its head is a useless predicate in P.

2.1.2 Semantics of Constraint Logic Programs

We introduce a parametric (with respect to the interpretation of constraints [83),
84]) semantics of constraint logic programming. The definitions introduced in
this section rely and build upon the notions introduced for logic programs [5,
105].

A constraint interpretation D consists of: (1) a non-empty set D, called car-
rier, (2) an assignment of a function fp: D™ — D to each n-ary constraint
function symbol f in F, and (3) an assignment of a relation pp over D" to each
n-ary constraint predicate symbol p in P.. We say that £ is interpreted as fp
and p is interpreted as pp. In particular, for any constraint interpretation D,
true is interpreted as the relation D°, that is, the singleton {()} whose unique
element is the empty tuple and false is interpreted as the empty set.

Given a formula ¢ where all predicate symbols belong to P,., we consider the
satisfaction relation D |= ¢, which is defined as usual in the first order predicate
calculus (see, for instance, [5] [105]).

Let Tp denote the set of ground terms built out of the elements of D and the
function symbols F,, in the language of P. Given a constraint interpretation D,
an interpretation of the predicate symbols in P, is called a D-interpretation and
is defined as follows.

A D-interpretation is an interpretation with universe Tp such that: (i) it
assigns to F. and P, the meaning according to D, and (ii) it is the Herbrand
interpretation [I05] for function and predicate symbols in F,, and P,. We can
identify a D-interpretation I with the set of ground atoms (with arguments in
Tp) which are true in I.

We write D | ¢ if ¢ is true in every D-interpretation. A constraint c is
satisfiable if D |= 3(c). A constraint is unsatisfiable if it is not satisfiable. A
constraint c entails a constraint d, denoted ¢ C 4, if D = V(¢ — d).

We say that a clause of the form H:-c, B is satisfiable (unsatisfiable) if ¢ is
satisfiable (unsatisfiable).

We say that a clause of the form H:-c, B is subsumed by the constrained
fact H:-d if cCd.

We say that a clause newp(X) :-c(X), Q(X) is more general than a clause
newq(X) :-d(X), QX) if d(X) Ec(X).

The semantics of a CLP program P is defined to be the least D-model of P,
denoted M (P), that is, the least D-interpretation that makes true every clause

31

of P [84].

2.2 Transformation Rules

The verification method we propose is based on transformations of CLP pro-
grams that preserve the least D-model semantics [57, [60]. The process of trans-
forming a given CLP program P, hence deriving a new program P, consists in
constructing a transformation sequence Py, ..., P, of CLP programs such that:

(i) the initial program P is the input program P,

(ii) the final program P, is the output program P,

(iii) for k =0,...,n — 1, the program Py is obtained from P} by applying

one of the transformation rules presented in the following Definitions

We assume that in every clause the head arguments denoting elements of D
are distinct variables. This assumption is needed to guarantee that the use of
unification in the unfolding rule preserves the least D-model semantics. The
transformation rules we present are variants of the unfold/fold rules considered
in the literature for transforming (constraint) logic programs [11], 57, 60, 106
131, [135].

We start by presenting the unfolding rule which essentially consists in replac-
ing an atom A occurring in the body of a clause in Py by the bodies of the clauses
which define A in Fp.

Definition 1 (Unfolding). Given a clause C' in Py of the form H:-c,L,A,R,
where H and A are atoms, c is a constraint, and L and R are (possibly empty)
conjunctions of atoms, let {K; :=¢;,B; | i =1,...,m} be the set of the (renamed
apart) clauses in program Py such that, for i = 1,...,m, A is unifiable with X; via
the most general unifier ¥; and (c,c;)9; is satisfiable. We define the following
function Unf:

Unf(C,A) ={(H:-c¢c,c;,L,B;,R)¥; | i=1,...,m}
Each clause in Unf(C, A) is said to be derived by unfolding C' with respect to A. By
unfolding C' in Py w.r.t. A we derive the program Py1 = (P, —{C})U Unf(C,A).

We present a rule to remove: (i) unsatisfiable clauses, (ii) subsumed clauses,
and (iii) useless clauses.

Definition 2 (Clause removal). Let C be a clause in P, of the form H : - ¢, A.
By clause removal we derive the program Py.q = P, — {C} if either (i) the
constraint c¢ is unsatisfiable, or (ii) C' is subsumed by a clause occurring in
P, — {C}, or (iii) C is useless in P.

32

We present a rule to replace a constraint occurring in the body of a clause by
an equivalent disjunction of constraints.

Definition 3 (Constraint replacement). Given a clause C of the form:

H :- co, B, and some constraints cy, ..., cy such that
AEVY((Foco)>(FXKiciv ... vIXpcy))

where, for i=0,...,n, X;j = wars(ci)—vars(H,B), then, we derive n clauses

C1,...,C, obtained by replacing in the body of C' the constraint co by the n

constraints cy,...,cpn, respectively. By constraint replacement we derive the

program Py = (P, — {C})U{Cy,...,Cy}.

A transformation sequence P, ..., Py introduces a set Defs,, of new predicate
definitions through the following rule.

Definition 4 (Definition introduction). A definition is a clause C of the
form: newp(X) :-c, A, where: (i) newp is a fresh new predicate symbol not
occurring in { Py, ..., P}, (ii) X is the tuple of distinct variables occurring in A,
(iii) c is a constraint, and (iv) every predicate symbol occurring in A also occurs
in Py. By definition introduction we derive the program Py = P, U {C}.

The folding rule consists in replacing an instance of the body of the definition
of a predicate by the corresponding head.

Definition 5 (Folding). Given a clause E: H:-e, L, A, R in P; and a clause
D: K:-4d,D in Defs,. Suppose that, for some substitution ¥, (i) A =D, and
(ii) e C d9. Then by folding E using D we derive the clause F: H:-e,L,K9, R
and the program Py, = (P, — {E}) U{F'}.

The following Theorem states that, under suitable conditions, the transfor-
mation rules preserve the least D-model of the initial program F.

Theorem 1 (Correctness of the Transformation Rules). Let Py be a CLP
program and let Fjy,..., P, be a transformation sequence obtained by applying
the transformation rules. Let us assume that for every k, with 0 <k <n—1, if
Py, is derived by applying folding to a clause in P, using a clause D in Defsy,
then there exists j, with 0 < j < n—1, such that: (i) D belongs to P;, and
(ii) Pj41 is derived by unfolding D with respect to the only atom in its body.
Then, for every ground atom A whose predicate occurs in Py, we have that
Ae M(Py) iff Ae M(FP,).

Proof. The result is proved in [57, 61]. O

33

CHAPTER 3

Generating Verification Conditions
by Specializing Interpreters

Verification conditions can be automatically generated either from a formal spec-
ification of the operational semantics of programs [I19] or from the proof rules
that formalize program correctness in an axiomatic way [74].

We address the problem of generating verification conditions by following an
approach based on program specialization techniques. Program specialization is
a program transformation technique which, given a program P and a portion in;
of its input data, returns a specialized program Ps that is equivalent to P in
the sense that when the remaining portion iny of the input of P is given, then
Ps(ing) = P(inl, iTLQ) [65, 93, 101].

In this thesis we follow an approach which can be regarded as a generaliza-
tion of the one proposed in [I19]. Given an incorrectness triple of the form
Lot} Prog {perror}, where: (i) the imperative program Prog is written in
a programming language L, and (ii) the formulas @, and @epor are specified
in a logic M, we generate the verification conditions for checking whether or
not { it} Prog {@error } holds by: (1) writing the interpreter I encoding the
semantics of L and M in CLP, and (2) specializing the interpreter I with respect
to the given incorrectness triple.

The result of this transformation step, called Verification Conditions Generation,
is an equivalent CLP program, say V, with respect to the properties of interest
where the clauses of the interpreter I no longer occur. Since any reference to the
statements of the original imperative program Prog is compiled away, the set of
clauses V represents a set of verification conditions for Prog, and we say that they
are satisfiable if and only if incorrect ¢ M (V) (or equivalently V[~ incorrect).

35

Thus, the satisfiability of the verification conditions V guarantees that Prog is
correct with respect to @i and @epror-

This chapter is organized as follows. In Section [3.1] we present the syntax of
our imperative language and the CLP encoding of imperative programs produced
by the CLP Translation step. In Section[3.2] we define the CLP program encoding
the semantics of the imperative language. In Section we present the proof
rules for proving partial correctness of imperative programs. In Section we
establish the soundness of the encodings presented in Sections and
Finally, in Section we present the specialization strategy to perform the
Verification Conditions Generation step.

3.1 Encoding Imperative Programs into CLP

We consider an imperative programming language, subset of the C language [94],
whose abstract syntax is shown in Figure 2| We assume that: (i) every label
occurs in every program at most once, (ii) every variable occurrence is either
a global occurrence or a local occurrence with respect to any given function
definition, (iii) in every program one may statically determine whether any given
variable occurrence is either global or local. Note that there are no blocks, and
thus no nested levels of locality. We also assume that: (i) there are no definitions
of recursive functions, (ii) there are no side effects when evaluating expressions
and functions, and (iii) there are neither structures, nor pointers.

A program Prog whose initial declarations are of the form: type 21;...; type 2,
is said to act on the global variables z1, ..., 2,.. Without loss of generality, we
also assume that the last command of every program is ¢,: halt which, when
executed, causes program termination (it essentially encodes the return of the
main function of C programs).

In order to simplify the analysis we use the C Intermediate Language [115]
tool to compile the program into a simplified subset of the C language, and
we use the CIL API to define a visitor that realizes the CLP Translation step
of the verification framework depicted in Figure In particular, we use the
CIL front-end to translate any C program into a simpler program Prog which
consists only of labelled commands (for reasons of brevity, we will feel free to say
‘command’, instead of ‘labelled command’). For instance, the while command is
reduced to a suitable sequences of if-else and goto commands. This translation
makes the task of generating verification conditions for the program easier. In
particular, given a C program Prog, our CIL visitor produces a set of facts
defining the predicate at (Lab,Cmd) which encodes commands, where Lab is the

36

x,y,... € Vars (variable identifiers)
fig,... € Functs (function identifiers)
0, ly,... € Labs (labels)
const € Z (integer constants, character constants, .. .)
type € Types (int, char, ...)
uop, bop € Ops (unary and binary operators: +,—, <,...)
(prog) == (decl)” (fundef)* (labcmd)™; #,: halt (programs)
(decl) = type x (declarations)
(fundef) = type f ({(decl)™) {(decl)* (labcmd)™} (function definitions)
(labcmd) ::= ¢: (cmd) (labelled commands)
(cmd) z = (expr)

z = f ({expr)*)

return (expr)

goto /
if ((expr)) {1 else {y
(expr) const | x | wop (expr) | (expr) bop (expr) (expressions)

Figure 2: Abstract syntax of the imperative language. The superscripts + and *
denote non-empty and possibly empty finite sequences, respectively.

label associated with the command Cmd.
We show how this encoding can be done through the following example.

Example 2 (Encoding of an imperative program). Let us consider the
following program sum acting on the global variables x, y, and n:

int x, y, n;

while (x<n) {
x=x+1;
Y=XYY;

}

Listing 3.1: Program increment

The while command is reduced into the following sequence of labelled com-
mands by the CIL visitor:

1. £y : if (x<n) /o else /y;

2. 01 : x=x+1;
3. Uy y=x+y;
4. l3: goto lp;
5. ¢y : halt;

37

Then, this sequence of statements is translated into the following set of facts:

1. at(0,ite(less(id(x),id(n)),1,h)).

2. at(1,asgn(id(x) ,expr(plus(id(x),int(1))),2)).

3. at(2,asgn(id(y),expr(plus(id(x),id(y))),3)).

4. at(3,goto(0)).

5. at(h,halt).
The facts encode the labelled commands at lines Note that the defini-
tion of at also includes information about the control flow of the program. For
instance, the third argument of the fact at line [2| represents the label of the com-

mand to be executed after the assignment is performed, that is, the command
at line 3] .

3.2 Encoding Operational Semantics into CLP

In this section we present the CLP clauses which encode the semantics of the
imperative language L shown in Figure
Let us first introduce the following data structures.

(i) A global environment 6 : Vars — 7 is a function that maps global variables
to their values.

(ii) A local environment o: Vars — Z is a function that maps function param-
eters and local variables to their values.

(iii) An activation frame is a triple of the form (¢, y, o), where: (1) £ is the label
where to jump after returning from a function call, (2) y is the variable
that stores the value returned by a function call, and (3) o is the local
environment to be initialized when making a function call.

(iv) A configuration is a pair of the form (c, e)), where c is a labelled command e
is an environment of the form (0, 7) consisting of a global environment § and
a list 7 of activation frames. We operate on the list 7 of activation frames
by the usual head (hd) and tail (t]) functions and the right-associative list
constructor cons (:). The empty list is denoted by []. Given a function f, a
variable identifier x, and an integer v, the term update(f,x,v) denotes the
function f’ that is equal to f, except that f'(x)=wv.

For any program Prog (see Figure [2), for any label ¢, (i) at(¢) denotes the
command in Prog with label ¢, and (ii) nextlab(¢) denotes the label of the com-
mand in Prog that is written immediately after the command with label £. Given
a function identifier f, firstlab(f) denotes the label of the first command of the

38

definition of the function f in Prog. For any expression e, any global envi-
ronment J, and any local environment o, [e] 0 o is the integer value of e. For
instance, if = is a global variable and §(x)=5, then [z+1] 00 = 6.

The semantics of our language is defined by a transition relation, denoted =,
between configurations. That relation, denoted =, is defined by the following
rules R1-R5.

(R1). Assignment. Let hd(7) be the activation frame (¢,y,o) and v be the
integer [e] 0 o.
If is a global variable:
(C:x=e, (6, 7)) = {(at(nextlab(¥)), (update(d,z,v), 7))
If x is a local variable:
(l:x=e, (6, 7)) = {(at(nextlab(¥)), (0, (¢ y, update(c,z,v)):tl(T)))

Informally, an assignment updates either the global environment ¢ or the local
environment o of the topmost activation frame (¢, y, o).

(R2). Conditional. Let hd(T) be the activation frame (¢, y, o).
If [e] 6 o =true:
(€: if (e) 01 else by, (4, 1)) == (at(f1), (5, 7))
If [e] 6 o= false:
{(€: if (e) ¢y else Ly, (3, T)) = {(at(l2), (d, T))
(R3). Jump.
(€: goto £/, (5, 7)) = (at(l), (5, 7))
(R4). Function call. Let hd(7) be the activation frame (¢',y, o). Let {x1,..., 2%}

and {y1,...,yn} be the set of the formal parameters and the set of the local
variables, respectively, of the definition of the function f.

(l:x=fC(e1,....ex), (0, 7)) == (at(firstlab(f)), (6, (nextlab(f),x,a):7))

where 7 is a local environment of the form: {(z1,[ei]do),..., (zk, [er]d0),
(y1,m1), ..., {yn,np)}, for some values nq,...,n, in Z (indeed, when the local
variables y1, ...,y are declared, they are not initialized). Note that since the

values of the n;’s are left unspecified, this transition is nondeterministic.

Informally, a function call creates a new activation frame with the label where
to jump after returning from the call, the variable where to store the returned
value, and the new local environment.

(R5). Return. Let 7 be (¢, y,o) : (¢",z,0") : 7 and v be the integer [e] d o.
If y is a global variable:

39

(¢:returne, (6, 7)) = (at(l'), (update(s,y,v), t(7)))
If y is a local variable:
(¢:returne, (5, 7)) = (at(¥'), (5, (¢ z, update(c’ y,v)):7"))

Informally, a return command first evaluates the expression e and computes
the value v to be returned, then erases the topmost activation frame (¢, y, o),
and then updates either the global environment ¢ or the local environment o’
of the new topmost activation frame (¢”, z, o).

Obviously, no rule is given for the command halt, because no new configuration
is generated when halt is executed.

The CLP interpreter for the imperative language is given by the following
clauses for the binary predicate tr that relates old configurations to new con-
figurations and defines the transition relation =-. A configuration of the form
(e, (0,7)), where ¢ is a command and (4, 7) is an environment, is encoded by
using the term cf (c,e), where c and e are terms encoding ¢ and (0, 7), respec-
tively. We have the following clauses encoding rules R1-R5: (R1) assignments
(clause [6)), (R2) conditionals (clauses [7] and [§), (R3) jumps (clause [9), and (R4
) function calls (clause [L0)), and (R5) function returns (clause [11), defined as

follows.

6. tr(cf(cmd(L,asgn(Id,Ae,Lp)),E), cf(cmd(Lp,C),Ep)) :-
aeval (Ae,E,Val), update(Id,Val,E,Ep), at(Lp,C).

where: (i) the term asgn(Id,Ae,Lp) encodes the assignment of the value of
the expression Ae to a variable Id, and (ii) E is a pair of lists of the form
(G1b,Af1l) encoding the global environment ¢ and the list of activation frames
T, respectively. The predicate aeval(Ae,E,Val) computes the value Val of
the expression Ae in the environment E. The predicate update(Id,Val,E,Ep)
updates the environment E by binding the variable Id to the value Val, thereby
constructing a new environment Ep. In particular, it updates either the list
Glb, or the list Loc encoding the local environment of the topmost activation
frame [Ret,RId,Loc] in the list Af1. The information about the scope of a
program variable is encoded in Id.

7. tr(cf(cmd(L,ite(Be,Lt,Le)) ,E), cf(cmd(Lt,C),E)) :-
beval(Be,E), at(Lt,C).

8. tr(cf(cmd(L,ite(Be,Lt,Le)),E), cf(cmd(Le,C),E)) :-
beval(not(Be) ,E), at(Le,C).

40

where the term ite(Be,Lt,Le) encodes the boolean expression Be and the la-
bels Lp and Le where to jump according to the evaluation beval (Be,E) of Be
in the environment E. The predicate beval(Be,E) holds if Be is true in the
environment E.

9. tr(cf(cmd(L,goto(Lp)),E), cf(cmd(Lp,C),E)) :- at(Lp,C).
where Lp is the label of the next command cmd(Lp,C) to be executed.

10. tr(cf(cmd(L,call(F)),E),cf(cmd(Lp,C),Ep)) :-
prologue(F,E,Lp,Ep), at(Lp,C).

where F is a list of the form [Ael,RId,Lp,Ret], defined as follows: (i) Ael
is the list of the actual parameters, (ii) RId is the variable where to store the
returned value, (iii) Lp is the label of the first command C in the definition of
the function F, and (iv) Ret is the label where to jump after returning from the
function call. The predicate prologue(F,E,Lp,Ep): (1) builds the new local
environment Loc, where the body of the function should be executed, by evalu-
ating the list of the actual parameters Ael in the environment E, and (2) adds a
new activation frame of the form [Ret,RId,Loc] to E thereby producing a new
environment Ep.

11. tr(cf(cmd(L,ret(Ae)),E),cf(cmd(Lp,C),Ep)) :-
epilogue(Ae,E,Lp,Ep), at(Lp,C).

where ret (Ae) encodes the expression Ae returned from a function call. The
predicate epilogue(Ae,E,Lp,Ep): (1) computes the value Val of the expression
Ae in the environment E, (2) updates the environment E by binding the variable
RId (that is, the variable where to store the value returned by the called funtion)
to the value Val, and (3) erases the topmost activation frame [Lp,RId,Loc] from
E, thereby producing a new environment Ep.

Note that the CLP clauses 6-11 are clauses without constraints in their bodies.
However, constraints are used in the definitions of the predicates aeval and
beval.

3.3 Encoding Partial Correctness into CLP

In this section we introduce the clauses which encode the semantics of the logic
M, that is, the reachability relation which allows us to prove the partial cor-
rectness of imperative programs.

The problem of verifying the correctness of a programs Prog is the problem
of checking whether or not, starting from an initial configuration, the execution

41

of Prog leads to a so-called error configuration. This problem is formalized by
defining an incorrectness triple of the form:

Lomit(z1,. .., 2)} Prog {verror(z1,- -+, 2r) }
where:
(i) Progis a program acting on the global variables z1, ..., 2,
(ii) wimit(21,---,2r) is a disjunction of constraints that characterizes the values
of the global variables in the initial configurations, and
(iii) Yerror(#1,- - -, 2r) is a disjunction of constraints that characterizes the values
of the global variables in the error configurations.

Note that our notion of correctness is equivalent to the usual notion of partial
correctness specified by the Hoare triple {pini} prog {—@error }-

We say that a program Prog is incorrect with respect to a set of initial con-
figurations satisfying @i (21, ..., 2-) and a set of error configurations satisfying
Yerror(21, -+, zr) or simply, Prog is incorrect with respect to @i and Qepror,
if there exist two global environments d;,;; and 04y such that the following
conjunction holds:

Spinit(éinit(zl)’ ceey 5init(zr))
A (emit; Oinat,[1)) =" (Chatt, (Onait [1)) (1)
A 906rror(5halt(zl)a ceey 5halt(zr))
where: ¢ is the first command of Prog and, as already mentioned, cpqy is the
last command of Prog. As usual, =" denotes the reflexive, transitive closure
of =. The definition of incorrectness (f) can be easily translated into CLP as
follows:

12. incorrect :- initConf (X), reach(X).

13. reach(X) :- tr(X,X1), reach(X1).

14. reach(X) :- errorConf (X).

15. initConf (cf(cmd(0,C),E)) :- at(0,C), philnit(E).

16. errorConf (cf(cmd(h,halt),E)) :- phiError(E).

where: (i) the predicate tr represents the transition relation =, (ii) the predi-
cate reach represents the reachability of the error configurations, (iii) the pred-
icate initConf represents the initial configurations, (iv) the predicate philnit
represents the initial property @i, (v) the predicate errorConf represents the
error configurations, and (vi) the predicate phiError represents the error prop-
erty error-

Example 3 (Enconding of an incorrectness triple). Let us consider the in-
correctness triple {@imi(z,y,n)} sum {@error(z,y,n)}, where: (i) wii(z,y,n)

42

isx=0Ay=0, (ii) Yerror(z,y,n) is x>y, and (iii) sum is the program defined
in Example

The formulas @i (z, y,n) and @epor(x,y,n) are encoded as follows:
17. phiInit (([[int(x),X], [int(y),Y], [int(n),N]1],[1)) :- X=0, Y=0.
18. phiError(([[int(x),X], [int(y),Y], [int(n),N]1,[1)) :- X>Y.
In clauses and the pair ([[int(x),X], [int(y),Y], [int(n),N1],[])
encodes the program environment. The first component, that is the global envi-
ronment, is the list [[int(x),X], [int(y),Y], [int(n),N]] that provides the
bindings for the global variables z,y, and n, respectively. The second compo-
nent, that is, the list of activation frames, is the empty list []. O

3.4 Soundness of the CLP Encoding

In this section we establish the soundness of the CLP encodings presented in
the previous sections.
Let us first introduce the definition of CLP Encoding.

Definition 6 (CLP Encoding). Let us consider an incorrectness triple of
the form {pini} Prog {©@error}- Let T be the CLP program consisting of the
clauses that defines the predicates phiInit, at, and phiError encoding the ini-
tial property @init, the imperative program Prog, and the error property werror,
respectively. Let I the CLP program consisting of the clauses encoding
the interpreter for the correctness problem. The CLP program, say it P, which
is the union of T and I, is called the CLP Encoding of the correctness problem

for {Samzt} Prog {¢ermr}~

The following result establishes that the CLP Encoding is sound.

Theorem 2 (Soundness of the CLP Encoding). Let P be the CLP Encoding
of the correctness problem for {@imi} Prog {wermor}}. The program Prog is
correct with respect to @i and @epor if and only if incorrect ¢ M (P).

Proof. In the CLP program P, the predicate tr encodes the transition
relation = associated with the given imperative program Prog, that is,
P | tr(cfl,cf2) if and only if ¢f, = cf,, where cf1 and cf2 are terms
encoding the configurations c¢f; and cf,, respectively. The predicates initConf
and errorConf encode the initial and error configurations, respectively, that is,
the following Properties (A) and (B) hold.

43

Property (A): P = initConf (init-cf) iff init-cf is the term encoding a
configuration of the form (o :co, (dinit, [])) such that @i (dimi(21), - - -, dinit(zr))
holds, and

Property (B): P = errorConf (error-cf) iff error-cf is the term encoding
a configuration of the form ((¢5 :halt, (Opait,[])) such that ©error(dnait(21),-- -,
5halt(zr)) holds.

By clauses [13|and [14]of the CLP program P and Property (B), for any configu-
ration ¢f encoded by the term cf, we have that P = reach(cf) iff there exists a
configuration cfj, of the form (¢ :halt, (dpau, [])) such that ©error(dnait(21), - - -,
Onat(zr)) holds and cf =* cf;,.

Now, by clause of the CLP program P and Property (A), we get that
P |= incorrect iff there exist configurations cfy and cf;, such that the following
hold:

1) Cfo is of the form «60 1 Co, <5inz’t7 H>>>,

~—

1 ‘Pinit(éinit(zl)’) 5init(zr))7

(i
(..

(ili) cfy =" c/u,

(iv) cfy, is of the form (¢ :halt, (Opai,[])), and
(V Soerror(éhalt(zl)a sy 5halt(zr))-

Thus, by the definition of incorrectness, P |= incorrect iff Prog is incorrect
with respect to the properties @init and @eror. The thesis follows from the fact
that P = incorrect iff incorrect € M (P) [84]. O

3.5 The Specialization Strategy

In this section we present a transformation strategy, called Specialize,,, which
realizes the Verification Conditions Generation step of the verification framework.
In particular, Specialize,, unfolds away the relations on which incorrect de-
pends and introduces new predicate definitions corresponding to (a subset of)
the ‘program points’ of the original imperative program. The transformation
strategy Specialize,., specializes the CLP Interpreter I, consisting of clauses
with respect to the CLP encoding of the incorrectness triple T, consisting of
the clauses defining the predicates at, phiInit, and phiError.

The result of this first transformation step is a new CLP program V, such that
incorrect € M (P) iff incorrect € M(V).

The transformation strategy Specialize,;, shown in Figure[3| makes use of the
following transformation rules: Unfolding, Clause removal, Definition introduc-
tion, and Folding.

44

In order to perform the UNFOLDING phase, we need to annotate the atoms
occurring in bodies of clauses as either unfoldable or not unfoldable. This an-
notation, which is a critical part of a transformation strategy, ensures that any
sequence of clauses constructed by unfolding w.r.t. unfoldable atoms is finite.
We will see a possible choice for this annotation in Example 4l We refer to [101]
for a survey of techniques for controlling unfolding that guarantee this finiteness
property.

In order to perform the DEFINITION INTRODUCTION phase, we make use
of a set Defs of definitions arranged as a tree whose root is the initial input
clause incorrect: - initConf (X) , reach(X) considered at the beginning of the
specialization process. Each new definition D introduced during specialization
determines a new node of a tree which is placed as a child of the definition
C, and represented by child(D,C), if it has been introduced to fold a clause
obtained by unfolding C'. The root is represented by child(D, T). We define the
ancestor relation as the reflexive, transitive closure of the child relation.

3.5.1 Termination and Soundness of the Specialization Strategy

The following theorem establishes the termination and soundness of the Special-
izeqycqy Strategy.

Theorem 3 (Termination and Soundness of the Specialize,,, strategy).
(i) The Specialize,, strategy terminates. (ii) Let program V be the output of the
Specialize,, strategy applied on the input program P. Then incorrect € M (P)
iff incorrect € M(V).

Proof. (i) In order to prove the termination of the Specialize,,, procedure we
assume that the unfoldable annotations and not unfoldable annotations guar-
antee the termination of the UNFOLDING while-loop (al). Since the CLAUSE
REMOVAL while-loop (a2), the DEFINITION INTRODUCTION while-loop (a3), and
the FOLDING while-loop (8) clearly terminate, we are left with showing that
the first, outermost while-loop («) terminates, that is, a finite number of new
predicate definitions is added to InCls by DEFINITION INTRODUCTION. This
finiteness is guaranteed by the following facts:

(1) all new predicate definitions are of the form newk(Y) :- reach(cf (cmd,E))
where reach(cf(cmd,E)) is the atom with fresh new variables occurring in
the body of the clause to be folded (this construction ensures that every other
clause whose atom occurring in the body is a variant of reach(cf (cmd,E)) can
be folded using such a definition), and (2) only a finite set of configurations is

45

Input: Program P.
Output: Program V such that incorrect € M(P) iff incorrect € M(V).

INITIALIZATION:

V=0,

InCls := { incorrect :- initConf(X), reach(X) };
Defs := ();

(o) while in InCls there is a clause C' that is not a constrained fact do

UNFOLDING:
SpC = Unf(C, A), where A is the leftmost atom in the body of C;

(al) while in SpC there is a clause D whose body contains an
occurrence of an unfoldable atom A do
SpC = (SpC—{D})U Unf(D, A);
end-while;
CLAUSE REMOVAL:
(a2) while in SpC there are two distinct clauses D1 and D such that
D subsumes Dy do
SpC:= SpC — {D};
end-while;
DEFINITION INTRODUCTION:
(a3) while in SpC there is a clause D of the form
H(X) :-c(X,Y), reach(cf(cmd,E)), where: c(X,Y) is a
constraint and cf (cmd,E) is a configuration with Y C vars(E),
such that it cannot be folded using a definition in Defs do
Defs := DefsU {child(newk (Y) :- reach(cf(cmd,E)),C)};
InCls := InCls U { newk(Y) :- reach(cf(cmd,E))};

end-while;
InCls := InCls — {C'};
V:i=VUSpC
end-while;

FOLDING:
(8) whilein V there is a clause E that can be folded

by a clause D in Defs do
V:= (V—{E})U{F}, where F is derived by folding E using D;

end-while;

Remove from V all clauses for predicates on which incorrect does not depend.

46

Figure 3: The Specialize,., Procedure.

generated during the specialization process. All configurations are of the form
cf(cmd,E), where: (2.1) the term cmd ranges over the set of commands belong-
ing to the imperative program, and (2.2) the term E ranges over the set of terms
encoding environments. Since the set of commands in a program is finite, then
the set at point (2.1) is finite. An environment E is encoded as a pair of list:
a list of global variables and a list of activation frames (each of which contains
a local environment). Since the number of program variables is finite, then the
global and the local environments are finite lists. Moreover, since we do not con-
sider recursive functions, then the list of activation frames is finite. Hence, the
list at point (2.2) is finite. (3) no two new predicate definitions that are equal
modulo the head predicate name are introduced by DEFINITION INTRODUCTION
(indeed, DEFINITION INTRODUCTION introduces a new predicate definition only
if the definitions already present in Defs cannot be used to fold clause E).

(ii) in order to prove the soundness of Specialize,,, we need to ensure that
Specialize,., enforces all the applicability conditions for the unfolding and fold-
ing rules presented in Chapter 2 The Specialize,, procedure constructs a trans-
formation sequence Fj,..., Py, such that:

(1) Py is P, and

(2) P, is (P — {incorrect:-initConf (X), reach(X)})U P’, where P’ is the
value of V at the exit of the FOLDING while-loop ().

The hypothesis of the Theorem [1| (Correctness of the Transformation Rules)
is fulfilled, as all clauses in Defs are unfolded. Thus, incorrect € M (P) iff
incorrect € M(P,). The thesis follows from the fact that, by deleting from P,
the clauses defining predicates on which incorrect does not depend, we get a
final program V such that incorrect € M (V) iff incorrect € M(P,). O

Example 4 (Generating Verification Conditions). Let us consider again
the incorrectness triple {z=0A y=0} sum {z >y}}. In order to generate the
verification conditions for sum we apply the Specialize,, strategy.

In order to guarantee the termination of the Unf procedure, an atom A in the
body of a clause CI is unfoldable iff one of the following conditions holds:

(i) the predicate of A is different from reach,

(ii) A is of the form reach(cf(cmd(L,C),E)) and C is either ret(Ae), or
asgn(Id,expr(Ae),L1), or halt,

(iii) A is of the form reach(cf(cmd(L,goto(L1)),E)) and CI has not been
derived (in one or more steps) by unfolding a clause with respect to an
atom of the form reach(cf (cmd(L,goto(L1)),E)).

Note that a reach atom containing a command of the form asgn(x,call(...))

47

is assumed to be not unfoldable. Condition (iii) allows unfolding with respect
to a reach atom containing a goto command, but prevents infinite unfolding.
(Recall that we have assumed that the imperative program Prog does not contain
definitions of recursive functions.) Finally, note that a reach atom containing
an ite command is not unfoldable, and hence a potential exponential blowup
due to the unfolding of conditionals is avoided. Indeed, it can easily be shown
that the size of the output V of Specialize,, is linear with respect to the size of
P (and thus, also with respect to the size of the imperative program Prog of the
triple encoded by T).

In order to perform folding, a clause C is folded using either (i) the clause
introduced during the DEFINITION INTRODUCTION, (ii) the clause, say D, from
which C has been derived, or (iii) the most recent ancestor of D.

We apply the Specialize,, strategy as we now show.

The INITIALIZATION procedure performs the assignments: V:= 0, InCls:=
{incorrect :- initConf(X), reach(X)} (that is, clause[12)), and Defs:=0.

Since InCls # (), Specialize,, enters the while-loop (a). First, the UNFOLDING
loop (al) executes the assignment SpC:=Unf (12} initConf (X)), which unfolds
clause [12] w.r.t. the atom initConf(X). We get:

19. incorrect :-X=0, Y=0,
reach(cf(cmd(0,ite(less(int(x),int(n)),11,h)),
[[int(x),X], [int(y),Y], [int(n),N]1,[1)).
The reach atom in clause [19]is not unfoldable because it contains an ite com-
mand, hence, the while-loop («al) terminates. No clause can be removed by
CLAUSE REMOVAL loop (a2), and therefore, the while-loop («) continues by
executing the DEFINITION INTRODUCTION loop (a3). In order to fold clause
the DEFINITION-INTRODUCTION introduces the following clause:

20. newl (X,Y,N) :—reach(cf(cmd(0,ite(less(int(x),int(n)),11,h)),
[[int(x),X], [int(y),Y], [int(n),N]11,[]1)).

and performs the assignments: Defs := Defs U {child(20, T)} = {20}, and

InCls := InCls U = {[12][20]}.

The first execution of the while-loop («) terminates by performing the follow-
ing assignments: InCls:= InCls — = , and V:=VUSpC = .
Since InCls # 0, we perform a second iteration of the while-loop («). The
UNFOLDING procedure executes SpC = Unf reach(cf (cmd(0,ite(...))).
We get two clauses:
21. newl(X,Y,N) :-tr(cf(cmd(0,ite(less(int(x),int(n)),1,h)),
[[int(x),X], [int(y),Y], [int(n),N1]1,[1),Z), reach(Z).

48

22. newl(X,Y,N) :-errorConf (cf(cmd(0,ite(less(int(x),int(n)),1,h)),
[[int(x),X], [int(y),Y], [int(n),N]1,[1)).
The tr and errorConf atoms in the bodies of clauses 2I]and [22] respectively, are
unfoldable. Thus, the while-loop (al) perform some more unfolding steps and
from clause after a few steps that can be viewed as mimicking the symbolic
evaluation of the conditional command, we get the following two clauses:
23. newl (X,Y,N) :-X<N,
reach(cf(cmd(1,asgn(int (x),expr(plus(int(x),int(1))))),
[[int(x),X], [int(y),Y], [int(n),N]11,[1)).
24. newl1(X,Y,N) :-X>N,
reach(cf (cmd(h,halt), [[int(x),X], [int(y),Y], [int(n),N]11,[]1)).
Clauses 23] and [24] represent the branches of the conditional command of the im-
perative program sum. Indeed, the test on the condition less(int(x),int(n))
in the command of clause [21] generates the two constraints X<N and X>N.
Then, we delete clause [22| because by unfolding it we derive the empty set of
clauses (indeed, the term cmd (0, . . .) does not unify with the term cmd (h, ...)).
The reach atom in the body of clause [23| is unfoldable, because it contains
a command of the form asgn(int(x), expr(...)). From clause after two
unfolding steps executed by the while-loop (al), we get:
25. new1 (X,Y,N) : - X<N,
tr(cf(cmd(1,asgn(int (x),expr(plus(int(x),int(1))))),
[[int(x),X], [int(y),Y], [int(n),N1],[]1),Z)) ,reach(Z).
Then, by unfolding clause [25] with respect to tr atom in its body, we get:
26. newl (X,Y,N) :-X<N, X1=X+1,
reach(cf(cmd(2,asgn(int (y) ,expr (plus(int(x),int(y))))),
[[int (x),X1], [int(y),Y], [int (@) ,N11,[1)).
The reach atom in the body of clause is unfoldable. After two unfolding
steps, we get:
27. newl(X,Y,N) : - X<N, X1=X+1,
tr(cf(cmd(1,asgn(int (y),expr(plus(int(x),int(y))))),
[[int (x),X1], [int(y),Y], [int(@),NI11[1),Z)), reach(Z).
By unfolding clause 27 we get:
28. newl(X,Y,N) :-X<N, X1=X+1, Y1=X1+Y, reach(cf (cmd (3,goto(10)),
[[int(x),X1], [int(y),Y1], [int(n),N]11,[1)).
The sequence of clauses and [28] which we have obtained by unfolding,
mimics the execution of the sequence of the four commands: (i) fo: if (x<n) (1;

49

else fy, (ii) ¢1: x=x+1, (iii) f5: y=x+y, and (iv) ¢3: goto ¢y (note that in those
clauses the atoms reach(cf (cmd(i,C) ,E)), for i=0, 1,2, 3). Indeed, in general,
by unfolding one can to perform the symbolic execution of the commands of any
given program. The conditions that should hold so that a particular command
cmd (¢,C) is executed, are given by the constraints in the clause where the atom
reach(cf(cmd(¢,C),E)) occurs.

The reach atom in the body of clause [2§] is unfoldable, because clause [2§]
has not been derived from another clause containing a goto command. From
clause [28] after some more unfolding steps, we get:

29. newl (X,Y,N) :—X<N, X1=X+1, Y1=X1+Y,
reach(cf(cmd(0,ite(less(int(x),int(n)),1,h)),
[[int (x),X1], [int(y),Y1], [int () ,N1]1,[1)).
The reach atom in the body of clause 29]is not unfoldable, because it contains
the ite command.

Also the reach atom in the body of clause which represents the else branch
of the conditional command, is unfoldable. After two unfolding steps, we get:

30. newl(X,Y,N) :-X>N, errorConf (cf (cmd(h,halt),
[[int(x),X], [int(y),Y], [int(n),N]1,[1)).

Then, by unfolding clause [30] we get:
31. newl1(X,Y,N) : - X>N, X>Y.

Since in clauses |29 and no unfoldable atoms occur the while-loop (al)
terminates with SpC := {29} 31}

The DEFINITION INTRODUCTION procedure terminates without introducing
any new definition. Indeed, clause 29 can be folded using definition 20} The sec-
ond execution of the while-loop («) terminates by performing the assignments:
InCls := InCls — {20} = (), and V:= VU SpC' = B1]}.

Since InCls = (), the while-loop («), proceeds by executing the FOLDING pro-
cedure, which concludes the Specialize,,, strategy. By folding clauses
using definition [20] we get the following final program V:

32. incorrect :-X=0, Y=0, newl1 (X,Y,N).

33. newl(X,Y,N) : - X<N, X1=X+1, Y1=X1+Y, new1 (X1,Y1,N).

34. newl(X,Y,N) :-X>N, X>V.

Note that the application of the folding rule on clause 29| using the definition

for predicate newl has been possible because the execution of the program goes
back to the ite command to which the definition of newl refers. O

50

3.6 Related Work

The idea of encoding imperative programs into CLP programs for reasoning
about their properties was presented in various papers [16] 63, 88| 119 127],
which show that through CLP programs one can express in a simple manner
both (i) the symbolic executions of imperative programs, and (ii) the invariants
that hold during their executions.

The use of constraint logic program specialization for analyzing imperative
programs has also been proposed by [I19], where the interpreter of an imperative
language is encoded as a CLP program. Then the interpreter is specialized with
respect to a specific imperative program to obtain a residual program on which
a static analyzer for CLP programs is applied.

The verification method presented in [63] is based on a semantics preserv-
ing translation from an imperative language with dynamic data structures and
recursive functions into CLP. This translation reduces the verification of the
(in)correctness of imperative programs to a problem of constraint satisfiability
within standard CLP systems.

51

CHAPTER 4

Verifying Programs by
Specializing Verification Conditions

In this chapter we show how program specialization can be used not only as
a preprocessing step to generate verification conditions, but also as a means
of analysis on its own, as an alternative to static analysis techniques of CLP
programs.

Let us consider an incorrectness triple of the form { @it} Prog {@error}. Ac-
cording to the method proposed in Chapter [3] we have that the CLP program V,
obtained at the end of the Verification Conditions Generation step, consists of a
set of clauses representing the verification conditions for proving the partial cor-
rectness of Prog with respect to @ini and @epror. By Theorems[2|and [3] checking
the satisfiability of the verification conditions for Prog reduces to check whether
or not the atom incorrect is a consequence of V.

Unfortunately, the problem of deciding whether or not incorrect is a con-
sequence of V is undecidable. Consequently, verification methods based on top-
down, bottom-up, and tabled query evaluation strategies may not terminate. In
order to cope with this undecidability limitation, and improve the termination
of the verification process, we propose a strategy based on program special-
ization. In particular, instead of applying program analysis techniques to the
CLP program V, in the Verification Conditions Transformation step we further
specialize V with respect to the initial property ;,i, thereby deriving a new
CLP program S, which is equivalent to V with respect to the property of inter-
est, that is, incorrect € M (V) iff incorrect € M(S). The effect of this further
transformation is the modification of the structure of V and the explicit addition
of new constraints that denote invariants of the computation. Through various

53

experiments we show that by exploiting these invariants, the construction of the
least model of the CLP program S, which is realized in the Verification Con-
ditions Analysis step through a bottom-up evaluation procedure, terminates in
many interesting cases and, thus, it is possible to verify the correctness of Prog
with respect to @i and @epror by simply inspecting that model.

An essential ingredient of program specialization are the generalization oper-
ators, which introduce new predicate definitions representing invariants of the
program executions. Generalizations are used to enforce the termination of
program specialization (recall that program specialization terminates when no
new predicate definitions are introduced) and, in this respect, they are similar
to the widening operators used in static program analysis [30, [34]. One prob-
lem encountered with generalizations is that sometimes they introduce predicate
definitions which are too general, thereby making specialization useless. We in-
troduce a new generalization strategy, called constrained gemeralization, whose
objective is indeed to avoid the introduction of new predicate definitions that
are too general.

The basic idea of constrained generalization is related to the branching be-
havior of the unfolding steps, as we now indicate. Given a sequence of unfolding
steps performed during program specialization, we may consider a symbolic eval-
uation tree made out of clauses, such that every clause has as children the clauses
which are generated by unfolding that clause. Suppose that a clause v has n
children which are generated by unfolding using clauses 71, ..., ., and suppose
that during program specialization we have to generalize clause . Then, we
would like to perform this generalization by introducing a new predicate defini-
tion, say §, such that by unfolding clause d, we get again, if possible, n children
and these children are due to the same clauses 71, ..., Vn.

Since in this generalization the objective of preserving, if possible, the branch-
ing structure of the symbolic evaluation tree, is realized by adding extra con-
straints to the clause obtained after a usual generalization step (using, for in-
stance, the widening operator [30] or the convex-hull operator [34]), we call this
generalization a constrained generalization. Similar proposals have been pre-
sented in [I5, [78] and in Section we will briefly compare those proposals
with ours.

This chapter is organized as follows. In Section [I.I] we outline our software
model checking method by developing an example taken from [75]. In Sec-
tions [4.2] we describe our strategy for specializing CLP programs, and in Sec-
tion we presents some generalization operator and, in particular, our novel
constrained generalization technique. In Section [4.3] we report on some ex-

54

periments we have performed by using a prototype implementation based on
the MAP transformation system [I08]. We also compare the results we have
obtained using the MAP system with the results we have obtained using state-
of-the-art software model checking systems such as ARMC [123], HSF(C) [73],
and TRACER [85].

4.1 The Verification Method

In this section we outline our method for software model checking which is
obtained from the general verification framework (see Figure 1)) by providing
suitable subsidiary procedures that realize Step 1-Step 4.

The Software Model Checking Method
Input: An incorrectness triple {@init} Prog {@error)} and
the CLP program I defining the predicate incorrect.
Output: The answer correct iff Prog is correct with respect to @wsmir and @error-

Step 1: T:= C2CLP (Prog, ©init, Perror); P :=TUT,;
Step 2: V:= Specialize,.,(P);

Step 3: S:= Specialize,,,,(V);

Step 4: M (S) := BottomUp(S);

Return the answer correct iff incorrect & M(S).

Figure 4: The Verification Method

The CLP Translation step (Step 1) and the Verification Conditions Generation
step (Step 2), of the verification method shown in Figure [4] rely on the C2CLP
and Specialize,, procedures, respectively. In particular, in order to guarantee
the termination of the Unf subsidiary procedure of Specialize,, (see Figure ,
an atom A is selected for unfolding only if it has not been derived by unfolding
a variant of A itself.

The verification method shown in Figure [4 avoids the direct evaluation of the
clauses in the CLP program V and applies symbolic evaluation methods based
on program specialization. Indeed, starting from the CLP program V, the Verifi-
cation Conditions Transformation step (Step 3) performs a further specialization,
called the propagation of the constraints, which consists in specializing V with
respect to the constraint representing the initial property @n;, with the aim of
deriving, if possible, a CLP program S whose least model M (S) is a finite set

55

of constrained facts. The least model M (S) is computed by using a bottom-up
evaluation procedure.

In order to perform the Verification Conditions Transformation step, we pro-
pose a specialization strategy, called Specialize,,,, (see Figure @, which extends
Specialize,,, with a more powerful DEFINITION INTRODUCTION phase. In par-
ticular, the DEFINITION INTRODUCTION of Specialize,,,, makes use of general-
ization operators that are related to some abstract interpretation techniques [30]
and they play a role similar to that of abstraction in the verification methods
described in [26, 36, I]. However, since it is applied during the verification pro-
cess, and not before the verification process, our generalization is often more
flexible than abstraction.

By means of an example borrowed from [75], we argue that program special-
ization can prove program correctness in some cases where the CEGAR method
(as implemented in ARMC [123]) does not work. In particular we show that the
construction of the least model M (S) terminates and we can prove the correct-
ness of the imperative program Prog with respect to @i and @epror by showing
that the atom incorrect does not belong to that model.

Example 5 (Proving the partial correctness of an imperative pro-
gram). Let us consider the following incorrectness triple

{pini(z,y,n)} doubleLoop {@error(z,y,n)}

where: (i) oimu(z,y,n) is =0Ay=0,n >0 (ii) @eror(z,y,n) is =<y, and
(iii) doubleLoop is the program:

while (x<n) {

X = x+1;
y =y
}
while (x>0) {
x = x-1;
y =31
}

Listing 4.1: Program doubleLoop

We want to prove that doubleLoop is correct with respect to wm(z,y,n) and
Cerror (T, y,m), that is, there is no execution of doubleLoop with input val-
ues of x, y, and n satisfying @ (x,y,n), such that a configuration satisfying
Cerror (T, y,n) is reached.

56

As shown in Table of Section CEGAR fails to prove this property,
because an infinite set of counterexamples is generated (see the entry ‘oo’ for
Program doubleLoop in the ARMC column). Conversely, by applying the
specialization-based software model checking method depicted in Figure [4] we
will be able to prove that doubleLoop is indeed correct. By performing the CLP
Translation step (Step 1) and the Verification Conditions Generation step (Step 2)
of our framework we get the following CLP clauses encoding the verification
conditions for doubleLoop.

1. incorrect :- a(X,Y,N), newl(X,Y,N).

newl(X,Y,N) :- X<N, X1=X+1, Yi=Y+1, newl1(X1,Y1,N).
newl(X,Y,N) :- X>1, X>N, X1=X-1, Y1=Y-1, new2(X1,Y1,N).
newl (X,Y,N) :- X<0, X>N, b(X,Y,N).

new2(X,Y,N) :- X>1, X1=X-1, Y1=Y-1, new2(X1,Y1,N).

6. new2(X,Y,N) :- X<0, b(X,Y,N).

ou

where:

7. a(X,Y,N) :- X=1, Y=1, N>1.
8. b(X,Y,N) :- X<Y.

encode the specialized initial and error configurations (note that according to
the Unf function of the Specialize,, procedure each loop is unrolled once, and
therefore we get the atomic constraint occurring in clause .

Unfortunately, it is not possible to check by direct evaluation whether or
not the atom incorrect is a consequence of the above CLP clauses. Indeed,
the evaluation of the query incorrect using the standard top-down strategy
enters into an infinite loop. Tabled evaluation [35] does not terminate either, as
infinitely many tabled atoms are generated. Analogously, bottom-up evaluation
is unable to return an answer, because infinitely many facts for newl and new2
should be generated for deriving that incorrect is not a consequence of the
given clauses.

Then, the Verification Conditions Transformation step (Step 3) specializes the
CLP program V with respect to the property in;, thereby deriving the spe-
cialized program S. During Step 3 the constraints occurring in the definitions of
newl and new2 are generalized according to a suitable generalization strategy
based both on widening [30, 58, [62] and on the novel constrained generalization
strategy.

We proceed by following the specialization pattern described in Figure [3| for
the Step 2, but in this specialization, we also show a novel definition introduction

57

approach.
We start off by unfolding clause [I] with respect to a and we get:

9. incorrect:- X=1, Y=1, N>1, newl(X,Y,N).

Since no clause in Defs can be used to fold clause [0l we introduce the following
definition:

10. new3(X,Y,N) :- X=1, Y=1, N>1, newl(X,Y,N).

Each new definition introduced during specialization determines a new node of
a tree, called Defs, whose root is clause which is the first definition we have
introduced. The tree Defs of all the definitions introduced during the Verification
Conditions Transformation step, can be depicted as in Figure

Then, we unfold clause [I0] and we get:

11. new3(X,Y,N) :- X=1, Y=1, N>2, X1=2, Y1=2, newl(X1,Y1,N).
12. new3(X,Y,N) :- X=1, Y=1, N=1, X1=0, Y1=0, new2(X1,Y1,N).

Now, we should fold these two clauses. Let us deal with them, one at the time,
and let us first consider clause [[Il In order to fold clause [I1] we consider a
definition, called the candidate definition, which is of the form:

13. newd(X,Y,N) :- X=2, Y=2, N>2, newl(X,Y,N).

The body of this candidate definition is obtained by (i) projecting the constraint
in clause [I1] with respect to the variable N and the primed variables X1 and Y1,
and (ii) renaming the primed variables to unprimed variables. Since in Defs
there is an ancestor definition, namely the root clause with the predicate
newl in the body, we apply the widening operator, introduced in [62], to clause
and clause and we get the definition:

14. newd(X,Y,N) :- X>1, Y>1, N>1, newl(X,Y,N).

(Recall that the widening operation of two clauses cl and ¢2, after replacing
every equality A=B by the equivalent conjunction A>B, A<B, returns the atomic
constraints of clause ¢l which are implied by the constraint of clause ¢2.)

At this point, we do not introduce clause (as we would do if we perform
a usual generalization using widening alone, as indicated in [58, [62]), but we
apply our constrained generalization, which imposes the addition of some extra
constraints to the body of clause [I4] as we now explain.

With each predicate newk we associate a set of constraints, called the re-
gions for newk, which are all the atomic constraints on the unprimed variables
(that is, the variables in the heads of the clauses) occurring in any one of the
clauses for newk in the CLP program V consisting of clauses Now, let

58

newq(...) :—d, newk be the candidate definition (clause in our case). Then,
we add to the body of the generalized definition obtained by widening, say
newp(...) :-c, newk, (clause in our case), all negated regions for newk which
are implied by d.

In our example, the regions for newl are: X<N, X>1, X>N, X<0, X<Y (see
clauses and and the negated regions are, respectively: X>N, X<1,
X<N, X>0, X>Y. The negated regions implied by the constraint X=2, Y=2, N>2,
occurring in the body of the candidate clause [I3] are: X>0 and X>Y.

Thus, instead of clause we introduce the following clause (we wrote
neither X>0 nor X>1 because those constraints are implied by X>Y, Y>1):

15. newd(X,Y,N) :- X>Y, Y>1, N>1, newli(X,Y,N).

and we say that clause[15| has been obtained by constrained generalization from
clause Clause [15] is placed in Defs as a child of clause as clause [11] has
been derived by unfolding clause

Now, it remains to fold clause[12]and in order to do so, we consider the following
candidate definition:

16. new5(X,Y,N) :- X=0, Y=0, N=1, new2(X,Y,N).

Clause[L6]is placed in Defs as a child of clause[I0] as clause[I2]has been derived by
unfolding clause [I0] We do not make any generalization of this clause, because
no definition with new?2 in its body occurs as an ancestor of clause [16|in Defs.
Now, we consider the last two definition clauses we have introduced, that is,
clauses [15] and First, we deal with clause Starting from that clause, we
perform a sequence of unfolding-definition steps similar to the sequence we have
described above. During this sequence of steps, we introduce two predicates,
new6 and new7 (see the definition clauses for those predicates in Figure , for
performing the required folding steps.
Then, we deal with clause Again, starting from that clause we perform a
sequence of unfolding-definition steps. By unfolding clause w.r.t. new2 we
get an empty set of clauses for new5. Then, we also delete clause which
should be folded with definition [I6] because there are no clauses for new5.
Eventually, we get the program S made out of the following folded clauses:

17. incorrect:- X=1, Y=1, N>1, new3(X,Y,N).

18. new3(X,Y,N) :- X=1, Y=1, N>2, X1=2, Y1=2, newd(X1,Y1,N).

19. newd(X,Y,N) :- X>Y, X<N, Y>0, X1=X+1, Y1=Y+1, newd(X1,Y1,N).

20. new4(X,Y,N) :- X>Y, X>N, Y>0, N>0, X1=X-1, Y1=Y-1, new6(X1,Y1,N).

21. new6(X,Y,N) :- X>0, X>Y, X>N-1, Y>0, N>0, X1=X-1, Y1=Y-1, new7 (X1,Y1,N).

59

Defs: new3(X,Y,N) :- X=1,Y=1,N>1,newl1(X,Y,N).

new4 (X,Y,N) :- X>Y,Y>1,N>1,newl1(X,Y,N).
new5(X,Y,N) :- X=0,Y=0,N=1,new2(X,Y,N).
new6 (X,Y,N) :- X>Y,X+1>N,Y>0,N>1,new2(X,Y,N).

new7 (X,Y,N) :- X>Y,N>1,new2(X,Y,N).

Figure 5: The definition tree Defs.

22. new7(X,Y,N) :- X>0, X<Y, N>0, X1=X-1, Y1=Y-1, new7(X1,Y1,N).

This concludes the Verification Conditions Transformation step.

Now, we can perform the Verification Conditions Analysis step of our method.
This phase terminates immediately because in S there are no constrained facts
(that is, clauses whose bodies consist of constraints only) and M (S) is the empty
set. Thus, incorrect ¢ M (S) and we conclude that the imperative program
Prog is correct with respect to @it and Yerror-

One can verify that if we were to do the generalization of Step 3 using the
widening technique alone (without the constrained generalization), we could not
derive a program that allows us to prove correctness, because during Step 4 the
execution of the BottomUp procedure does not terminate. O

4.2 The Specialization Strategy

In this section we present the specialization strategy Specialize,,,, shown in
Figure @ Initially, Specialize,,,,, considers the clauses of the form:
incorrect:-ci(X), Ay(X), ..., incorrect:-c;(X), A; (X) (1)

where, for 1 < i < j, ¢; is either an atom or a constraint and 4; is a atom.

The UNFOLDING phase consists in unfolding a clause C' with respect to the
leftmost atom in its body. It makes use of the Unf function which takes as input
a clause D and an atom A, and returns as output a set SpC of satisfiable clauses

60

Input: Program P (either V or R).
Output: Program S such that incorrect € M (P) iff incorrect € M (S).

INITIALIZATION:

S:=0;

InCls := { incorrect:-c1(X), Ai(X),...,incorrect:-c; (XD, A;(X) };
Defs := ();

(o) while in InCls there is a clause C' that is not a constrained fact do

UNFOLDING:
SpC = Unf(C,A), where A is the leftmost atom in the body of C;

CLAUSE REMOVAL:
(al) while in SpC there are two distinct clauses Ey and Ey such that
FE4 subsumes Ey do
SpC:= SpC — {Es};
end-while;

DEFINITION INTRODUCTION:
(a2) while in SpC there is a clause E that is not a constrained fact
and cannot be folded using a definition in Defs do
G := Gen(E, Defs);
Defs := DefsU {child(G,C)};
InCls := InCls U {G};

end-while;
InCls := InCls — {C};
S:=8SUSpC,
end-while;
ForLpinag:

(8) whilein S there is a clause F that can be folded
by a clause D in Defs do
S:=(8—{E})U{F}, where F is derived by folding F using D;
end-while;

Remove from S all clauses for predicates on which incorrect does not depend.

Figure 6: The Specialize,,,, Procedure.

61

derived from D by a single application of the unfolding rule (see Definition [1]),
which consists in: (i) replacing an atom A occurring in the body of a clause by
the bodies of the clauses in P whose head is unifiable with A, and (ii) applying
the unifying substitution.

At the end of the Unf procedure, CLAUSE REMOVAL removes subsumed
clauses.

The specialization strategy proceeds to the DEFINITION INTRODUCTION phase
and terminates when no new definitions are needed for performing the subse-
quent FOLDING phase. Unfortunately, an uncontrolled application of the DEF-
INITION INTRODUCTION procedure may lead to the introduction of infinitely
many new definitions, thereby causing the nontermination of the specialization
procedure. In order to deal with this potential nontermination issue we intro-
duce a subsidiary procedure, called Gen, which introduces new definitions and
is parametric with respect to generalization operators.

In the following section we will define suitable generalization operators which
guarantee the introduction of finitely many new definitions.

4.2.1 Generalization Operators

In this section we define some generalization operators which are used to ensure
the termination of the specialization strategy and, as mentioned in the intro-
duction, we also introduce constrained generalization operators that generalize
the constraints occurring in a candidate definition and, by adding suitable extra
constraints, have the objective of preventing that the set of clauses generated by
unfolding the generalized definition is larger than the set of clauses generated
by unfolding the candidate definition. In this sense we say the objective of con-
strained generalization is to preserve the branching behaviour of the candidate
definitions.

More generalization operators used for the specialization of logic programs
and also constraint logic programs can be found in [58), 62 102, 10T, 118].

We will consider linear constraints C over the set R of the real numbers. The
set C is the minimal set of constraints which: (i) includes all atomic constraints
of the form either p; <ps or p; <pg, where p; and ps are linear polynomials with
variables X1, ..., X and integer coefficients, and (ii) is closed under conjunction
(which we denote by ¢, and also by ‘A’). An equation p; =p2 stands for p; <
p2/Ap2 <p1. The projection of a constraint c onto a tuple X of variables, denoted
project(c,X), is a constraint such that R = VX (project(c,X) <> 3Y¥c), where Y
is the tuple of variables occurring in ¢ and not in X.

62

In order to introduce the notion of a generalization operator we need the
following definition [50].

Definition 7 (Well-Quasi Ordering 3). A well-quasi ordering (or wqo, for
short) on a set S is a reflexive, transitive relation 3 on S such that, for every
infinite sequence egey . . . of elements of S, there exist ¢ and j such that i <j and
e; 5 ej. Given e; and ey in S, we write e; ~ ep if e1 Z ez and ez T e;. A wqo

~

3 is thin iff for all e € S, the set {¢/ € S | e = ¢’} is finite.

The use of a thin wqo guarantees that during the Specialize,,,, procedure each
definition can be generalized a finite number of times only, and thus the termi-
nation of the procedure is guaranteed.

The thin wqo Mazcoeff, denoted by =ps, compares the maximum absolute
values of the coefficients occurring in polynomials. It is defined as follows. For
any atomic constraint a of the form p < 0 or p <0, where pis qo + ¢1X1 + ...+
qk Xk, we define mazcoeff(a) to be max {|qol,|q1],--.,|qx|}. Given two atomic
constraints a; of the form p; < 0 and as of the form po < 0, we have that
a1 S ag iff mazcoeff(ar) < mazcoeff(az).

Similarly, if we are given the atomic constraints a; of the form p; <0 and as
of the form py <0. Given two constraints ¢c; = ay,...,an,, and cag = by, ..., by,
we have that ¢ Sy co iff, for i = 1,...,m, there exists j € {1,...,n} such that
a; S bj. For example, we have that:

(i) (1-2X;<0) 2p (34X <0),
(ii) (2—2X1+X2 < 0) :jM (1+3X1 < 0), and
(iii) (1+3X1 < 0) Zm (2*2X1+X2 < 0).

Definition 8 (Generalization Operator ©). Let < be a thin wqo on the
set C of constraints. A function © from CxC to C is a generalization operator
with respect to 3 if, for all constraints ¢ and d, we have: (i) d C c©&d, and
(i) cod Zc.

A trivial generalization operator is defined as ¢ © d = true, for all constraints c
and d (without loss of generality we assume that true 3 c for every constraint
c).

Definition [§] generalizes several operators proposed in the literature, such as
the widening operator [30] and the most specific generalization operator [102]
132].

Other generalization operators defined in terms of relations and operators
on constraints such as widening and convez-hull which have been proposed for
the static analysis of programs [30} 34] and also applied to the specialization

63

of constraint logic programs (see, for instance, [62), [118]). These generalization
operators have been extensively studied in the above cited papers.

Here we define some generalization operators which have been used in the
experiments we have performed (see also [62]).

e (W) Given any two constraints ¢ = ay,...,a,, and d, the operator Widen,
denoted Sy, returns the constraint a;i, ..., a;, such that {a;1,...,a;} = {an |
1<h<m and dCay}. Thus, Widen returns all atomic constraints of ¢ that are
entailed by d (see [30] for a similar widening operator used in static program
analysis). The operator Oy is a generalization operator w.r.t. the thin wqo 3.

e (WM) Given any two constraints ¢ = aj, ..., am,, and d = by, ..., by, the oper-
ator WidenMazx, denoted Oy, returns the conjunction a;q, ..., a;, bj1,...,bjs,
where: (i) {aj1,...,a;} ={ap | 1<h<m and d C a}, and (ii) {bj1,...,bjs} =
{br | 1<k<n and by S c}.

The operator WidenMaz is a generalization operator w.r.t. the thin wqo =j;.
It is similar to Widen but, together with the atomic constraints of ¢ that are
entailed by d, it returns also the conjunction of a subset of the atomic constraints
of d.

Next we define a generalization operator by using the convex hull operator,
which is often used in static program analysis [34].

e (CH) The convex hull of two constraints c and d in C, denoted by ch(c,d), is
the least (w.r.t. the C ordering) constraint h in C such that ¢ C h and d C h.
(Note that ch(c,d) is unique up to equivalence of constraints.)

e (CHWM) Given any two constraints c and d, we define the operator CHWiden-
Maz, denoted Scmwar, as follows: ¢ Somwar d = ¢ ©war ch(c,d). The operator
Scuawnm 1s a generalization operator w.r.t. the thin wqo =<j;.

CHWidenMax returns the conjunction of a subset of the atomic constraints
of c and a subset of the atomic constraints of ch(c,d).

Constrained Generalization

Now we describe a method for deriving, from any given generalization opera-
tor ©, a new version of that operator, denoted ©.,s, which adds some extra
constraints and still is a generalization operator. The operator &, is called the
constrained generalization operator derived from S.

In order to specify the constrained generalization operator we need the fol-
lowing notions.

Let P be the input program of the Specialize,,,, procedure. For any con-

straint d and atom A, we define the unfeasible clauses for the pair (d,A), de-

64

noted UnfCl(d,A), to be the set {(Hy:- ¢1,G1),..., (Hpn:= ¢m,Gm)}, of (renamed

apart) clauses of P such that, for ¢ = 1,...,m, A and H; are unifiable via the
most general unifier 9J; and (d A ¢;) ¥; is unsatisfiable.
The head constraint of a clause of the form H :- c, A 1is the constraint

project(c,X), where X is the tuple of variables occurring in H. For any atomic
constraint a, neg(a) denotes the negation of a defined as follows: neg(p <0) is
—p<0 and neg(p<0) is —p<0. Given a set C of clauses, we define the set of
the negated regions of C', denoted NegReg(C), as follows:

NegReg(C') = {neg(a) | a is an atomic constraint of a head constraint
of a clause in C'}.

For any constraint d and atom A, we define the following constraint:
cens(d,A) = N{r | r € NegReg(UnfCl(d,A)) A dCr}.

We have that d C cns(d, A). Now, let © be a generalization operator with respect
to the thin wqo <. We define the constrained generalization operator derived
from &, as follows:

Sens(c,d,A) = (c & d) A cns(d, A).
Now we show that O, is indeed a generalization operator w.r.t. the thin wqo Zp
we now define. Given a finite set B of (non necessarily atomic) constraints, a
constraint c; A ... A cy, where cyq,...,c, are atomic, and a constraint d, we
define the binary relation Sp on constraints as follows: ¢c1 A...Ac, Zp 4 iff
either (i) (c1 A...Acy,) 3 d, or (ii) there exists i€ {1,...,n} such that c;e B
and (c1A...Aci—1Aciy1A...Acy) Zp d. It can be shown that =g is a thin wqo.

We observe that, for all constraints c, d, and all atoms A: (i) sinced C c©d
and d C cns(d,A), then also d C ©.,s(c,d,A), and (ii) by definition of Zp, for
all constraints e, if c ©d 2 e, then ©¢pns(c,d,A) Zp e, where B = NegReg(P).

Thus, we have the following result.

Proposition 1. For any program P U {y} given as input to the Specialize,,
procedure, for any atom A, the operator ©.ns(_, _,A) is a generalization operator
with respect to the thin well-quasi ordering =g, where B = NegReg(P).

4.2.2 Generalization Strategy

The Specialize,,,, procedure introduces new definitions by using the subsidiary
Gen strategy which, given a clause F and a set Defs of definitions, yields a new

definition clause G.

65

Definition 9 (Generalization Strategy). Let E be a clause of the form
H(X) :-e(X,X1), Q(X1), where X and X1 are tuples of variables, e(X,X1) is
a constraint, and Q(X1) is an atom. Let Defs be a set of definitions. Then,
Gen(E, Defs) is a clause G: newp(X) :- g(X), Q(X), such that: (i) newp is a
new predicate symbol, and (ii) e(X,X1) C g(X1).

For any infinite sequence E1, Fo, ... of clauses, let G1,Go, ... be a sequence
of clauses constructed as follows: (1) G1 = Gen(E1,0), and (2) for every i >
0, Git1 = Gen(E;j+1,{G1,...,G;}). We assume that the sequence G1,Ga,...
stabilizes, that is, there exists an index k such that, for every i >k, G; is equal,
modulo the head predicate name, to a clause in {Gy,...,Gy}.

In order to control the application of the generalization operators, we follow
an approach which is similar to one considered in the context of partial de-
duction [I01, 109]. In particular, the Gen strategy makes use of a set Defs of
definitions arranged as a forest of trees whose roots are among the clauses ()
considered at the beginning of the specialization process. Each new definition
G introduced during specialization determines a new node child(G,C) of a tree
which is placed as a child of definition C if G is introduced to fold a clause
derived by unfolding C.

Figureshows the generalization strategy used in Specialize,,,,. In Section

we will see the specific (constrained) generalization operators (Sys) © which
will be used in the experimental evaluation.

Input: A clause E¥ and a set Defs of definitions structured as a tree.
Output: A new definition G.

Let E be a clause of the form q :-d, A(X) and dy = project(d, X).
if there exists a clause D in Defs such that:
(i) D is of the form p(Y) :-c, A(Y), and
(ii) D is the most recent ancestor of E in Defs
such that A(Y) is a variant of A(X)
then G := newp(X) :- g, A where g is either ¢ ©d or ©.ps(c,dx, A)
else G := newp(X) :- dx,A

Figure 7: The generalization strategy Gen(E,Defs) of Specialize,,,,,

66

4.2.3 Termination and Soundness of the Specialization Strategy

The following theorem establishes the termination and soundness of the Special-
12€prop Strategy.

Theorem 4 (Termination and Correctness of the Specialize,,,, strat-
egy). (i) The Specialize,,,,, procedure always terminates. (ii) Let program S
be the output of the Specialize,,,, procedure. Then incorrect € M(V) iff
incorrect € M(S).

Proof. (i) Since the UNFOLDING subsidiary procedure, the CLAUSE REMOVAL
while-loop (a1), the DEFINITION INTRODUCTION while-loop (a2), and the FOLD-
ING while-loop (53) clearly terminate, we are left with showing that the first,
outermost while-loop («) terminates, that is, a finite number of new predicate
definitions is added to InCls by DEFINITION INTRODUCTION. This finiteness is
guaranteed by the following facts:

(1) all new predicate definitions are introduced by the Gen strategy,

(2) by Definition [J] the set of all new predicate definitions generated by a se-
quence of applications of a generalization operator is finite, modulo the head
predicate names, and

(3) no two new predicate definitions that are equal modulo the head predi-
cate name are introduced by DEFINITION INTRODUCTION (indeed, DEFINITION
INTRODUCTION introduces a new predicate definition only if the definitions al-
ready present in Defs cannot be used to fold clause F).

(ii) see the proof of point (ii) of Theorem

4.3 Experimental Evaluation

In this section we present some preliminary results obtained by applying our
Software Model Checking method to some benchmark programs taken from the
literature. The results show that our approach is viable and competitive with
the state-of-the-art software model checkers.

Programs ex1, f1a, £2, and interp have been taken from the benchmark set of
DAGGER [75]. Programs substring and tracerP are taken from [91] and [86],
respectively. Programs doubleLoop and singleLoop have been introduced to
illustrate the constrained generalization strategy. Finally, selectSort is an
encoding of the Selection sort algorithm where references to arrays have been

67

abstracted away to perform array bounds checking. The source code of all the
above programs is available at http://map.uniroma2.it/smc/.

The experiments have been performed by using the VeriMAP software model
checker (see Chapter [§]) that implements our verification method. We have also
run three state-of-the-art CLP-based software model checkers on the same set
of programs, and we have compared their performance with that of our model
checker. In particular, we have used: (i) ARMC [123], (ii) HSF(C) [73], and
(iii) TRACER [85]. ARMC and HSF(C) are CLP-based software model check-
ers which implement the CEGAR technique. TRACER is a CLP-based model
checker which uses Symbolic Execution (SE) for the verification of partial cor-
rectness properties of sequential C programs using approximated preconditions
or approximated postconditions.

Table [£.1] reports the results of our experimental evaluation which has been
performed on an Intel Core Duo E7300 2.66Ghz processor with 4GB of memory
under the GNU Linux operating system.

In Columns W and CHWM we report the results obtained by the MAP sys-
tem when using the procedure presented in Section [£.2.1] and the generalization
operators Widen and CHWidenMaz [62], respectively. In Columns W,,s and
CHWM.,s we report the results for the constrained versions of those general-
ization operators, called Widen.,s and CHWidenMazx.,s, respectively. In the
remaining columns we report the results obtained by ARMC, HSF(C), and
TRACER using the strongest postcondition (SPost) and the weakest precon-
dition (WPre) options, respectively.

On the selected set of examples, we have that the MAP system with the
CHWidenMaz.ys is able to verify 9 properties out of 9, while the other tools do
not exceed 7 properties. Also the verification time is generally comparable to
that of the other tools, and it is not much greater than that of the fastest tools.
Note that there are two examples (doubleLoop and singleLoop) where con-
strained generalization operators based on widening and convex-hull are strictly
more powerful than the corresponding operators which are not constrained.

We also observe that the use of a constrained generalization operator usually
causes a very small increase of the verification time with respect to the non-
constrained counterparts, thus making constrained generalization a promising
technique that can be used in practice for software verification.

In Table we present in some more detail the time taken for proving
the properties of interest by using our method for software model checking
with the generalization operators Widen (Column W) and CHWidenMaz (Col-
umn CHWM), and the constrained generalization operators derived from them

68

69

MAP TRACER
Program W W | CHWIT | CHWMp | “TMC | B8F(C) 1 =ap00 T Whre
exl 1.08 1.09 1.14 1.25 0.18 0.21 00 1.29
fla 00 00 0.35 0.36 00 0.20 1 1.30
f2 00 00 0.75 0.88 00 0.19 00 1.32
interp 0.29 0.29 0.32 0.44 0.13 0.18 00 1.22
doubleLoop o0 0.33 0.33 0.33 00 0.19 o0 o0
selectSort 4.34 4.70 4.59 5.57 0.48 0.25 00 00
singleLoop o0 00 00 0.26 00 00 L 1.28
substring | 88.20 | 171.20 5.21 5.92 | 931.02 1.08 | 187.91 | 184.09
tracerP 0.11 0.12 0.11 0.12 00 00 1.15 1.28

Table 4.1: Time (in seconds) taken for performing model checking. ‘co’ means ‘no answer within 20 minutes’,
and ‘L’ means ‘termination with error’.

Widencns (Column We,s) and CHWidenMazcps (Column CHWDM,,s), respec-
tively.

Columns Step 1-2, Step 3, and Step 4 show the time required for performing
the corresponding Step, respectively, of our Software Model Checking method
presented in Section The sum of these three times for each phase is reported
in Column Tot.

4.4 Related Work

The specialization of logic programs and constraint logic programs has also been
used in techniques for the verification of infinite state reactive systems [59, 62} (61,
103]. By using these techniques one may verify properties of Kripke structures,
instead of properties of imperative programs as we did here. In [I03] the authors
do not make use of constraints, which are a key ingredient of the technique
we present here. In [61] [62, 103] program specialization is combined with the
computation of the least model of the specialized program, or the computation
of an overapproximation of the least model via abstract interpretation.

The use of program specialization for the verification of properties of imper-
ative programs is not novel. It has been investigated, for instance, in [I19]. In
that paper a CLP interpreter for the operational semantics of a simple imper-
ative language is specialized with respect to the input program to be verified.
Then, a static analyzer for CLP programs is applied to the residual program
for computing invariants (that is, overapproximations of the behavior) of the
input imperative program. These invariants are used in the proof of the prop-
erties of interest. Unlike [119], our verification method does not perform any
static analysis phase separated from the specialization phase and, instead, we
discover program invariants during the specialization process by applying suit-
able generalization operators. These operators are defined in terms of operators
and relations on constraints such as widening and convex-hull [30} 34, 62]. As
in [I19], we also use program specialization to perform the so-called removal of
the interpreter, but in addition, in this paper we use specialization for prop-
agating the information about the constraints in the initial configurations. In
particular, the CLP program is specialized with respect to the property to be
verified, by using constrained generalization operators which have the objective
of preserving, if possible, the branching behaviour of the definitions to be gen-
eralized. In this way we may avoid loss of precision, and at the same time, we
enforce the termination of the specialization process Step 3.

The idea of constrained generalization which has the objective of preserving

70

Program Step 1-2 W Wens CHWM CHWMens
Step 3 ‘ Step 4‘ Tot || Step 3 ‘Step 4‘ Tot | Step 3 ‘Step 4 ‘ Tot | Step 3 ‘Step 4‘ Tot
ex1 1.02 0.05 0.01] 1.08 || 0.07« 0 1.09 | 0.11 0.01 |1.14 | 0.23<« 0] 1.25
fla 0.35 0.01 00 | o0 0.01 00 00 0«| O 0.35 | 0.01« 0 | 0.36
£2 0.71 0.03 00 | o0 0.13 00 00 0.03«< | 0.01 |0.75 | 0.17< 0 | 0.88
interp 0.27 0.01 0.01] 0.29 || 0.02« 0 0.29 | 0.04 0.01 10.32 | 0.17« 0| 0.44
doubleLoop 0.31 0.01 oo | 00 0.02« 0 0.33 | 0.02« 0 0.33 || 0.02« 0 |0.33
selectSort 4.27 0.06 0.01] 4.34 || 0.43<« 0 4.70 | 0.3 0.02 |4.59 | 1.3 « 0 | 5.57
singleLoop 0.22 0.02 00 | 00 0.02 00 00 0.03 00 00 0.04« 0] 0.26
substring 0.24 0.01 | 87.95|88.20 || 0.02 [170.94| 171.2 | 4.96< | 0.01 [5.21 | 5.67< | 0.01] 5.92
tracerP 0.11 0« 0 | 0.11 | 0.01« 0 0.12 0« O 0.11 | 0.01« 0] 0.12

1.

Table 4.2: Time (in seconds) taken for performing software model checking with the MAP system. ‘co’ means
‘no answer within 20 minutes’ Times marked by ‘<’ are relative to the programs obtained after Step 3 and
have no constrained facts (thus, for those programs the times of Step 4 are very small (< 0.01s)).

the branching behaviour of a clause, is related to the technique for preserving
characteristic trees while applying abstraction during partial deduction [104].
Indeed, a characteristic tree provides an abstract description of the tree gener-
ated by unfolding a given goal, and abstraction corresponds to generalization.
However, the partial deduction technique considered in [104] is applied to ordi-
nary logic programs (not CLP programs) and constraints such as equations and
inequations on finite terms, are only used in an intermediate phase.

In order to get a conservative model of a program, different generalization op-
erators have been introduced in the literature. In particular, in [I5] the authors
introduce the bounded widen operator ¢ Vp d, defined for any given constraint ¢
and d and any set B of constraints. This operator, which improves the precision
of the widen operator introduced in [30], has been applied in the verification
of synchronous programs and linear hybrid systems. A similar operator ¢ Vg d,
called widening up to B, has been introduced in [78]. In this operator the set B
of constraints is statically computed once the system to be verified is given.
There is also a version of that operator, called interpolated widen, in which the
set B is dynamically computed [75] by using the interpolants which are derived
during the counterexample analysis.

Similarly to [15], B4} [75] [78], the main objective of the constrained generaliza-
tion operators introduced in this paper is the improvement of precision during
program specialization. In particular, this generalization operator, similar to the
bounded widen operator, limits the possible generalizations on the basis of a set
of constraints defined by the CLP program obtained as output of Step 3. Since
this set of constraints which limits the generalization depends on the output of
Step 3, our generalization is more flexible than the one presented in [I5]. More-
over, our generalization operator is more general than the classical widening
operator introduced in [30]. Indeed, we only require that the set of constraints
which have a non-empty intersection with the generalized constraint ¢ © d, are
entailed by 4.

72

CHAPTER 5

Iterated Program Specialization

We have shown that program specialization can be used not only as a prepro-
cessing step to generate verification conditions, but also as a means of analysis
on its own. Indeed, by specializing the CLP program V with respect to the con-
straints characterizing the input values of Prog, in some cases one can derive a
new CLP program S whose least model M (S) can be computed in finite time
because S can be represented by a finite (possibly empty) set of constraints.
Thus, in these cases it is possible to verify whether or not Prog is correct with
respect to Qi and Yerror by simply inspecting that model.

However, due to the undecidability of partial correctness, it is impossible to
devise a specialization technique that always terminates and produces a special-
ized program whose least model can be finitely computed. Thus, the best one
can do is to propose a verification technique based on some heuristics and show
that it works well in practice.

In this chapter we present a method, called iterated specialization, which ex-
tends the method proposed in Chapter [and it is based on the repeated applica-
tion of program specialization. By iterated specialization we produce a sequence
of programs of the form Si, S, S3,... Each program specialization step termi-
nates and has the effect of modifying the structure of the CLP program (and
consequently the structure of the corresponding set of verification conditions)
by explicitly adding new constraints that denote invariants of the computation.
The effect of the iterated specialization is the propagation of these constraints
from one program version to the next, and since each new iteration starts from
the output of the previous one, we can refine program analysis and possibly
increase the level of precision.

The use of iterated specialization avoids the least model construction per-

73

formed by the technique presented in the previous Chapter [after program
specialization.

Iterated specialization terminates at step k, if a lightweight analysis based on
a simple inspection of program Sj is able to decide whether or not the given
incorrectness triple {pimi}} Prog {@error)} holds. While each transformation
step is guaranteed to terminate, due to undecidability of the partial correctness,
the overall process may not terminate.

In order to validate the heuristics used in our verification method from an
experimental point of view, we have used our prototype verification system called
VeriMAP (see Chapter . We have performed verification tests on a significant
set of over 200 programs taken from various publicly available benchmarks. The
precision of our system, that is the ratio of the successfully verified programs
over the total number of programs, is about 85 percent. We have also compared
the results we have obtained using the VeriMAP system with the results we have
obtained using other state-of-the-art software model checking systems, such as
ARMC [123], HSF(C) [73], and TRACER [85]. These results show that our
verification system has a considerably higher precision.

This chapter is organized as follows. In Section we describe the overall
strategy of iterated specialization, and in Section[5.2)also some specific strategies
for performing the individual specialization steps. In Section we report on
the experiments we have performed by using our prototype implementation,
and we compare our results with the results we have obtained using ARMC,
HSF(C), and TRACER. Finally, in Section [5.4] we discuss the related work and,
in particular, we compare our approach with other existing methods of software
model checking.

5.1 The Verification Method

As an alternative to the construction of the least model and to standard query
evaluation strategies, we present a software model checking method based on
iterated specialization, which performs a sequence of program specializations,
thereby producing a sequence S, Ss, S3, ... of specialized CLP programs. Dur-
ing the various specializations we may apply different strategies for propagating
constraints (either propagating forward from an initial configuration to an error
configuration, or propagating backward from an error configuration to an initial
configuration) and different operators (such as the widening and convex hull
operators) for generalizing predicate definitions.

Iterated specialization has the objective of deriving a new CLP program S;

74

such that: (i) incorrect € M(S;) iff incorrect € M (S;+1), and (ii) S;4; either
contains the fact incorrect or contains no clauses with head incorrect. In the
former case the incorrectness triple {ini} Prog {@eror} holds and the given
imperative program Prog is incorrect with respect to @in;: and @epror, while in
the latter case the incorrectness triple does not h old and the given imperative
program Prog is correct with respect to pin: and @epror-

The Software Model Checking Method

Input: An incorrectness triple {@init} Prog {@error } and
the CLP program I defining the predicate incorrect.

Output: If Prog is correct with respect to piny and @eror then ‘correct’
else ‘incorrect’.

Step 1: T:= C2CLP(Prog, Yinits Perror); P:=TUIL;
Step 2: V:= Specialize,.,(P);

prop(v);
Step 4: if CorrectnessTest (S)=‘correct’ then return ‘correct’;

Step 3: S:= Specialize

elseif CorrectnessTest (S) = ‘incorrect’ then return ‘éncorrect’;
else { V:= Reverse(S); goto Step 3 }

Figure 8: The Iterated Verification Strategy

The verification method is outlined in Figure[8l The given incorrectness triple
{pinic} Prog {@error } is processed by the CLP Translation and Verification Con-
ditions Generation steps presented in Chapter

Then, the Iterated Specialization strategy applies the procedure Specialize,,,,
which propagates the constraints of the initial configuration. The constraints of
the initial configuration can be propagated through the program V obtained after
removing the interpreter, by specializing V itself with respect to @i, thereby
deriving a new specialized program S.

Next, our Iterated Specialization strategy performs a lightweight analysis,
called the CorrectnessTest, to check whether or not incorrect belongs to M (S),
that is, whether or not Prog is correct. In particular, CorrectnessTest checks
whether S can be transformed into an equivalent program Q where one of the
following conditions holds: either (i) the fact incorrect belongs to Q, hence
there is a computation leading to an error configuration and the strategy halts
reporting ‘incorrect’, or (ii) Q has no constrained facts, hence no computation
leads to an error configuration and the strategy halts reporting ‘correct’, or

75

(iii) Q contains a clause of the form incorrect :-G, where G is not the empty
goal (thus, neither (i) nor (ii) holds), and hence the strategy proceeds to the
subsequent step.

In that subsequent step our strategy propagates the constraints of the error
configuration. This is done by: (i) first applying the Reverse procedure, which,
so to say, inverts the flow of computation by interchanging the roles of the initial
configuration and the error configuration, and (ii) then specializing (using the
procedure Specialize,,,,, again) the ‘reversed’ program with respect to Yerror-

The strategy iterates the applications of the Reverse and the Specialize,,,,
procedures until hopefully CorrectnessTest succeeds, thereby reporting either
‘correct’ or ‘incorrect. Obviously, due to the undecidability of partial correctness,
the Iterated Specialization strategy may not terminate. However, we will show
that each iteration terminates, and hence we can refine the analysis and possibly
increase the level of precision by starting each new iteration from the CLP
program obtained as output of the previous iteration.

5.2 The lterated Specialization Strategy

In this section we describe the basic components required to realize the Iter-
ated Specialization strategy, that is, (i) the Specialize,,,, procedure, (ii) the
CorrectnessTest procedure, and (iii) the Reverse procedure.

5.2.1 Propagation of Constraints

The procedure Specialize,,,,, specializes the CLP program V, obtained after the
application of Specialize,.,, by propagating the constraints that characterize the
initial or the error configuration. (The fact that they characterize either an
initial or an error configuration depends on the number of applications of the
Reverse procedure.)

Now we describe how the unfolding and generalization steps are performed
during Specialize,,,,.

In order to guide the application of the unfolding rule during the application
of Specialize,,,,, we stipulate that every atom with a new predicate introduced
during the previous specialization is unfolded only once at the first step of the
UNFOLDING phase. This choice guarantees the termination of the UNFOLDING
phase (notice that new predicates can depend on themselves), and also avoids
an undesirable, excessive increase of the number of clauses in the specialized
program. Obviously, more sophisticated strategies for guiding unfolding could

76

be applied. For instance, one may allow unfolding only if it generates at most
one clause. This unfolding policy, called determinate unfolding in [65], does not
increase the number of clauses and is useful in most cases. However, as we will
show in Section our simple choice is effective in practice.

In order for Specialize,,,, to be effective, we need to use a generalization
strategies that retains as much information as possible, while guaranteeing the
termination of the specialization.

Now we will consider four generalization strategies and in Section [6.4] we will
compare them with respect to their strength and efficacy for the verification of
program properties. These generalization strategies are based on the widening
and convex hull generalization operators presented in Chapter [4]

Let us first present two monovariant generalization strategies that during the
construction of Defs, for any given atom Q(X) to be folded, introduce a new
definition of the form newp(X) :-c(X), Q(X), which is more general than any
other definition in Defs with the atom Q(X) in its body. Thus, when using these
generalization operators, the definitions in Defs whose body contains the atom
Q(X) are linearly ordered with respect to the ‘more general’ relation.

Monovariant Generalization with Widening. This strategy is denoted Genyy.
Let E be a clause of the form H(X) :-e(X,X1), Q(X1) and Defs be a set of
predicate definitions. Then,
(p1) if in Defs there is no clause whose body atom is (a variant of) Q(X1), then
Geny(E, Defs) is defined as the clause newp (X1) :-e,(X1), Q(X1), and
(12) if in Defs there is a definition D of the form newq(X1) :-d(X1), Q(X1) and
D is the most general such definition in Defs, then Genps(E, Defs) is the clause
newp(X1) :-w(X1), Q(X1), where w(X1) is the widening of d(X1) with respect
to e, (X1).

Note that at any given time the last definition of the form: newp(X1) :-c(X1),
Q(X1) that has been introduced in Defs is the most general one with the atom
Q(X1) in its body.

Monovariant Generalization with Widening and Convexr Hull. This strategy,
denoted Genyp, alternates the computation of convex hull and widening. In-
deed, in Case (u2) above, if D has been derived by projection or widening, then
Genyu(E, Defs) is newp (X1) :-ch(X1), Q(X1), where ch(X1) is the convex hull
of d(X1) and e, (X1). In all other cases the function Genyp(E, Defs) is defined
like the function Geny(E, Defs).

Other generalization strategies can be defined by computing any fixed number
of consecutive convex hulls before applying widening.

7

Now we present two polyvariant generalization strategies, which may intro-
duce several distinct, specialized definitions (with different constraints) for each
atom. Polyvariant strategies allow, in principle, more precision with respect to
monovariant operators, but in some cases they could also cause the introduc-
tion of too many new predicates, and hence an increase of both the size of the
specialized program and the time needed for verification. We will consider this
issue in Section when we discuss the outcome of our experiments.

When we use a polyvariant generalization strategies, for any given atom Q (X)),
the definitions in Defs whose body contains Q(X) are not necessarily linearly
ordered with respect to the ‘more general’ relation. However, the definitions
in the same path of the definition tree Defs are linearly ordered, and the last
definition introduced is more general than all its ancestors.

Polyvariant Generalization with Widening. This strategy is denoted Genp. Let
FE be a clause of the form H(X) :-e(X,X1), Q(X1) and Defs be a tree of predicate
definitions. Suppose that E has been derived by unfolding a definition C'. Then,
(w1) if in Defs there is no ancestor of C' whose body atom is of the form Q(X1),
then Genp(E, Defs) is the clause newp(X1) :-e,(X1), Q(X1), and

(72) if C' has a most recent ancestor D in Defs of the form: newq(X1) :-d(X1),
Q(X1), then Genp(E, Defs) is the clause newp (X1) :-w(X1), Q(X1), where w(X1)
is the widening of d(X1) with respect to e, (X1).

Polyvariant Generalization with Widening and Convexr Hull. This strategy, de-
noted Genpy, is defined as Genp, except that it alternates the computation of
convex hull and widening. Formally, Case (72) above is modified as follows:
(72 pp) if C has a most recent ancestor D in Defs of the form newq(X1) :-d(X1),
Q(X1) that has been derived by projection or widening, then Genpg(E, Defs) is
the clause newp (X1) :-ch(X1), Q(X1), where ch(X1) is the convex hull of 4(X1)
and e, (X1), else Genpp (E, Defs) is the clause newp (X1) :-w(X1), Q(X1), where
w(X1) is the widening of d(X1) with respect to e, (X1).

Now we show that all four strategies guarantee the soundness and termination

of Specialize,,,,.

Proposition 2. The strategy Genys, Genyrg, Genp, and Genpy are general-
ization strategies.

Proof. By Definition |8, we have to show that, for each strategy Gen in {Genyy,
Genyrpr, Genp, and Genpp}, the following two properties hold.

Property (P1): for every clause E of the form: H(X) :-e(X,X1), Q(X1), for every
clause newp(X1) :-g(X1), Q(X1) obtained by applying the strategy Gen to E
and some set Defs of definitions, we have that e(X,X1) C g(X1), and

78

Property (P2): for every infinite sequence E1, Es, ... of clauses, for every infinite
sequence G1, Ga, ... of clauses constructed as follows: (1) G; = Gen(E1,0), and
(2) for every i >0, Git1 = Gen(Ei11,{G1,...,G;}), there exists an index k such
that, for every i >k, (G; is equal, modulo the head predicate name, to a clause
in {Gl, e ,Gk}

(Genyy is a generalization strategy)

— Let us prove that Property (P1) holds for Genys. If g(X1) is e,(X1) (see
case (ul) above), then e(X,X1) C e,(X1) because e,(X1) is the projection of
e(X,X1) onto X1. If g(X1) is w(X1) (see case (u2) above), then e (X,X1) C w(X1)
because w(X1) is the widening of d(X1) with respect to e,(X1), and hence
e, (X1) Ew(X1). Thus, e(X,X1) C g(X1).

— Let us prove that Property (P2) holds for Geny;. This property is a straight-
forward consequence of the following two facts:

(i) each new definition introduced by Genyy is a clause of the form: newp(X1) :-
g(X1),Q(X1) , where Q(X1) is a function-free atom whose predicate symbol
occurs in the input program [(recall that program I is obtained by Specialize,,,
and this strategy removes, by folding, all function symbols occurring in the atoms
of its input program); hence case (1) can occur a finite number of times only,
and

(ii) if g(X1) is the widening of d(X1) with respect to e,(X1) and g(X1) is
different from d(X1), then the set of atomic constraints of g(X1) is a proper
subset of the atomic constraints of d(X1), and hence case (u2) will eventually
generate new predicate definitions whose body is equal to the body of previously
generated definitions.

(Genprpr is a generalization strategy)

The proof is similar to that for Genyy.

— In order to prove that Property (P1) holds for Geny g, we use the fact that
e(X,X1) C ch(X1). Indeed, e(X,X1) C e,(X1) (because e,(X1) is the projec-
tion of e(X,X1) onto X1) and e,(X1) C ch(X1) (because ch(X1) is the convex
hull of d(X1) and e, (X1)).

— In order to show that Property (P2) holds for Genysp, it is enough to note
that Property (P2) is preserved if one interleaves the projection and widening
operators with an application of the convex hull operator, and hence the proof
already done for Genys readily extends to Genpspr.

(Genp and Genpp are generalization strategies)
The proof is a straightforward extension of the proof for Genys and Genprp,
respectively. In particular, in order to show that Property (P2) holds for Genp

79

and Genppr, it suffices to use the following fact. Suppose that G1,Ga,... is an
infinite sequence of predicate definitions. Let T" be an infinite tree of definitions
such that:

(i) if G occurs in G1,Go, ..., then G occurs in T,

(ii) if A is an ancestor of B in T, then A precedes B in G1,Go,... (that is,
G1,Gay, ... is a linear order consistent with the ancestor relation in 7T'),

(iii) T is finitely branching, and

(iv) every branch in 7" stabilizes.

Then G1, Go, ... stabilizes. O]

Different strategies can be adopted for applying the folding rule during the
FoLDING phase. These folding strategies depend on the generalization strat-
egy that is used for introducing new definitions. In the case where we use a
monovariant strategy (either Genps or Genprp), we fold every clause of the
form H(X) :-e(X,X1), Q(X1) using the most general definition of the form
newq (X1) :-g(X1), Q(X1) occurring in the set Defs obtained at the end of the
execution of the while-loop (). We call this strategy the most general fold-
ing strategy. In the case where we use a polyvariant strategy (that is, Genp
or Genpyr), we fold every clause E using the definition computed by applying
the generalization strategy to E. We call this strategy the immediate folding
strategy.

Example 6 (Propagation of the constraints of the initial configura-
tion). Let us consider the program in Example We perform our second
program specialization starting from the CLP program V we have derived by
applying the Verification Conditions Generation step in Example [4 on page
This second specialization propagates the constraint ‘X=0, Y=0’ characterizing
the initial configuration which occurs in clause

We apply the Specialize,,,, strategy with the Genp generalization opera-
tor. We start off by executing the while-loop («) that repeats the UNFOLDING,
CLAUSE REMOVAL, and DEFINITION INTRODUCTION phases.

First execution of the body of the while-loop ().

UNFOLDING. We unfold clause with respect to the atom new1(X,Y,N) and
we get:

35. incorrect :-X1=1, Y1=1, N>0, newl1 (X1,Y1,N).

(Note that newl(X,Y,N) is also unifiable with the head of clause but the
constraint ‘X=0,Y=0,X>N,X>Y’ is unsatisfiable.) No CLAUSE REMOVAL can be
applied.

80

DEFINITION INTRODUCTION. Clause [35] cannot be folded, and hence we define
the following new predicate:

36. new2(X,Y,N) :-X=1, Y=1, N>0, newl (X,Y,N).

Thus, the set Defs of new predicate definitions consists of clause [36| only.

Second execution of the body of the while-loop ().
UNFOLDING. Now we unfold the last definition which has been introduced
(clause and we get:

37. new2(X,Y,N) :-X=1, Y=1, X1=2, Y1=3, N>1, newl (X1,Y1,N).

DEFINITION INTRODUCTION. Clause[37)cannot be folded by using any definition
in Defs. Thus, we apply a generalization operator Genp based on widening. This
operator matches the constraint appearing in the body of clause [37] against the
constraint appearing in the body of clause [36] which is the only clause in Defs.
First, the constraint in clause |36 is rewritten as a conjunction c of inequalities:
X>1,X<1,Y>1,Y<1,N>0. Then the variables of clause [37] are renamed so that
the atom in its body is identical to the atom in the body of clause as follows:
38. new2(Xr,Yr,Nr) :-Xr=1, Yr=1, X=2, Y=3, N>1, newl1 (X,Y,N).

Then the generalization operator Genp computes the projection of the constraint
appearing in clause 38| onto the variables of the atom new1 (X,Y,N), which is the
constraint d: X=2,Y=3,N>1. The widening of ¢ with respect to d is the constraint
‘X>1,Y>1,N>0’ obtained by taking the atomic constraints of c¢ that are entailed
by d. Thus, Genp introduces the following new predicate definition:

39. new3(X,Y,N) :-X>1,Y>1, N>0, newl (X,Y,N).

which is added to Defs.

Third execution of the body of the while-loop ().

UNFOLDING. We unfold clause [39] and we get:

40. new3(X,Y,N) :-X>1, Y>1, X<N, X1=X+1, Y1=X1+Y, newl1 (X1,Y1,N).

41. new3(X,Y,N) :-X>N, X>Y, Y>1, N>0.

Clause can be folded using clause in Defs. Thus, the while-loop («)
terminates without introducing any new definition.

FoLpiNG. Now we fold clause [35] using definition 36| and clauses 37 and [40] using
definition [39] We get the following final program S:

42. incorrect :-N>0, X1=1, Yi1=1, new2(X1,Y1,N).

43. new2(X,Y,N) :-X=1, Y=1, N>1, X1=2, Y1=3, new3(X1,Y1,N).

44. new3(X,Y,N) :-X>1, Y>1, X<N, X1=X+1, Y1=X1+Y, new3(X1,Y1,N).

81

45. new3(X,Y,N) :-X>N, X>Y, Y>1, N>0.

The application of Specialize,,,, has propagated the constraints defining the
initial configuration. For instance, the constrained fact (clause has the extra
constraint ‘Y>1, N>0’, with respect to the constrained fact in program V which
has only the constraint ‘X>N, X>Y’ (see clause [34] on page . However, in this
example the presence of a constrained fact does not allow us to conclude that
it has an empty least model, and hence at this point we are not able show the
correctness of our program sum. O

5.2.2 Lightweight Correctness Analysis

The procedure CorrectnessTest (see Figure @ analyzes the CLP program S and
tries to determine whether or not incorrect belongs to M (S).

The analysis performed by CorrectnessTest is lightweight in the sense that,
unlike the Iterated Specialization strategy, it always terminates, possibly return-
ing the answer ‘unknown’.

Note that the output S of Specialize,,, is a linear program. The Correct-
nessTest procedure transforms S into a new, linear CLP program Q by using
two auxiliary functions: (1) the UnfoldCfacts function, which takes a linear
CLP program Q; and replaces as long as possible a clause C in Q; by Unf(C, 4),
whenever A is defined by a set of constrained facts, and (2) the Remove function,
which takes a linear CLP program Q9 and removes every clause C' that satisfies
one of the following two conditions: either (i) the head predicate of C' is useless
in Qg, or (ii) C is subsumed by a clause in Qy distinct from C.

The CorrectnessTest procedure iterates the application of the function Un-
foldCfacts followed by Remove until a fixpoint, say Q, is reached.

Now we prove that CorrectnessTest constructs program @ in a finite number of
steps. Moreover, Q is equivalent to S with respect to the least model semantics,
and hence incorrect € M (S) iff incorrect € M(Q).

Theorem 5 (Termination and Correctness of CorrectnessTest). Let S be
a linear CLP program defining predicate incorrect. Then, (i) CorrectnessTest
terminates for the input program S, and (ii.1) if CorrectnessTest (S)="‘correct’
then incorrect ¢ M(S), and (ii.2) if CorrectnessTest (S)= ‘incorrect’ then
incorrect € M(S).

Proof. (i) the procedure CorrectnessTest constructs a fixpoint of the function
AQ. Remove(UnfoldCfacts(Q)) in a finite number of steps, as we now show. For
a CLP program P, let pn(P) denote the number of distinct predicate symbols

82

Input: A linear CLP program S defining the predicate incorrect.
Output: Either ‘correct’ (implying incorrect ¢ M(S)), or ‘incorrect’ (implying
incorrect € M (S)), or ‘unknown’.

Q=S5
while Q # Remove(UnfoldCfacts(Q)) do
Q := Remove(UnfoldCfacts(Q));
end-while;
if incorrect has a fact in Q then return ‘incorrect’
elseif no clause in T has predicate incorrect then return ‘correct’
else return ‘unknown’

Figure 9: The CorrectnessTest Procedure.

that occur in the body of a clause in P, and let cn(P) denote the number of
clauses in P. Then, the following facts hold:

(1) either P = UnfoldCfacts(P) or pn(P) > pn(UnfoldCfacts(P)),

(2) pn(P) > pn(Remoue(P)),

(3) either P = Remove(P) or cn(P) > cn(Remove(P)).

Thus, we have that (pn(P),cn(P)) >, (pn(Remove(UnfoldCfacts(P))), cn(Re-
move(UnfoldCfacts(P)))), where >, is the lexicographic ordering on pairs of
integers.

Since >, is well-founded, CorrectnessTest eventually gets a program Q s.t.
(pn(Q), en(Q)) = (pn(Remove(UnfoldCfacts(Q))), cn(Remove(UnfoldCfacts(Q)))),
and hence, by (1) and (3), Q = Remove(UnfoldCfacts(Q)).

(ii.1) No application of the folding rule is performed by CorrectnessTest, and
hence the condition for the correctness of the transformation rules of Theorem
is trivially satisfied. Thus, incorrect € M (8) iff incorrect € M(Q). If Cor-
rectnessTest (S) = ‘correct’, then no clause in Q has predicate incorrect, and
then incorrect ¢ M(Q). Hence, incorrect ¢ M(S).

(ii.2) If CorrectnessTest(S) = ‘incorrect’, then a fact in Q has predicate incorrect,
and incorrect € M(Q). Since at Point (ii) we have shown that incorrect €
M (8) iff incorrect € M(Q), we conclude that incorrect € M(S). O

In our running example, program S is the CLP program obtained by apply-
ing the procedure Specialize,,,,. Now program S consists of clauses and
therefore we are not able to determine whether or not the atom incorrect is
a consequence of S. Indeed, (i) in program S no predicate is defined by con-
strained facts only, and hence UnfoldCfacts has no effect, (ii) in S no predicate

83

is useless and no clause is subsumed by any other, and hence also Remove leaves
S unchanged, and (iii) in S there is a clause for incorrect which is not a fact.

5.2.3 The Reverse Transformation

The Reverse procedure implements a transformation that reverses the flow of
computation: the top-down evaluation (that is, the evaluation from the head to
the body of a clause) of the transformed program corresponds to the bottom-
up evaluation (that is, the evaluation from the body to the head) of the given
program. In particular, if the Reverse procedure is applied to a program that
checks the reachability of the error configurations by exploring the transitions
in a forward way starting from the initial configurations, then the reversed pro-
gram checks reachability of the initial configurations by exploring the transitions
in a backward way starting from error configurations. Symmetrically, from a
program that checks reachability by a backward exploration of the transitions,
Reverse derives a program that checks reachability by a forward exploration of
the transitions.
Let us consider a linear CLP program S of the form:

incorrect :- a;(X), p1(X).

incorrect :- ap(X), pr(X).
qi(X) - t1(X,X1), ri(X1).

gm(X) - tp(X,X1), rp(X1).
s1(X) :- bi(X).

sp(X) 1= b(X).
where: (i) a;(X),...,ax(X), t1(X,X1),...,t,(X,X1),b1(X), ..., by(X) are con-
straints, and (ii) the p;’s, q;’s, r;’s, and s;’s are possibly non-distinct predicate
symbols.

The Reverse procedure transforms program S in two steps as follows.
Step 1. Program S is transformed into a program T of the following form (round
parentheses make a single argument out of a tuple of arguments):
tl. incorrect :—a(U), r1(U).
t2. r1(U) :-trans(U,V), r1(V).
t3. r1(U) :-b(U).

a((pl,X)) i—a(X).

84

a((pg, X)) :—ap(X).
trans ((q1,X), (r1,X1)) - t1(X,X1).

trans ((gm,X), (r,, X1)) = t,,(X,X1).
b((Sl ,X)) I-bl(X).

b((s,,X)) :=by(X).
Step 2. Program T is transformed into a program R by replacing the first three
clauses t1-t3 of T with the following ones:
rl. incorrect :-b(U), r2(U).
r2. r2(V) :-trans(U,V), r2(U).
r3. r2(U) :-a(l).

The correctness of the transformation of S into R is shown by the following
result.

Theorem 6 (Soundness of the Reverse procedure). Let R be the program
derived from program S by the Reverse procedure. Then incorrect € M (R) iff
incorrect € M(S).

Proof. (Step 1.) By unfolding clauses t1, t2, and t3 of program T with respect
to a(U), trans(U,V), and b(U), respectively, we get the following CLP program
T1:

incorrect :- a1(X), r1((p1,X)).

incorrect :- ap(X), ri((pg,X)).
r1((q,X)) :- t1(X,X1), r1((ry,X1)).

r1((gm,X)) = t(X,X1), ri((ry,X1)).
r1i((s1,X)) :- bi(X).

ri((s,,X)) = bu(X).

By the correctness of the unfolding rule (see Theorem, we get that incorrect €
M(T) iff incorrect € M(T1).

Then, by rewriting all atoms in T1 of the form r1((pred,Z)) into pred(Z),
we get back R. (The occurrences of predicate symbols in the arguments of a,
trans, and b should be considered as individual constants.) The correctness
of this rewriting is straightforward, as it is based on the syntactic isomorphism
between S and T1. A formal proof of correctness can be made by observing that

85

the above rewriting can also realized by introducing predicate definitions of the
form pred(Z) :-r1((pred,Z)), and applying the unfolding and folding rules.
Thus, incorrect € M(T1) iff incorrect € M (S).

(Step 2.) The transformation of T into R (and the opposite transformation)
can be viewed as a special case of the grammar-related transformation studied
n [23]. We refer to that paper for a proof of correctness. Thus, we have that
incorrect € M (T) iff incorrect € M (R), and we get the thesis. O

The predicates a, trans, and b are assumed to be unfoldable in the subsequent
application of the Specialize,,,, procedure.

Example 7 (Propagation of the constraints of the error configuration).
Now let us continue our running example. The program S of Example [6] derived
by the Specialize,,,, procedure can be transformed into a program R of the form
t1-t3, where the predicates a, trans, and b are defined as follows:

45. a((new2,X1,Y1,N)) :-N>0, X1=1, Y1=1.

46. trans((new2,X,Y,N), (new3,X1,Y1,N)) :-X=1, Y=1, N>1, X1=2, Y1=3.

47. trans((new3,X,Y,N), (new3,X1,Y1,N)) :-X>1, Y>1, X<N, X1=X+1, Y1=X1+Y.
48. b((new3,X,Y,N)) :-Y>1, N>0, X>N, X>Y.

Then, the reversed program R is as follows.

49. incorrect :-b(U), r2(U).

50. r2(V) :-trans(U,V), r2(U).

51. r2(U) :-a(U).

together with clauses above.

The idea behind program reversal is best understood by considering the reach-
ability relation in the (possibly infinite) transition graph whose transitions are
defined by the (instances of) clauses [46| and Program S checks the reach-
ability of a configuration ¢2 satisfying b(U) from a configuration cl satisfying
a(U), by moving forward from cl to c2. Program R checks the reachability of ¢2
from cl, by moving backward from ¢2 to c¢l. Thus, in the case where a(U)
and b(U) are predicates that characterize the initial and final configurations,
respectively, by the reversal transformation we derive a program that checks
the reachability of an error configuration starting from an initial configuration
by moving backward from the error configuration. In particular, in the body
of the clause for incorrect in R the constraint b(U) contains, among others,
the constraint X>Y characterizing the error configuration (see clause and, by
specializing R, we will propagate the constraint of the error configuration.

86

Now let us specialize the CLP program R consisting of clauses and
by applying again Specialize,,,,. We start off from the first while-loop («) of
that procedure.

First execution of the body of the while-loop ().
UNFOLDING. We unfold the clause for incorrect (clause with respect to
the leftmost atom b(U) and we get:

52. incorrect :-Y>1, N>0, X>N, X>Y, r2((new3,X,Y,N)).

DEFINITION INTRODUCTION. In order to fold clause (B2] we introduce the defi-
nition:

53. newd(X,Y,N) :-Y>1, N>0, X>N, X>Y, r2((new3,X,Y,N)).

Second execution of the body of the while-loop ().
UNFOLDING. Then we unfold clause 53] and we get:

54. newd(X,Y,N) :-Y>1, N>0, X>N, X>Y, a((new3,X,Y,N)).
55. newd(X1,Y1,N) :-Y1>1, N>0, X1>N, X1>Y1,
trans (U, (new3,X1,Y1,N)), r2(U).

By unfolding, clause [54]is deleted because the head of lause [45] is not unifiable
with a((new3,X,Y,N)).

By unfolding clause with respect to trans(U, (new3,X1,Y1,N)), also this
clause is deleted because unsatisfiable constraints are derived. Thus, no new
definition is introduced, and the while-loop («) terminates.

FoLbpinG. By folding clause [52] using definition [53| we get:
56. incorrect :-Y>1, N>0, X>N, X>Y, newd (X,Y,N).
and the final, specialized CLP program S consists of clause [56| only.

Now we apply the CorrectnessTest procedure to program S, which detects that
incorrect is a useless predicate. Then, the Iterated Specialization terminates
by reporting the correctness of the given imperative program sum. O

Thus, in this example we have seen that by iterating the specializations which
propagate the constraints occurring in the initial configuration and in the error
configuration we have been able to show the correctness of the given program.

It can be shown that, if we perform our specializations (using the same unfold-
ing and generalization procedures) by taking into account only the constraints
of the initial configuration or only the constraints of the error configuration, it is
not possible to prove program correctness in our example. Thus, as we advocate
here, if we perform a sequence of program specializations, we may gain an extra
power when we have to prove program properties. This is confirmed by the

87

experiments we have performed on various examples taken from the literature.
We will report on those experiments in Section

5.2.4 Soundness of the lterated Specialization Strategy

Finally, we get the following soundness result for the Iterated Specialization
method.

Theorem 7 (Soundness of the Iterated Verification method). Let P be
the CLP Encoding of the incorrectness problem for { vt} Prog { werror - If the
Iterated Specialization strategy terminates for the input program P and returns
‘correct’, then Prog is correct with respect to @i and @epror. If the strategy
terminates and returns ‘incorrect’, then P is incorrect with respect to @ and

SDGTTOT"

Proof. The Iterated Specialization method terminates for the input program [
and returns ‘correct’ (respectively, ‘incorrect’) if and only if there exists n such
that:

V:=Specialize,, (P); S1:=Specialize,,,,,(V);
Ro:=Reverse(S1); Sg:=Specialize,,,,(R2);

Ry:=Reverse(Sp—1); Sn::Specializepmp(Rn);

and CorrectnessTest (S,,) = ‘correct’
(respectively, CorrectnessTest (Sy,) = ‘incorrect’).
Then (by Theorem [j)),
incorrect ¢ M (S,,) (respectively, incorrect € M(S,,))
if and only if (by Theorems [4] and [6] and Proposition
incorrect ¢ M (P) (respectively, incorrect € M(P))
if and only if (by Theorem
Prog is correct (respectively, incorrect) with respect to @i and Yerror- O

5.3 Experimental Evaluation

We have performed an experimental evaluation of our software model checking
method on several benchmark programs taken from the literature. The results
of our experiments show that our approach is competitive with state-of-the-art
software model checkers.

88

The benchmark set used in our experiments consists of 216 verification prob-
lems of C programs (179 of which are correct, and the remaining 37 are incor-
rect). Most problems have been taken from the benchmark sets of other tools
used in software model checking, like DAGGER [75] (21 problems), TRACER [85]
(66 problems) and InvGen [76] (68 problems), and from the TACAS 2013 Soft-
ware Verification Competition [12] (52 problems). The size of the input programs
ranges from a dozen to about five hundred lines of code.

The verification problems came in different source formats (and, in particu-
lar, they used different methods for specifying the initial and error conditions),
and thus they could not be directly used by other software model checkers. We
automatically converted all problems from the original format to a common,
intermediate format, and then from the intermediate format to the format ac-
cepted by each tool we have considered in our experiments. We have put great
care and effort in the coding of the conversion programs to ensure maximum
compatibility. Nonetheless, some software model checkers failed to run on some
seemingly harmless verification problems. The source code of all the verification
problems we have considered and detailed reports about the verification results
are available at http://map.uniroma2.it/VeriMAP/scp/.

We have realized the VeriMAP software model checker [I38] that implements
our verification method (see Chapter [8). Our software model checker has been
configured to execute the following program transformation:

Specialize,.q; Specialize,,,,; CorrectnessTest;

prop’
(Reverse; Specialize,,,,; CorrectnessTest)*

It executes: (i) a first program specialization consisting of a single application of
the Specialize,, procedure that performs the removal of the interpreter, and (ii)
a sequence of applications of the Specialize,,,, procedure (from now on called
iterations) that performs the propagation of the constraints of the initial and
the error configurations. After the removal of the interpreter, the first applica-
tion of Specialize,,,,, propagates the constraints of the initial configuration. This
corresponds to a forward propagation along the graph of configurations associ-
ated with the reachability relation tr (see Section , while the propagation
of the constraints of the error configuration corresponds to a backward propa-
gation along the graph of configurations. The Specialize,,,, procedure has been
executed by using the four generalization operators presented in Section [5.1}
(i) Genyy, that is a monovariant generalization with widening only, (ii) Genppy,
that is a monovariant generalization with widening and convex hull, (iii) Genp,
that is a polyvariant generalization with widening only, and (iv) Genpg, that is
polyvariant generalization with widening and convex hull.

89

http://map.uniroma2.it/VeriMAP/scp/

We have also tested the following three state-of-the-art CLP-based software
model checkers for C programs: ARMC [123], HSF(C) [73], and TRACER [85].
ARMC and HSF(C) are based on the Counter-Example Guided Abstraction
Refinement technique (CEGAR) [29, 90, [128], while TRACER uses a technique
based on approximated preconditions and approximated postconditions. We
have compared the performance of those software model checkers with the per-
formance of VeriMAP on our benchmark programs.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz
processor with 4GB of memory under the GNU Linux operating system Ubuntu
12.10 (64 bit) (kernel version 3.2.0-27). A timeout limit of five minutes has been
set for all model checkers.

In Table we summarize the verification results obtained by the four soft-
ware verification tools we have considered. In the column labelled by Ver-
iMAP (Genpp) we have reported the results obtained by using the VeriMAP
system that implements our Iterated Specialization method with the generaliza-
tion operator Genpg. In the remaining columns we have reported the results
obtained, respectively, by ARMC, HSF(C), and TRACER using the strongest
postcondition (SPost) and the weakest precondition (WPre) options.

Line 1 reports the total number of correct answers of which those for cor-
rect problems and incorrect problems are indicated in line 2 and 3, respectively.
Line 4 reports the number of verification tasks that ended with an incorrect an-
swer. These verification tasks refer to correct programs that have been proved
incorrect (false alarms, at line 5), and incorrect programs that have been proved
correct (missed bugs, at line 6). Line 7 reports the number of verification tasks
that aborted due to some errors (originating from inability of parsing or insuf-
ficient memory). Line 8 reports the number of verification tasks that did not
provide an answer within the timeout limit of five minutes.

The total score obtained by each tool using the score function of the TACAS
2013 Software Verification Competition [12], is reported at line 9 and will be
used in Figure The score function assigns to every program p the integer
score(p) determined as follows: (i) 2, if p is correct and has been correctly
verified, (ii) 1, if p is incorrect and has been correctly verified, (iii) — 4, if a false
alarm has been generated, and (iv) —8, if a bug has been missed. Programs
that caused errors or timed out do not contribute to the total score.

At line 9 we have indicated between round parentheses the negative compo-
nent of the score due to false alarms and missed bugs. Line 10 reports the total
CPU time, in seconds, taken to run the whole set of verification tasks: it in-
cludes the time taken to produce (correct or incorrect) answers and the time

90

16

VeriMAP (Genpy) | ARMC | HSF(C) || hCER

1 | correct answers 185 138 159 91 103
2 correct problems 154 112 137 74 85
3 incorrect problems 31 26 22 17 18
4 | incorrect answers 0 9 5 13 14
5 false alarms 0 8 3 13 14
6 missed bugs 0 1 2 0 0
7 | errors 0 18 0 20 22
8 | timed-out problems 31 51 52 92 77

| 9| total score | 339 (0) || 210 (-40) || 268 (-28) || 113 (-52) | 132 (-56) |

10 | total time 10717.34 || 15788.21 || 15770.33 || 27757.46 | 23259.19
11 | average time 57.93 114.41 99.18 305.03 225.82

Table 5.1: Verification results using VeriMAP, ARMC, HSF(C) and TRACER. For each column the sum of
the values of lines 1, 4, 7, and 8 is 216, which is the number of the verification problems we have considered.
The timeout limit is five minutes. Times are in seconds.

spent on tasks that timed out (we did not include the negligible time taken for
tasks that aborted due to errors). Line 11 reports the average time needed to
produce a correct answer, which is obtained by dividing the total time (line 10)
by the number of correct answers (line 1).

On the set of verification problems we have considered, the VeriMAP system
is able to provide correct answers to 185 problems out of 216. It is followed
by HSF(C) (159 correct answers), ARMC (138), TRACER(WPre) (103), and
TRACER(SPost) (91). Moreover, VeriMAP has produced no errors and no
incorrect answers, while the other tools generate from 4 to 14 incorrect answers.
Thus, VeriMAP exhibits the best precision, defined as the ratio between the
number of correct answers and the number of verification problems.

The total time taken by VeriMAP is smaller than the time taken by any of
the other tools we have considered. This result is somewhat surprising, if we
consider the generality of our approach and the fact that our system has not
been specifically optimized for software model checking. This good performance
of VeriMAP is due to: (i) the small number of tasks that timed out, and (ii) the
fact that VeriMAP takes very little time on most programs, while it takes much
more time on a few, complex programs (see Figure . In particular, VeriMAP
is able to produce 169 answers taking at most 5 seconds each, and this is indeed
a good performance if we compare it with HSF(C) (154 answers), ARMC (122),
TRACER(SPost) (88) and TRACER(WPre) (101).

In order to ease the comparison of the performance of the software model
checkers we have considered, we adopt a visualization technique using score-
based quantile functions (see Figure , similar to that used by the TACAS 2013
Software Verification competition [12]. By using this technique, the performance
of each tool is represented by a quantile function, which is a set of pairs (x,y)
computed from the following set of pairs:

V ={(p,t) | the correct answer for the (correct or incorrect) program p
is produced in ¢ seconds }.

Given the set V, for each pair (p,T) € V we produce a pair (z,y) computed as
follows:

(i) v = XS+ Z(p,t
the sum of all the negative scores due to incorrect answers (z is called the
accumulated score), and

(i) y=YS+ T, where V'S, called the y-shift, is a number of seconds equal to
the number of the timed-out programs.

Quantile functions are discrete monotone functions, but for reasons of simplicity,

eV At<T Score(p), where XS, called the w-shift, is

92

€6

200 ,
TRACER(SPost) ——

TRACER(WPre) —#—

ARMC —x—
_ HSF(C) —
T OBOr VeriMAP(Genpy) ~ —8— }
g
=
(0]
£
100 b §
50 | -

-50 0 50 100 150 200 250 300 350

x (accumulated score)

Figure 10: Score-based quantile functions for TRACER(SPost), TRACER(WPre), ARMC, HSF(C), and
VeriMAP(Genpp). Markers are placed along the lines of the functions, from left to right, every 10 programs
that produce correct answers, starting from the program whose verification took the minimum time.

in Figure[10]we depicted them as continuous lines. The line of a quantile function
for a generic verification tool should be interpreted as follows:

(i) the z coordinate of the k-th leftmost point of the line, is the sum of the score
of the fastest k correctly verified programs plus the (non-positive) x-shift, and
measures the reliability of the tool,

(ii) the y coordinate of the k-th leftmost point of the line, is the verification time
taken for the k-th fastest correctly verified program plus the (non-negative) y-
shift, and measures the inability of the tool of providing an answer (either a
correct or an incorrect one),

(iii) the span of the line along the z-axis, called the z-width, measures the
precision of the tool, and

(iv) the span of the line along the y-axis, called the y-width, is the difference of
verification time between the slowest and the fastest correctly verified programs.

Moreover, along each line of the quantile functions of Figure [10| we have put a
marker every ten answers. In particular, for n>1, the n-th marker, on the left-
to-right order, denotes the point (x,y) corresponding to the (10xn)-th fastest
correct answer that has been produced.

Informally, for the line of a quantile function we have that: good results
move the line to the right (because of lower total negative score XS), stretch
it horizontally (because of higher positive accumulated score), move it towards
the z-axis (because of fewer timed-out problems and a better time performance),
and compress it vertically (because of a lower difference between worst-case and
best-case time performance). We observe that the line of the quantile function
for VeriMAP (Genpp) starts with a positive z-value (indeed, VeriMAP provides
no incorrect answers and XS = 0), is the widest one (indeed, VeriMAP has
the highest positive accumulated score, due to its highest precision among the
tools we have considered), and is the lowest one (indeed, VeriMAP(Genpp)
has the smallest numbers of timed-out problems). The height of the line for
VeriMAP(Genpp) increases only towards the right end (at an accumulated score
value of 300) after having produced 162 correct answers, and this number is
greater than the number of all the correct answers produced by any of the other
tools we have considered.

In Table we report the results obtained by running the VeriMAP system
with the four generalization operators presented in Section [5.1}

Each column is labelled by the name of the associated generalization opera-
tor. Line 1 reports the total number of correct answers. Lines 2 and 3 report
the number of correct answers for correct and incorrect problems, respectively.
Line 4 reports the number of tasks that timed out. As already mentioned, the

94

VeriMAP system has produced neither incorrect answers nor errors. Line 5 re-
ports the total time, including the time spent on tasks that timed out, taken to
run the whole set of verification tasks. Line 6 reports the average time needed to
produce a correct answer, that is, the total time (line 5) divided by the number
of correct answers (line 1). Line 7 reports the total correct answer time, that is
the total time taken for producing the correct answers, excluding the time spent
on tasks that timed out. Lines 7.1-7.4 report the percentages of the total cor-
rect answer time taken to run the C2CLP module, the Specialize,, procedure,
the Specialize,,,, procedure, and the CorrectnessTest procedure, respectively.
Line 8 reports the average correct answer time, that is, the total correct answer
time (line 7) divided by the number of correct answers (line 1). Line 9 reports
the maximum number of iterations of the Iterated Specialization strategy that
were needed, after the removal of the interpreter, for verifying the correctness
property of interest on the various programs. Line 10 reports the total number
of predicate definitions introduced by the Specialize procedure during the
sequence of iterations.

prop

The data presented in Table show that polyvariance always gives better
precision than monovariance. Indeed, the polyvariant generalization operator
with convex hull Genpy achieves the best precision (it provides the correct
answer for 85.65% of 216 programs of our benchmark), followed by the poly-
variant generalization operator without convex hull Genp (73.61%). (For this
reason in Table [5.1] we have compared the other verification systems against
VeriMAP (Genppy).) As already mentioned, polyvariant generalization may in-
troduce more than one definition for each program point, which means that
the Specialize procedure yields a more precise abstraction of the program to
be verified and, consequently, it may increase the effectiveness of the analysis.
The increase of precision obtained by using polyvariant operators rather than
monovariant ones is particularly evident when proving incorrect programs (the
precision is increased of about 100%, from 15 to 29-31).

On the other hand, monovariant operators enjoy the best trade-off between
precision and average correct answer time. For example, when considering the
average correct answer time, the Genys operator, despite the significant loss of
precision (about 20%, from 159 to 128) with respect to its polyvariant counter-
part Genp, is about 140% faster (3.25 seconds versus 7.88 seconds), when we
consider the average correct answer time.

The good performance of monovariant operators is also justified by the much
smaller number of definitions (about one tenth) introduced by the Specialize,,,,
procedure with respect to those introduced in the case of polyvariant operators.

95

96

VeriMAP generalization operators

Genyy Genyg Genp Genpg
1 correct answers 128 147 159 185
2 correct problems 113 132 130 154
3 incorrect problems 15 15 29 31
4 timed-out problems 88 69 57 31
5 total time 26816.64 | 21362.93 | 18353.11 | 10717.34
6 average time 209.51 145.33 115.43 57.93
7 total correct answer time 416.64 662.93 1253.11 1417.34
7.1 C2CLP 2.27% 1.63% 0.96% 0.98%
7.2 Specialize pemove 6.81% 4.74% 4.44% 4.06%
7.3 Specialize,,,,, 90.33% | 93.16% | 42.77% | 44.68%
74 CorrectnessTest 0.59% 0.46% | 51.83% | 50.27%
8 average correct answer time 3.25 4.51 7.88 7.66
9 max number of iterations 4 7 10 7
10 | number of definitions 5623 6248 54977 58226

Table 5.2: Verification results using the VeriMAP system with different generalization operators. The sum of
the values of lines 1 and 4 is 216, which is the number of the verification problems we have considered. The
timeout limit is five minutes. Times are in seconds.

Also the size of the programs produced by monovariant operators is much
smaller with respect to those produced by polyvariant operators. (The size of
the final programs obtained by specialization is not reported in Table but it
is approximately proportional to the number of definitions.) This also explains
why the impact on the total correct answer time of the CorrectnessTest analysis
is much lower for monovariant operators (less than 1%) than for polyvariant
operators (about 50%).

The weight of the two preliminary phases (translation from C to CLP and
removal of the interpreter) on the overall verification process is very limited.
The execution times for the C2CLP module are very low (about 50 milliseconds
per program) and have a low impact on the total correct answer time (at most
2.27%, as reported on line 7.1). The time taken by Specializegepope for removing
the interpreter ranges from a few tenths of milliseconds to about four seconds,
for the most complex programs, and its impact on the total correct answer time
is between 4% and 7% (see line 7.2).

In the set of problems we have considered, the higher average correct answer
time of polyvariant operators does not prevent them from being more precise
than monovariant operators. Indeed, by using polyvariant operators we get
fewer timed-out problems with respect to those obtained by using monovariant
operators, and thus for the verifications that use polyvariant operators we also
get smaller total and average times (which take into account the number of
timed-out problems).

We also observe that generalization operators using convex hull always give
greater precision than their counterparts that do not use convex hull. This
confirms the effectiveness of the convex hull operator, which may help infer
relations among program variables, and may ease the discovery of useful program
invariants.

Some of the programs are verified by the VeriMAP system during the first it-
eration after the removal of the interpreter by propagating the constraints of the
initial configuration only. Nonetheless, as indicated in Figure [I1], which shows
the precision achieved by the VeriMAP generalization operators during the first
ten iterations, our approach of iterating program specialization is effective and
determines a significant increase of the number of correct answers (up to 115%
for Genp, from 74 to 159). Moreover, we have that the verification process is
able to prove programs by performing up to 7 or 10 iterations when using the
more precise generalization operators Genpp or Genp, respectively.

The highest increase of precision is given by the second iteration and, although
most correct answers are provided within the fourth iteration, all generalization

97

86

180
160
=
S
2140
2
o
o
=
=
=
é 120
~

100

80

X]

[¢]

(]

[¥]
[]

@

@

v ul
=T

¢
™

VeriMAP(Genpyy)
VeriMAP(Genp)
VeriMAP(Gen,)
VeriMAP(Gen,,)

5 6

x (iterations)

10

Figure 11: Cumulative precision achieved by the VeriMAP generalization operators during the first ten itera-

tions.

operators (except for the monovariant operator Genjs) keep increasing their
precision from the fifth iteration onwards, providing up to 6 additional correct
answers each.

The iteration of specialization is more beneficial when using polyvariant gen-
eralization operators where the increase of the number of answers reaches 115%,
while the increase for monovariant generalization operators is at most 52%. For
example, at the first iteration Genp is able to prove less properties than Genyy,
but it outperforms the monovariant operator with convex hull by recovering
precision when iterating the specialization.

The increase of precision due to the iteration of program specialization is
also higher for generalization operators that do not use the convex hull operator
(Genyy and Genp), compared to their counterparts that use convex hull (Genyp
and Genpp).

We would also like to point out that the use of convex hull is very useful during
the first iterations. Indeed, the generalization operators using convex hull can
verify 104 programs at the first iteration, while operators not using convex hull
can verify 74 programs only. In this case the choice of using a polyvariant
vs. monovariant generalization operator has no effect on the number of verified
programs at the first iteration.

Finally, we note that the sets of programs with correct answers by using differ-
ent operators are not always comparable. Indeed, the total number of different
programs with correct answers by using any of the generalization operators we
have considered is 190, while the programs for which a single operator produced
a correct answer is at most 185. Moreover, there are programs that can be ver-
ified by operators with lower precision but that cannot be verified by operators
with higher precision, within the considered timeout limit. For example, in our
experiments the least precise operator Genjy; was able to prove four programs
for which the most precise operator Genpy timed out.

This confirms that different generalization operators can give, in general, dif-
ferent results in terms of precision and performance. If we do not consider time
limitations, generalization operators having higher precision should be preferred
over less precise ones, because they may offer more opportunities to discover the
invariants that are useful for proving the properties of interest. In some cases,
however, the use of more precise generalization operators determines the intro-
duction of more definition clauses, each requiring an additional iteration of the
while-loop («) of the Specialize Procedure, thereby slowing down the verification
process and possibly preventing the termination within the considered timeout
limit. In practice, the choice of the generalization operator to be used for any

99

given verification problem at hand, can be made according to some heuristics
that may be provided on the basis of the above mentioned trade-off between
precision and efficiency.

5.4 Related Work

Our work is related to [16], [127], not only for the common use of constraints and
Horn clauses, but also for the generality of the approach. Indeed, the technique
we have presented here can be seen as a particular application of a more gen-
eral verification method based on CLP and program transformation. CLP is
used for specifying: (i) the programming language under consideration and its
semantics, and (ii) the logic used for expressing the properties of interest and
its proof rules, and CLP program transformation is used as a general-purpose
engine for analysis. By modifying the rules for the interpreter one can encode,
in an agile way, the semantics of different languages, including logic, functional,
and concurrent ones. As in [I19], we also use program specialization to per-
form the so-called removal of the interpreter, but in addition, in the approach
presented here we repeatedly use specialization for propagating the information
about the constraints that occur in the initial configurations and in the error
configurations. Also the class of the properties to be verified, which in the ap-
proach presented here is restricted to reachability properties, can be extended to
those specified by more expressive logics, such as the Computational Tree Logic
used in [62] for the verification of infinite state reactive systems.

A widely used verification technique implemented by software model checkers
(e.g. SLAM and BLAST) is the Counter-Example Guided Abstraction Refine-
ment (CEGAR) [90] which, given a program P and a correctness property ¢,
uses an abstract model a(P) to check whether or not P satisfies p. If a(P)
satisfies ¢ then P satisfies ¢, otherwise a counterexample, i.e., an execution
which makes the program incorrect, is produced. The counterexample is then
analysed: if it turns out to be a real execution of P (genuine counterexample)
then the program is proved to be incorrect, otherwise it has been generated due
to a too coarse abstraction (spurious counterexample) and «(P) needs to be
refined. The CEGAR approach has also been implemented by using CLP. In
particular, in [123], the authors have designed a CEGAR-based software model
checker for C programs, called ARMC. In [85], another CLP-based software
model checker for C programs, called TRACER, is presented. It integrates an
abstraction refinement phase within a symbolic execution process.

Our approach can be regarded as complementary to the approaches based on

100

CEGAR. Indeed, we begin by making no abstraction at all, and if the special-
ization process is deemed to diverge, then we perform some generalization steps
which play a role similar to that of abstraction. (Note, however, that program
specialization preserves program equivalence.) There are various generalization
operators that we can apply for that purpose and by varying those operators we
can tune the specialization process in the hope of making it more effective for
the proofs of the properties of interest. Moreover, since our specialization-based
method preserves the semantics of the original specification, we can apply a se-
quence of specializations, thereby refining the analysis and possibly improving
the level of precision.

In the field of static program analysis the idea of performing backward and
forward semantic analyses has been proposed in [31]. These analyses have been
combined, for instance, in [33], to devise a fixpoint-guided abstraction refinement
algorithm which has been proved to be at least as powerful as the CEGAR
algorithm where the refinement is performed by applying a backward analysis.
An enhanced version of that algorithm, which improves the abstract state space
exploration and makes use of disjunctive abstract domains, has been proposed
in [I24]. In the approach presented here the idea of iterating program analysis
and traversing the computation graph both in the forward and backward manner
can be fruitfully exploited, once the program analysis task has been reduced, as
we do, to a program transformation task.

101

CHAPTER 6

Verifying Array Programs

As already pointed out, one of the most appealing features of our approach is
that it provides a very rich program verification framework where one can com-
pose together several transformation strategies. Indeed, in the previous chapters
we have provided different transformation strategies which can be used within
the verification framework to prove partial correctness properties of imperative
programs acting on integer variables. In this chapter we extend the strategy
presented in Chapter [5] to prove partial correctness properties of programs ma-
nipulating arrays. This extension applies to the Verification Conditions Transfor-
mation step and is twofold. First, in order to specify verification conditions for
array programs, we introduce the class of constraint logic programs over integer
arrays, denoted CLP(Array). In particular, CLP(Array) programs may contain
occurrences of read and write predicates that are interpreted as the input and
output relations of the usual read and write operations on arrays. Secondly,
in order to verify these verification conditions, besides the usual unfolding and
folding rules, we consider the constraint replacement rule, which allows us to
replace constraints by equivalent ones in the theory of arrays [20, [70, 111]. The
transformation strategy may introduce some auxiliary predicates by using a gen-
eralization strategy that extends to CLP(Array) the generalization strategies for
CLP programs over integers or reals.

This chapter is organized as follows. In Section we introduce the class
of CLP(Array) programs. Then, in Section we present the oveall verifica-
tion method, and in Section we present the automatic strategy designed for
applying the transformation rules with the objective of obtaining a proof (or a
disproof) of the properties of interest. Finally, in Section we present the
result of the experimental evaluation obtained by applying the strategy on a set

103

of array programs taken from the literature.

6.1 Constraint Logic Programs on Arrays

In this section we introduce the set CLP(Array) of CLP programs with con-
straints in the domain of integer arrays.

If p; and ps are linear polynomials with integer variables and coefficients, then
P1=P2, P1 > P2, and p; >pa are atomic integer constraints. The dimension n of
an array a is represented as a binary relation by the predicate dim(a,n). For
reasons of simplicity we consider one-dimensional arrays only. The read and
write operations on arrays are represented by the predicates read and write,
respectively, as follows: read(a, i,v) denotes the i-th element of array a is the
value v, and write(a, i, v,b) denotes that the array b that is equal to the array a
except that its i-th element is v. We assume that both indexes and values are
integers, but our method is parametric with respect to the index and value
domains. (Note, however, that the result of a verification task may depend on
the constraint solver used, and hence on the constraint domain.)

An atomic array constraint is an atom of the following form: either dim(a,n),
or read(a,i,v), or write(a,i,v,b). A constraint is either true, or an atomic
(integer or array) constraint, or a conjunction of constraints. An atom is an
atomic formula of the form p(ti,...,ty), where p is a predicate symbol not in
{=,>,>,dim,read,write} and ty,. .., ty, are terms constructed out of variables,
constants, and function symbols different from + and *.

Now we define the semantics of CLP(Array) programs. An A-interpretation
is an interpretation I, that is, a set D, a function in D™ — D for each function
symbol of arity n, and a relation on D" for each predicate symbol of arity n,
such that:

(i) the set D is the Herbrand universe [105] constructed out of the set Z of the
integers, the constants, and the function symbols different from + and *,

(ii) I assigns to +,*,=, > > the usual meaning in Z,

(iii) for all sequences ag .. .a,_1, for all integers d,
dim(ag...ap—1,d) is true in I iff d=n

(iv) I interprets the predicates read and write as follows: for all sequences
ag...ap—1 and by ...by_1 of integers, for all integers i and v,
read(ag...ay-1,1,v) is truein [iff 0<i<n—1 and v=a;, and
write(ap...ap—1,1,v,bg...by_1) is true in [iff

0<i<n-—1,n=m, b;=v, and for j=0,...,n—1, if j#1i then aj=b;

104

(v) I is an Herbrand interpretation [I05] for function and predicate symbols
different from +, *,=,>,>, dim, read, and write.

We can identify an A-interpretation I with the set of ground atoms that are

true in I, and hence A-interpretations are partially ordered by set inclusion.

We write A = ¢ if ¢ is true in every A-interpretation. A constraint c is
satisfiable if A = 3(c), where in general, for every formula ¢, 3(¢) denotes
the existential closure of ¢. Likewise, V(¢) denotes the universal closure of .
A constraint is unsatisfiable if it is not satisfiable. A constraint c entails a
constraint d, denoted ¢ C d, if A = V(c — d). By vars(p) we denote the free
variables of .

We assume that we are given a solver to check the satisfiability and the en-
tailment of constrains in .A. To this aim we can use any solver that implements
algorithms for satisfiability and entailment in the theory of integer arrays [20, [70].

The semantics of a CLP(Array) program P is defined to be the least A-model
of P, denoted M(P), that is, the least A-interpretation I such that every clause
of P is true in [I.

Given a CLP(Array) program P and a ground goal G of the form :-A, PU{G}
is satisfiable (or, equivalently, P [~ A) if and only if A ¢ M(P). This prop-
erty is a straightforward extension to CLP(Array) programs of van Emden and
Kowalski’s result [137].

6.2 The Verification Method

In this section we extend the Verification Conditions Generation (Step 2) and
Verification Conditions Transformation (Step 3) steps of the verification method
shown in Figure [§| to deal with array programs.

Let us consider an incorrectness triple of the form { i} Prog {verror }. We
assume that the properties @iu;: and @error can be expressed as conjunctions of
(integer and array) constraints and Prog is a program acting on array variables.
The imperative program Prog is correct with respect to the properties (,; and
Qerror Iff incorrect & M(P) (or, equivalently, P j~ incorrect), where M (P) is
the least A-model of CLP program P encoding the given incorrectness triple (see
Section [3.4]).

In order to deal with array programs we extend the CLP interpreter I pre-
sented in Sections [3.2] and by adding some extra clauses to the definition
of the predicate tr. For instance, the following clause encodes the transition
relation for the array assignment ¢:afie]=e

105

tr(cf(cmd(L,asgn(arrayelem(A,Ie) ,Ae),Lp),E), cf(cmd(Lp,C),Ep)) :-
aeval(Ie,E,I), aeval(Ae,E,V), lookup(E,array(A),FA),
write(FA,I,V,FAp), update(E,array(A),FAp,Ep), at(Lp,C).

In Step 2 the CLP Interpreter I is specialized with respect to the CLP Encoding
T of the given incorrectness triple, thereby deriving a new program V representing
the verification conditions for Prog.

The specialization of I is obtained by applying a variant of the Specialize,,
strategy presented in Chapter [3] The main difference is that the CLP programs
considered in this chapter contain read, write, and dim predicates. The read
and write predicates are never unfolded during specialization and they occur
in the residual CLP(Array) program V. All occurrences of the dim predicate are
eliminated by replacing them by suitable integer constraints on indexes.

Step 3 has the objective of checking, through further transformations, the
satisfiability of the verification conditions generated by Step 2. In particular,
the strategy aims at deriving either (i) a CLP(Array) program that has no
constrained facts (hence proving satisfiability of the verification conditions and
partial correctness of the program), or (ii) a CLP(Array) program containing the
fact incorrect (hence proving that the verification conditions are unsatisfiable
and the program does not satisfy the given property).

In this step we start with a program reversal of the CLP(Array) program V,
then we proceed with a further program transformation based on the application
of transformations that, under suitable conditions, preserve the least A-model
semantics of CLP(Array) programs. In particular, we perform the following
transformations: R:= Reverse(V); S:= Transform,,,,,(R), during which we apply
the following transformation rules: (i) definition introduction, (ii) unfolding,
(iii) clause removal, (iv) constraint replacement, and (v) folding. These rules
are an adaptation to CLP(Array) programs of the unfold/fold rules presented
in Chapter [2| for a generic CLP language, and, by Theorem [I] we have that, by a
sequence of applications of the above rules, incorrect € M (V) iff incorrect €
M(S).

In particular, in order to deal with constraints in A, the novel transformation
strategy Transform,,,, makes use of the constraint replacement rule. The equiv-
alences needed for constraint replacements are shown to hold in A by using a
relational version of the theory of arrays with dimension |20} [70]. In particular,
the constraint replacements we apply during the transformations described in
Section follow from the following axioms where all variables are universally
quantified at the front:

(A1) I=1J, read(A,I,U), read(a,J,V) — U=V

106

(A2) I=1J, write(A,I,U,B), read(B,J,V) — U=V

(A3) I#J, write(A,I,U,B), read(B,J,V) — read(A,J,V)

Axiom (A1) is often called array congruence and axioms (A2) and (A3) are
collectively called read-over-write. We omit the usual axioms for dim.

We will describe this step in detail in Section Before presenting the
transformation strategy we give the reader a general idea of the method by
verifying the correctness of the program for computing the maximum of an
array. We apply the Transform,,,, strategy and we show how the constraint
replacement rule can be used after the unfolding to exploit the theory of array

encoded by mean of suitable replacement laws.

Example 8 (Computing the maximum of an array). Let us consider the
following incorrectness triple {@init (i, n, a, max) } arraymax {verror(n, a, maz)},
where: (1) @init(i,n,a, maz) is i >0 A n=dim(a) A n>i+1 A maz=ali],
(ii) @error(n, a, mazx) is 3k (0<k<n aalk]>maz), and arraymax is the program:

i=0;
while (x<n) {
if (a[i] > max)
max=al[i];
i=i+1;
}

Listing 6.1: Program arraymax

If this triple holds, then the value of maz computed by the program arraymax
is not the maximal element of the given array a with n (> 1) elements.

We start off by executing the CLP Translation step which generates the CLP
Encoding T of the given incorrectness triple. This construction is done as indi-
cated in Section and, in particular, the program arraymax is translated into
a set of CLP facts defining the predicate at, and the formulas p;n; and Qepror
are translated into the clauses for the predicates phiInit and phiError. We
only list the fact on which the predicate initConf depends on, and the CLP
clauses encoding @i and @error, respectively.

1. at(0,asgn(int(i),int(0),1)) E]

! Note that the term 0 represents the label associated with i=0 in Listing We recall that
in the definition of the predicate at we encode the information about the control flow of the
imperative program, for instance, the term 1 is the label where to jump after the execution
of the command i=0

107

respectively, (ii) the environment E is the pair of lists ([[int(i),I], [int(n),N], [array(
and (iii) the formulas @ and Yepor, are given by the following CLP clauses:

2. phiInit(E) :- I>0,N>I+1, read(A,I,Max).

3. phiError(E) :- K>0,N>K,Z>Max, read(A,K,Z).
Next, we apply the Verification Conditions Generation step of our verification
method and we get the CLP program V representing the verification conditions
for the arraymax program:

4. incorrect :- I=0, N>1, read(A,I,Max), newl(I,N,A,Max).

5. newl(I,N,A,Max) :- I1=I+1, I<N, I>0,M>Max, read(A,I,M),

newl(I1,N,A,M).
6. newl(I,N,A,Max) :- I1=1I+1, I<N, I>0, M<Max, read((A,I,M),
newl(I1,N,A, Max).

7. newl(I,N,A,Max) :- I>N,K>0,N>K,Z>Max, read(A,K,Z).
We have that new1(I,N, A Max) encodes the reachability of the error configura-
tion from any initial configuration, where the program variables i,n, a,max are
represented by I, N, A, Max, respectively.

In order to propagate the error property, similarly to the Example [6] of Sec-
tion we first ‘reverse’ program V and we get the following program V,.,:

8. incorrect :- b(U), r2(U).

9. r2(V) :- trans(U,V), r2(U).
10. r2(U) :- a(v).

where predicates a(U), b(U), and trans(U,V) are defined as follows:

11. a([new1,I,N,A,Max]) :- I=0, N>1, read(A,I,Max).
12. trans([newl,I,N,A,Max], [newl,I1,N,A,M]) :-
I1=I+1, I<N, I>0, M>Max, read(A,I,M).
13. trans([newl,I,N,A,Max], [newl,I1,N,A,Max]) :-
I1=I+1, I<N, I>0, M<Max, read(A,I,M).
14. b([new1,I,N,A,Max]) :- I>N, K>0, K<N, Z>Max, read(A,K,Z).

Let us now apply the Verification Conditions Transformation step of the verifi-
cation method.

In order to deal with the theory of arrays we make use of the constraint
replacement rule together with the following law, which is a consequence of the
fact that an array is a finite function:

(Law L1) read(A,K,Z), read(A,I,M) <«
(K=I, Z=M, read(A,K,Z)) V

108

(K#I, read(A,K,Z), read(A,I,M))

In general, when applying the transformation strategy in the case of array pro-
grams, some additional laws may be required (see, for instance, [20]). For the
DEFINITION INTRODUCTION procedure we use a particular generalization oper-
ator, called WidenSum [62], which is a variant of the classical widening operator
presented in Section [£.2.1] and behaves as follows. Given any atomic constraint
a, let us denote by sumcoeff(a) the sum of the absolute values of the coefficients
of a. Given any two constraints ¢ and d, WidenSum(c, d) returns the conjunction
of: (i) all atomic constraints a in ¢ such that d C a, and (ii) all atomic con-
straints b in d such that sumcoeff(b) < sumcoeff(e) for some atomic constraint e
in c.

UNFOLDING. We start off by unfolding clause [§| with respect to the atom b(U),
and we get:

15. incorrect :-I>N, K>0, K<N, Z>Max, read(A,K,Z),
r2([newl,I,N,A,Max]).
The CLAUSE REMOVAL phase leaves unchanged the set of clauses we have de-
rived so far. Since no clause in Defs can be used to fold clause[I5]the DEFINITION
INTRODUCTION introduces the following clause:
16. new2(I,N,A,Max,K,Z) :- I>N, K>0, K<N, Z>Max, read(4,K,Z),
r2([newl,I,N,A,Max]).

Now we proceed by performing a second iteration of the body of the while-loop
of the transformation strategy because clause [16]is in InCls.

UNFOLDING. By unfolding clause with respect to r2([newl,I,N,A,Max]),

we get the following clauses:

17. new2(I,N,A,Max,K,Z) :-I>N, K>0, K<N, Z>Max, read(A,K,Z),
trans (U, [newl,I,N,A,Max]), r2(U).

18. new2(I,N,A,Max,K,Z) :-I>N, K>0, K<N, Z>Max, read(A,K,Z),
a([newl,I,N,A,Max]).

By unfolding clause with respect to trans (U, [newl,I,N,A,Max]), we get:

19. new2(I1,N,A,M,K,Z) :- I1=1I+1, N=1I1, K>0, K<I1, M>Max, Z>M,
read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

20. new2(I1,N,A,Max,K,Z) :- 11=T1+1,N=11,K>0,K<I1,M<Max,Z>Max,
read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

By unfolding clause [I§ with respect to a([new1,I,N,A,Max]), we get an empty

set of clauses (indeed, the constraint I>N, I=0, N>1 is unsatisfiable).

109

Now we apply a subsidiary procedure, called CONSTRAINT REPLACEMENT, to
deal with the theory of arrays. This phase performs the following two steps:

(i) it replaces the conjunction of atoms ‘read(A,K,Z), read(A,I,M)’ occurring
in the body of clause [19| by the right hand side of Law L1, and then

(ii) it splits the derived clause into the following two clauses, each of which
corresponds to a disjunct of that right hand side.

21. new2(I1,N,A,M,K,Z) :- I1=I+1, N=I1, K>0, K<I1, M>Max, Z>M,
K=I, Z=M, read(A,K,Z), r2([newl,I,N,A,Max]).

22. new2(I1,N,A,M,K,Z) :- I1=I+1, N=I1, K>0, K<I1, M>Max, Z>M,
K#I, read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

CLAUSE REMOVAL. The constraint ‘Z>M, Z=M" in the body of clause

is unsatisfiable. Therefore, this clause is removed from S. From clause by

replacing ‘K#I’ by ‘K<I v K>I’" and simplifying the constraints, we get:

23. new2(I1,N,A,M,K,Z) :- I1=I+1, N=I1, K>0, K<I, M>Max, Z>M,
read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

By performing from clause [20]a sequence of goal replacement and clause removal
transformations similar to that we have performed from clause we get the
following clause:

24. new2(I1,N,A,Max,K,Z) :- I1=1I+1, N=1I1, K>0, K<I, M<Max, Z>Max,
read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

DEFINITION INTRODUCTION. The comparison between the definition clause
we have introduced above, and clauses 23| and [24] which we should fold, shows
the risk of introducing an unlimited number of definitions whose body contains
the atoms read((A,N),K,Z) and r2([newl,I,N,A,Max]). Thus, in order to
fold clauses 23] and [24] we introduce the following new definition:

25. new3(I,N,A,Max,K,Z) :- K>0, K<N, K<I, Z>Max, read(A,K,Z),
r2([newl,I,N,A,Max]).

The constraint in the body of this clause is obtained by generalizing: (i) the pro-
jection of the constraint in the body of clause[23]on the variables I,N, A, Max, K, Z
(which are the variables of clause that occur in the atoms read(A,K,Z)
and r2([newl,I,N,A,Max]), and (ii) the constraint occurring in the body of
clause This generalization step can be seen as an application of the above
mentioned WidenSum generalization operator.

Now we perform the third iteration of the body of the while-loop of the strategy.

UNFOLDING, CONSTRAINT REPLACEMENT, and CLAUSE REMOVAL. By unfold-
ing, goal replacement, and clause removal, from clause 25 we get:

110

26. new3(I1,N,A,M,K,Z) :- I1=I+1, K>0, K<I, N>I1, M>Max, Z>M,
read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

27. new3(I1,N,A,Max,K,Z) :- I1=I+1, K>0, K<I, N>I1, M<Max, Z>Max,
read(A,K,Z), read(A,I,M), r2([newl,I,N,A,Max]).

DEFINITION INTRODUCTION. In order to fold clauses [26] and 27, we do not need

to introduce any new definition. Indeed, it is possible to fold these clauses by

using clause

Since no clause to be processed is left (because InCls={), the transformation
strategy exits the outermost while-loop («), and starts the FOLDING phase.
Finally, we get the program S which consists of the following set of clauses:

28. incorrect :- I>N, K>0, K<N, Z>Max, new2(I,N,A,Max,K,Z).

29. new2(I1,N,A,Max,K,Z) :- I1=1I+41, N=I1, K>0, K<I, M>Max, Z>M,
read(A,I,M), new3(I,N,A,Max,K,Z).

30. new2(I1,N,A,M,K,Z) :- I1=I+1, N=1I1, K>0, K<I, M<Max, Z>Max,
read(A,I,M), new3(I,N,A,Max,K,Z).

31. new3(I1,N,A,M,K,Z) :- I1=I+1, K>0, K<I, N>I1, M>Max, Z>M,
read(A,I,M), new3(I,N,A,Max,K,Z).

32. new3(I1,N,A,Max,K,Z) :- I1=1I+1, K>0, K<I, N>I1, M<Max, Z>Max,
read(A,I,M), new3(I,N,A,Max,K,Z).

obtained by folding clause [15] using clause [I6] and by folding clauses
and [27] by using clause

No clause in this set is a constrained fact, and hence by REMOVAL OF USELESS
CLAUSES we get the final program S consisting of the empty set of clauses. Thus,
arraymax is correct with respect to the properties @i and Yerror- O

6.3 The Transformation Strategy

As mentioned above, the verification conditions expressed as the CLP(Array)
program V generated by Step 2 are satisfiable iff incorrect ¢ M(S). Our
verification method is based on the fact that by transforming the CLP(Array)
program V using rules that preserve the least .A-model, we get a new CLP(Array)
program S that expresses equisatisfiable verification conditions.

The Verification Conditions Transformation (Step 3) step has the objective of
showing, through further transformations, that either the verification conditions
V are satisfiable (that is, incorrect & M (V) and hence Prog is correct with re-
spect t0 @ini and Yerror), or they are unsatisfiable (that is, incorrect € M (V)

111

and hence Prog is not correct with respect to @iy and @epror). To this aim,
Step 3 propagates the initial and/or the error properties so as to derive from pro-
gram V a program S where the predicate incorrect is defined by either (A) the
fact ‘incorrect’ (in which case the verification conditions are unsatisfiable and
Prog is incorrect), or (B) the empty set of clauses (in which case the verification
conditions are satisfiable and Prog is correct). In the case where neither (A)
nor (B) holds, that is, in program S the predicate incorrect is defined by a
non-empty set of clauses not containing the fact ‘incorrect’, we cannot con-
clude anything about the correctness of Prog. However, similarly to what has
been proposed in Chapter [5] in this case we can iterate Step 3, alternating the
propagation of the initial and error properties, in the hope of deriving a program
where either (A) or (B) holds. Obviously, due to undecidability limitations, it
may be the case that we never get a program where either (A) or (B) holds.
Step 3 is performed by applying the unfold /fold transformation rules according
to the Transform,,,, strategy shown in Figure Transform,,,,, can be viewed
as a backward propagation of the error property. The forward propagation of the
initial property can be obtained by combining Transform,,,, with the Reversal
transformation described in Section [(5.2.3]
UNFOLDING performs one inference step backward from the error property.
The CONSTRAINT REPLACEMENT phase, by applying the theory of arrays, infers
new constraints on the variables of the only atom that occurs in the body of
each clause obtained by the UNFOLDING phase. It works as follows. We select a
clause, say H : - c, G, in the set TransfC' of the clauses obtained by unfolding, and
we replace that clause by the one(s) obtained by applying as long as possible
the following rules. Note that this process always terminates and, in general, it
is nondeterministic.

(RR1) If ¢ C (I=1J) then
replace: read(A,I,U), read(A,J,V) by: U=V, read(A,I,U)
(RR2) If ¢ = (read(A,I,U),read(A,J,V),d),dZ (I#J), and dC (U#V)
add to ¢ then the constraint: I#J
(WR1) If ¢ C (I=1J) then
replace: write(A,I,U,B), read(B,J,V)
by: U=V, write(A,I,U,B)
(WR2) IfcC (I#J)
replace: write(A,I,U,B), read(B,J,V)
by: write(A,I,U,B), read(A,J,V)

112

Input: Program R.
Output: Program 8 such that incorrect € M (R) iff incorrect € M(S).

INITIALIZATION:

S:=0;

InCls := { incorrect:-ci(X), A1(X),...,incorrect:-c;(X), 4;(X) };
Defs := ();

(o) while in InCls there is a clause C' that is not a constrained fact do
UNFOLDING:
‘ TransfC := Unf(C, A), where A is the leftmost atom in the body of C;

CONSTRAINT REPLACEMENT:
(a2) while in TransfC there is a clause E such that it is possible
to apply a constraint replacement rule R in Rules do
TransfC := (TransfC— {E}) U R(E)
end-while;

CLAUSE REMOVAL:
(a3) while in TransfC there are two distinct clauses Fj and Es
such that F7 subsumes Fy do
TransfC := TransfC — {Ea};
end-while;

DEFINITION INTRODUCTION:
(ad) while in TransfC there is a clause E that is not a constrained fact
and cannot be folded using a definition in Defs do
G:= Gen(E, Defs);
Defs:= Defs U {child(G,C)};
InCls:=InClsU {G};

end-while;
InCls :== InCls — {C}; 8 :=8U TransfC,
end-while;
FoLpING:

(8) whilein S there is a clause E that can be folded
by a clause D in Defs do
S :=(8 —{E})U{F}, where F is derived by folding E using D;
end-while;

Remove from Py all clauses for predicates on which incorrect does not depend.

Figure 12: The Transform.

prop Strategy

113

(WR3) If cZI=JandcZI#J then

replace: H:- c, write(A,I,U,B), read(B,J,V), G

by: H:-c, I=J, U=V, write(A,I,U,B), G

and H:-c, I#J, write(A,I,U,B), read(4,J,V), G

Rules RR1 and RR2 are derived from the array axiom A1 (see Section [6.2)), and
rules WR1-WR3 are derived from the array axioms A2 and A3 (see Section [6.2).
Let Rules be a set of the constraint replacement rules. We denote by R(E) the
set, of clauses obtained by applying a rule R in Rules to the constraint occurring
in the body of clause F.

The DEFINITION INTRODUCTION phase introduces new predicate definitions by
suitable generalizations of the constraints. These generalizations guarantee the
termination of Transform,,,,, but at the same time they should be as spe-
cificaspossible in order to achieve maximal precision. This phase works as
follows. Let C'1 in TransfC be a clause of the form H :-c, p(X). If in Defs there
is an ancestor D: newp(X) :-d, p(X) of clause C1 such that vars(d) C vars(c)
and ¢ C d, then we fold C1 using D. Otherwise, we introduce a clause of the
form newp(X) :-gen, p(X) where: (i) newp is a predicate symbol occurring nei-
ther in the initial program nor in Defs, and (ii) gen is a constraint such that
vars(gen) C vars(c) and ¢ C gen. The constraint gen is called a generalization
of the constraint ¢ and is constructed as follows.

Let ¢ be of the form ii,rw;, where i is an integer constraint and rw; is
a conjunction of read and write constraints. Without loss of generality, we
assume that all occurrences of integers in read constraints of ¢ are distinct
variables not occurring in X (this condition can always be fulfilled by adding
suitable integer equalities).

(1) Delete all write constraints from rwy, hence deriving r;.

(2) Compute the projection i, (in the rationals Q) of the constraint i; onto
vars(ri) U {X}. (Recall that the projection in Q of a constraint c(Y,Z)
onto the tuple Y of variables is a constraint c,(Y) such that Q }=VY(cp(Y)
<~ 3Z2c(Y,2)).)

(3) Delete from r; all read(A, I,V) constraints such that either (i) A does not
occur in X, or (ii) V does not occur in i,, thereby deriving a new value for
ry. If at least one read has been deleted during this step, then go to Step 2.

(4) Let iy, ro be the constraint obtained after the possibly repeated executions
of Steps 2-3.

If in Defs there is an ancestor (defined as the reflexive, transitive closure
of the parent relation) of C' of the form Ho :- io, ro,p(X) such that ro, p(X)
is a subconjunction of ry, p(X),

114

then compute a generalization g of the constraints i and i such that
is C g, by using a generalization operator for linear constraints (see Sec-
tion [4.2.1)). Define the constraint gen as g, ro;

else define the constraint gen as is, rs.

6.3.1 Termination and Soundness of the Transformation Strategy

The following theorem establishes the termination and soundness of the Trans-
formprop, strategy.

Theorem 8 (Termination and Soundness of the Transform,,,, strat-
egy). (i) The Transform,,,, strategy terminates. (ii) Let program S be the
output of the Transform,,,, strategy applied on the input program R. Then,

incorrect € M(R) iff incorrect € M (S).

TOP

Proof. (i) The termination of the Transform,,,, strategy is based on the follow-
ing facts:

(1) Constraint satisfiability and entailment are checked by a terminating solver
(note that completeness is not necessary for the termination of Transform,,,,).
(2) CONSTRAINT REPLACEMENT terminates (see above).

(3) The set of new clauses that, during the execution of the Transform,,,, strat-
egy, can be introduced by DEFINITION INTRODUCTION steps is finite. Indeed,
by construction, they are all of the form H : - i, r,p(X), where: (3.1) X is a tuple
of variables, (3.2) i is an integer constraint, (3.3) r is a conjunction of array
constraints of the form read(A, I,V), where A is a variable in X and the vari-
ables I and V occur in i only, (3.4) the cardinality of r is bounded, because
generalization does not introduce a clause newp(X) :- i,, o, p(X) if there exists
an ancestor clause of the form Hy :- ig, ro, p(X) such that ro,p(X) is a subcon-
junction of ry, p(X), (3.5) we assume that the generalization operator on integer
constraints has the following finiteness property: only finite chains of generaliza-
tions of any given integer constraint can be generated by applying the operator.
The already mentioned generalization operators presented in Section [4.2.1] sat-
isfy this finiteness property.

(ii) The correctness of the strategy with respect to the least .A-model semantics
follows from Theorem [1}, by observing that every clause defining a new predicate
introduced by DEFINITION INTRODUCTION is unfolded once during the execution
of the strategy (indeed every such clause is added to InCls). O

Example 9 (Array sequence initialization). Let us consider the following
incorrectness triple {init(i,n,a)} SeqInit {perror(n, a)} where: (i) @init(i,n, a)

115

is i>0 A n=dim(a) A n>1, (ii) Qerror(n,a)is 37 (0<j A j+1<n A alj]>
alj+1]), and (iii) seqinit is the imperative program listed below:

i=1;
while (i<n) {
alil=ali-1]+1;
i=i+1;
}
Listing 6.2: Program seqinit

which initializes a given array a of n integers by the sequence: a[0], a[0]+
1, ..., a[0]+n—1.
First, by applying the CLP Translation step, the above incorrectness triple is

translated into a CLP(Array) program T. In particular, the predicates phiInit
and phiError are defined by the following clauses:

5. phiInit(E) :=I>0,dim(A,N),N>1.
6. phiError(E) :-Z=W+1,W>0,W+1<N,U>V,read(A,W,U),read(A,Z,V).

representing the properties @i and @epror respectively.

Now by applying the Verification Conditions Generation, we generate the following
CLP program:

7. incorrect :- Z=W+1, W>0, W+1<N, U>V, N<I,
read(A,W,U), read(A,Z,V), newl(I,N,A).

8. newl1(I1,N,B) :- 1<I, I<N, D=I-1, I1=1I+1, V=U+1,
read(A,D,U), write(A,I,V,B), newl(I,N,A).

9. new1(I,N,A) :-I=1, N>1.

The CLP(Array) program R expresses the verification conditions for seqinit.
For reasons of simplicity, the predicates expressing the assertions associated with
assignments and conditionals have been unfolded away during the removal of the
interpreter.

Due to the presence of integer and array variables, the least .A-model M (R)
may be infinite, and both the bottom-up and top-down evaluation of the goal
:- incorrect may not terminate (indeed, this is the case in our example above).
Thus, we cannot directly use the standard CLP systems to prove program cor-
rectness. In order to cope with this difficulty, we apply the Transform,,,, to R
which allows us to avoid the exhaustive exploration of the possibly infinite space
of reachable configurations.

UNFOLDING. First, we unfold clause W.r.t. the atom new1(I,N,A), and we get:

116

10. incorrect :- Z=W+1,W>0,Z<I,D=I-1,N=I+1,Y=X+41,U>V,
read(B,W,U), read(B,Z,V), read(A,D,X), write(A,I,Y,B), newl(I,N,A).
CONSTRAINT REPLACEMENT. Then, by applying the replacement rules WR2,
WRS3, and RR1 to clause we get the following clause:
11. incorrect :- Z=W+1,W>0,Z<I,D=I1—-1,N=I+1,Y=X+4+1,U>V,
read(A,W,U), read(A,Z,V), read(A,D,X), write(A,I,Y,B), newl(I,N,A).
In particular, since W#1I is entailed by the constraint in clause we ap-
ply rule WR2 and we obtain a new clause, say 11.1, where read(B,W,U),
write(A,I,Y,B) is replaced by read(A,W,U), write(A,I,Y,B). Then, since
neither Z=T nor Z#1I is entailed by the constraint in clause 11.1, we ap-
ply rule WR3 and we obtain two clauses 11.2 and 11.3, where the constraint
read(B,Z,V), write(A,I,Y,B) isreplacedby Z=1, Y=V, write(A,I,Y,B)
and Z #1I, read(A,Z,U), write(A,I,Y,B), respectively. Finally, since D = Wis
entailed by the constraint in clause 11.3, we apply rule RR1 to clause 11.3 and we
add the constraint X = U to its body, hence deriving the unsatisfiable constraint
X=U,Y=X+4+1,Y =V, U>V. Thus, the clause derived by the latter replacement
is removed. Clause [L1]is derived from 11.3 by rewriting Z<I,Z # I as Z<I.

DEFINITION INTRODUCTION. In order to fold clause [[T] we introduce a new def-
inition by applying Steps of the DEFINITION INTRODUCTION phase. In
particular, by deleting the write constraint and projecting the integer con-
straint we get a constraint where the variable X occurs in read (A,D,X) only.
Thus, we delete read(A,D,X) Finally, we compute a generalization of the
constraints occurring in clauses |7| and |[11] by using the convex hull operator
We get:

12. new2(I,N,A) :- Z=W4+1,W>0,N<I+1,N>W+2,W<I—-2,U>V,

read(A,W,U), read(A,Z,V), newl(I,N,A).

Now we proceed by performing a second iteration of the body of the while-loop
of the Transform,,,, strategy because InCls is not empty (indeed, at this point
clause [12| belongs to InCls).

UNFOLDING. After unfolding clause [12] we get the following clause:

13. new2(I1,N,B) :-I1=I+1, Z=W+1, Y=X+1, D=I-1, N<I+2, I>1,
2<I1,Z>1,N>1I,U>V, read(B,W,U), read(B,Z,V),
read(A,D,X), write(A,I,Y,B), newl(I,N,A).

CONSTRAINT REPLACEMENT. Then, by applying rules RR1, WR2, and WR3
to clause we get the following clause:

14. new2(I1,N,B) :- I1=I+1, Z=W+1, Y=X+1, D=I—1, N<I+2, I>1,

117

72<1,Z>1,N>1I,U>V, read(A,W,U), read(A,Z,V),
read(A,D,X), write(A,I,Y,B), newl(I,N,A).
DEFINITION INTRODUCTION. In order to fold clause [[4] we introduce the fol-
lowing clause, whose body is derived by computing the widening [30, 34] of the
integer constraints in the ancestor clause with respect to the integer con-
straints in clause
15. new3(I,N,A) :- Z=W+1, W>0, W<I—1, N>Z, U>V,
read(A,W,U), read(A,Z,V), newl(I,N,A).
Now we perform the third iteration of the body of the while-loop of the strategy
starting from the newly introduced definition, that is, clause After some
unfolding and constraint replacement steps, from clause [L5| we get:
16. new3(I1,N,B) :- I1=I+1, Z=W+1, Y=X+1,D=I-1,1I>1,
Z<I,Z>1,N>1I,U>V, read(A,W,U), read(A,Z,V),
read(A,D,X), write(A,I,Y,B), newl(I,N,A).
The final transformed program is made out of the following clauses:
17. incorrect :- Z=W+1,W>0,Z<I,D=I-1,N=I+41,Y=X+4+1,U>V,
read(B,W,U), read(B,Z,V), read(A,D,X), write(A,1,Y,B), new2(I,N,A) .
18. new2(I1,N,B) :-I1=1I+1, Z=W+1, Y=X+41,D=1—-1, N<I+2, I>1,
72<1,Z>1,N>1I,U>V, read(A,W,U), read(A,Z,V),
read(A,D,X), write(A,I,Y,B), new3(I,N,A).
19. new3(I1,N,B) :- I1=I+1, Z=W+1, Y=X+1, D=I—1, I>1,
Z<I,Z>1,N>1I,U>V, read(A,W,U), read(A,Z,V),
read(A,D,X), write(A,I,Y,B), new3(I,N,A).
obtained by folding clause [11] using clause [12] and by folding clauses [I4] and

by using clause
Since this program has no constrained facts, by the last step of the Transform,,,,,
procedure we derive the empty program S, and we conclude that the program

seqinit is correct with respect to the given @ and @error properties. O

6.4 Experimental Evaluation

We have performed an experimental evaluation of our method by using the
VeriMAP tool (see Chapter [8)) on a benchmark set of programs acting on arrays,
mostly taken from the literature [I7, 52, [77, [98]. The results of our experiments,
which are summarized in Tables [6.1] and show that our approach is effective
and quite efficient in practice.

118

We now briefly discuss the programs we have used for our experimental evalua-
tion (see Table Where we have also indicated the properties we have verified).

Program

Code

Verified Property

init

for(i=0; i<n; i++)
alil=c;

Vi. (0<iAi<n)
— ali]=c

init-partial

for(i=0; i<k; i++)
al[i]=0;

Vi. (0<ini<kAk<n)
— ali]=0

init-
non-constant

for(i=0; i<n; i++)
al[i]=2*i+c;

Vi. (0<iAi<n)
— ali] =2%i+c

init-sequence

al0]=7;

i=1;

while(i<n) {
alil=ali-11+1;
it+:

}

Vi. (1<iAi<n)
— ali|=ali—1]+1

copy

for(i=0; i<n; i++)
ali]l=bl[i];

Vi. (0<iAi<n)
— ali] =bli]

copy-partial

for(i=0; i<k; i++)
alil=b[i];

Vi. (0<ini<kAk<n)
— afi] = bli]

copy-reverse

for(i=0; i<n; i++)
blil=alil;
for(i=0; i<n; i++)
ali]l=b[n-i-1];

Vi. (0<iAi<n)
— ali]=bn—i—1]

maz m=a[0]; Vi. (0<iANi<nAn>1)
i=1; — m>ali
while(i<n) {
if(al[i]l>m)
m=al[i];
i++;
}
sum for(i=0; i<n; i++) Vi. (0<iAi<n)
cl[il=ali]+b[i]; — cli]| =ali]+b[i]
difference for(i=0; i<n; i++) Vi. (0<iAi<n)

c[il=alil-b[il;

— cli]= ali] —bli]

119

find

p=-1;

for(i=0; i<n; i++)
if(alil==e) {
p=i;
break;

3

(0<pAp<n)
— alp]=e

first-not-null

s=n;

(0<sAs<n)—

while(j>=0 && aljl>x) {
alj+1]=aljl;
}

for(i=0; i<mn; ++i) (al[s] #0A
if(s==n && alil!=0) (Vi. (0<iNi<s)—
s=1; ali]=0))
find-first- p=-1; (0<pAp<n)
non-null for(i=0; i<n; i++) — alp] #0
if(ali]'=0) {
p=i;
break;
}
partition i=0; (Vi. (0<iNni<y)
j=0; — b[1] >0) A
k=0; (Vi. (0<iAi<k)
while(i<n) { — ¢[i] <0)
if (alil>=0) {
bljl=alil;
jt+s
} else {
clkl=alil;
k++;
}
++13;
}
insertionsort- |x=alil; VE. (0<iAi<nA
inner j=i-1; JHL<kAE<i) — alk] >z

120

bubblesort- for(j=0; j<n-i-1; j++) { V. (0<iNi<nA
inner if(aljl > alj+1]) { 0<kAk<jAj=n—i-1)
tmp = aljl; — alk] <alj]
alj]l = alj+1];
alj+1] = tmp;
}
}
selectionsort- |for(j=i+1; j<n; j++) { VE.(0<iNi<kANk<n)
inner if(alil>alj1) { — alk] > ali]
tmp=ali];
alil=aljl;
aljl=tmp;
}
}

Table 6.1: Benchmark array programs. Variables a,b,c are arrays of integers of
size n.

Some programs deal with array initialization: program init initializes all the
elements of the array to a constant, while init-non-constant and init-sequence use
expressions which depend on the element position and on the preceding element,
respectively. Program init-partial initializes only an initial portion of the array.
Program copy performs the element-wise copy of an entire array to another array,
while copy-partial copies only an initial portion of the array, and the program
copy-reverse copies the array in reverse order. The program maxz computes the
maximum of an array. The programs sum and difference perform the element-
wise sum and difference, respectively, of two input arrays. The program find
looks for a particular value inside an array and returns the position of its first
occurrence, if any, or a negative value otherwise. The programs find-first-non-
null and first-not-null are two programs which return the position of the first
non-zero element. For these programs, differently from [52, [77], we prove that
when the search succeeds, the returned position contains a non-zero element
and we also proved that all the preceding elements are zero elements. The
program partition copies non-negative and negative elements of the array into
two distinct arrays. The programs insertionsort-inner, bubblesort-inner, and
selectionsort-inner are based on textbook implementations of sorting algorithms.

121

The source code of all the verification problems we have considered is available
at http://map.uniroma?2.it/smc/vmcai/.

For verifying the above programs we have applied the Transform,,,, strategy
using different generalization operators, which are based on the widening and
convex hull operators. In particular the Geny and Geng operators use the
Widen and CHWidenSum operators between constraints [62].

We have also combined these operators with a delay mechanism which, be-
fore starting the actual generalization process, introduces a definition which is
computed by using convex hull alone, without widening. We denote by Genpyp
and Gengp the operators obtained by combining delayed generalization with the
Widen and CHWidenSum operators, respectively.

In Table we report the results obtained by applying Transform,,,, with
the four generalization operators mentioned above. The first column contains
references to papers where the program verification example has been considered.

The last four columns are labeled with the name of the generalization operator.
For each program proved correct we report the time in seconds taken to verify
the property of interest. By unknown we indicate that Transform,,,, derives a
CLP(Array) program containing constrained facts different from ‘incorrect’,
and hence the satisfiability (or the unsatisfiability) of the corresponding verifi-
cation conditions cannot be checked.

We also report, for each generalization operator, the number of successfully
verified programs (which measures the precision of the operator), the total time
taken to run the whole benchmark and the average time per successful answer,
respectively.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz
processor with 4GB of memory under the GNU Linux operating system.

The data presented in Table show that by using the Geny operator,
which applies the widening operator alone, our method is only able to prove
7 programs out of 17. However, precision can be recovered by applying the
convex hull operator when introducing new definitions, possibly combined with
widening.

The best trade-off between precision and performance is provided by the
Genwp operator which is able to prove all 17 programs with an average time
of 0.92s. In this case the use of the delay mechanism, which uses convex hull,
suffices to compensate the weakness demonstrated by the use of widening alone.
Note also that one program, init-sequence, can only be proved by applying opera-
tors which use delayed generalization. This confirms the effectiveness of the con-
vex hull operator which may help inferring relations among program variables,

122

Program References Genw | Genwp Geng | Gengp
init [17, 52, 130] unknown 0.06 0.10 0.08
init-partial [17, 52] unknown 0.06 0.07 0.08
init-non-constant [17, 52, 98|, 130] unknown 0.06 0.22 0.22
init-sequence [77, 98] unknown 0.80| unknown 1.20
copy [17, B2 [77), 98, [130] | unknown 0.27 0.33 0.29
copy-partial [17, 52] unknown 0.29 0.34 0.34
copy-reverse [17, 2] unknown 0.27 0.46 0.45
max [77, 98] unknown 0.31 0.24 0.33
sum unknown 0.68 1.14 1.12
difference [17] unknown 0.66 1.15 1.11
find 17, 52] 0.25] 043 0.46] 0.45
first-not-null [77] 0.38 0.41 0.42 0.42
find-first-non-null | [17, 2] 1.24 1.87 1.94 1.93
partition [52, 98], [130] 0.06 0.11 0.14 0.12
insertionsort-inner | [77, 98, [130] 0.21 0.26 0.45 0.43
bubblesort-inner 2.46 2.71 2.45 2.75
selectionsort-inner | [130] 7.20 6.40 7.23 7.16
precision 7 17 16 17

total time 11.80 15.65 17.14| 18.48

average time 1.69 0.92 1.07 1.09

Table 6.2: Verification results using the MAP system with different generaliza-
tion operators. Times are in seconds.

123

and may ease the discovery of useful program invariants, while determining (in
our set of examples) only a slight increase of verification times.

A detailed comparison of the performance of our system with respect to the
other verification systems referred to in Table is difficult to make at this time
because the systems are not all readily available and also the results reported in
the literature do not refer to the same code for the input C programs.

6.5 Related Work

The verification method presented in this chapter is also related to several other
methods that use abstract interpretation and theorem proving techniques.

Now we briefly report on related papers which use abstract interpretations
for finding invariants of programs that manipulate arrays. In [77], which builds
upon [72], invariants are discovered by partitioning the arrays into symbolic
slices and associating an abstract variable with each slice. A similar approach is
followed in [32] where a scalable, parameterized abstract interpretation frame-
work for the automatic analysis of array programs is introduced. In [64] [97]
a predicate abstraction for inferring universally quantified properties of array
elements is presented, and in [75] the authors present a similar technique which
uses template-based quantified abstract domains.

Methods based on abstract interpretation construct overapproximations, that
is, invariants implied by the program executions.

In [77], which builds upon [72], relational properties among array elements
are discovered by partitioning the arrays into symbolic slices and associating
an abstract variable with each slice. This approach offers a compromise be-
tween the efficiency of array smashing (where the whole array is represented
by a single abstract variable) and the precision of array expansion [18] (where
every array element is associated with a distinct abstract variable). In [32] the
authors present a scalable, parameterized abstract interpretation framework for
the automatic analysis of array programs based on slicing. In [75] a powerful
technique using template-based quantified abstract domains, is applied to suc-
cessfully generate quantified invariants. Other authors (see [64], [97]) use indexed
predicate abstraction for inferring universally quantified properties about array
elements. Methods based on abstract interpretation and predicate abstraction
have the advance of being quite efficient because it fixes in advance a finite set of
assertions where the invariants are searched for, but for the same reason it may
lack flexibility as the abstraction should be re-designed when the verification
fails.

124

Also theorem provers have been used for discovering invariants in programs
which manipulate arrays and prove verification conditions generated from the
programs. In particular, in [20] a satisfiability decision procedure for a decid-
able fragment of a theory of arrays is presented. That fragment is expressive
enough to prove properties such as sortedness of arrays. In [92, 05, 112] the
authors present some techniques based on theorem proving which may generate
array invariants. In [I30] a backward reachability analysis based on predicate
abstraction and abstraction refinement is used for verifying assertions which are
universally quantified over array indexes. Finally, we would like to mention that
techniques based on Satisfiability Modulo Theory (SMT) have been applied for
generating and verifying universally quantified properties over array variables
(see, for instance, [3, O8]).

The approaches based on theorem proving and SMT are more flexible with
respect to those based on abstract interpretation because no finite set of ab-
stractions is fixed in advance, but the suitable assertions needed by the proof
are generated on the fly.

125

CHAPTER 7

Recursively Defined Properties

In Chapter [6] we have shown that our verification method can be extended
toward a more general and powerful one which is able to deal with programs
manipulating arrays.

In this chapter we make a step forward and we show that the verification
method can also be used in the case when the initial and error properties are
specified by sets of CLP clauses, rather than by constraints only. We also develop
an example to exhibit that our method can be applied in a rather systematic
way, and is amenable to automation by transferring to the field of program
verification many techniques developed in the field of program transformation.

In particular, we extend the transformation strategy presented in Figure
with more general, semantics preserving, unfold/fold transformation rules for
CLP programs. Indeed, during the Verification Conditions Transformation step,
where we transform the verification conditions to propagate the constraints rep-
resenting the initial and error properties, we make use of transformation rules
that are more powerful than those used by program specialization. These rules
include the conjunctive definition and the conjunctive folding rules and they
allow us to introduce and transform new predicate definitions that correspond
to conjunctions of old predicates, while program specialization can deal only
with new predicates that correspond to specialized versions of one old pred-
icate. These more powerful rules allow us to verify programs with respect to
complex initial and error properties defined by sets of CLP clauses (for instance,
recursively defined relations among program variables), whereas program spe-
cialization can only deal with initial and error properties specified by (sets of)
constraints.

The transformation strategy used here is an extension of the transformation

127

UNFOLDING:
TransfC := Unf(C, A), where A is the leftmost atom in the body of C;

(al) while in TransfC there is a clause D whose body contains an atom A
that has not been derived by an atom with the same predicate of A do
TransfC := (TransfC — {D}) U Unf(D, A);
end-while;

Figure 13: The extended UNFOLDING phase of the Transform,,,,

strategy Transform,,,,, presented in Figure

In order to deal with properties which are specified by sets of CLP clauses,
we modify the UNFOLDING phase as shown in Figure [I3] This extension ensures
the termination of the Unf function whenever in the body of clauses occurs an
atom whose predicate is defined by a set of recusively defined clauses.

Finally, during the DEFINITION INTRODUCTION phase of the Transform,,,,
strategy, we allow ourselves to introduce new predicates by using definition
clauses of the form: newp :-c, G, where newp is an atom with a new predicate
symbol, c is a constraint, and G is a conjunction of one or more atoms. (Note
that the new predicate definitions introduced during the verification example of
the previous section are all of the form: newp :-c, A, where A is a single atom.)
Clauses of that form will then be used for performing the FOLDING phase, which,
similarly, is extended to deal with conjunction of atoms.

We show through the following example how the extended transformation
strategy can be used to prove that the imperative GCD program, whose intended
behavior is to compute the greatest common divisor of two positive integers,
yields an integer which indeed satisfies the definition of greater common divisor,

specified by using a set of (recursively defined) CLP clauses.

Example 10 (Greatest Common Divisor). Let us consider the following
program incorrectness triple {@init } GCD {@error } Where: (i) @ii(m,n) ism>1
An>1, (ii) @error(m,n, z) is 3d (ged(m,n,d) Ad+#z), and (iii) GCD is the follow-
ing imperative program
X=m; y=n;
while (x!=y) {
if (x>y)
X=X-Y;
else
y=y-x;

128

Listing 7.1: Program GCD

for computing the greatest common divisor z of two positive integers m and n.

The property @error uses the ternary predicate gcd defined by the following
CLP clauses:

1. ged(X,Y,D) :- X>Y, X1=X-Y, gcd(X1,Y,D).

2. gcd(X,Y,D) :- X<Y, Y1=Y-X, gcd(X,Y1,D).

3. gcd(X,Y,D) :- X=Y, Y=D.

Thus, the incorrectness triple holds if and only if, for some positive integers m
and n, the program GCD computes a value of z that is different from the greatest
common divisor of m and n.

As indicated in Section the program GCD can be translated into a set
of CLP facts defining the predicate at, but we will not show them here. The
predicates phiInit and phiError are defined as follows:

4. phiInit(E) :-M>1, N>1.

5. phiError(E) :- gcd(M,N,D), D#Z.
where E is the term

([[int(m) ,M], [int(n),N], [int(x),X], [int(y),Y], [int(z),Z1]1,[1)
encoding the environment.

Now, by performing the Verification Conditions Generation stepE] of our verifi-
cation method we derive the following CLP program:

6. incorrect :- M>1,N>1, newl(M,N,M,N,Z).

7. newl(M,N,X,Y,Z) :- X>Y,X1=X-Y, newi(M,N,X1,Y,7).

8. newl(M,N,X,Y,Z) :- X<Y,V¥1=Y—X, newt(M,N,X,¥1,2).

9. newl(M,N,X,Y,Z) :- X=Y,Z=X, gcd(M,N,D), Z#D.

Clauses [6] and [J] can be rewritten, respectively, as:

10. incorrect :- M>1,N>1,Z#D, newl(M,N,M,N,Z), gcd(M,N,D).

11. newli(M,N,X,Y,Z) :- X=Y, Z=X.

This rewriting is correct because newl modifies the values of neither M nor N.

Note that we could avoid performing the above rewriting and automatically
derive a similar program where the constraints characterizing the initial and the

error properties occur in the same clause, by starting our derivation from a more
general definition of the reachability relation. However, an in-depth analysis of

!The atom gcd(X,Y,D) is considered to be not unfoldable.

129

this variant of our verification method is beyond the scope of this thesis (see also
[119] for a discussion about different styles of encoding the reachability relation
and the semantics of imperative languages in CLP).

Now we perform the Verification Conditions Transformation step of the verifica-
tion method by applying the Transform,,,, strategy to the program consisting

of the following clauses: [1] [2], 3} [7] [8] [L0] and 11}
UNFOLDING. We start off by unfolding clause with respect to the atom
newl(M,N,M,N, Z), and we get:
12. incorrect :- M>1,N>1,M>N, X1=M—N, Z+#D,
newl(M,N,X1,N,Z), gcd(M,N,D).
13. incorrect :- M>1,N>1,M<N, Y1=N-—M, Z#D,
newl (M,N,M,Y1,2), gcd(M,N,D).
14. incorrect :-M>1,N>1,M=N, Z=M, Z#D, gcd(M,N,D).
By unfolding clauses with respect to the atom gcd(M,N,D) we derive:
15. incorrect :-M>1,N>1,M>N, X1=M—N, Z#D,
newl (M,N,X1,N,Z), gcd(X1,N,D).
16. incorrect :-M>1,N>1,M<N, Y1=N—M, Z#D,
newl (M,N,M,Y1,2), gcd(M,Y1,D).

(Note that by unfolding clause we get an empty set of clauses because the
constraints derived in this step are all unsatisfiable.) Sine no unfoldable atom
occurs in the body of clauses [I5] and [I5] the UNFOLDING phase terminates.
Indeed, according to the UNFOLDING phase presented in Figure we have
that: (i) the atoms new1(M,N,X1,N,Z) and gcd(X1,N,D) in clause and
(ii) the atoms new1(M,N,M,Y1,Z) and gcd(M,Y1,D) in clause have been
derived by unfolding atoms with the same predicate symbols.

The CONSTRAINT REPLACEMENT and CLAUSE REMOVAL phases do not mod-

ify the set of clauses derived after the UNFOLDING phase because no laws are
available for the predicate gcd.

DEFINITION INTRODUCTION. In order to fold clauses [T5] and we perform a
generalization step and we introduce a new predicate defined by the following
clause:

17. new2(M,N,X,Y,Z,D) :-M>1,N>1,Z#D, newl(M,N,X,Y,Z), gcd(X,Y,D).
The body of this clause is the most specific generalization of the bodies of
clauses [I0] [I5] and [I6] Here, we define a conjunction G to be a generalization of

a conjunction C if there exists a substitution ¥ such that G can be obtained by
deleting some of the conjuncts of C.

130

Clause [17] defining the new predicate new?2, is added to Defs and InDefs and,
since the latter set is not empty, we perform a new iteration of the while-loop

body of the Transform,,,, strategy.

UNFOLDING. By unfolding clausew.r.t. newl(M,N,X,Y,Z) and then unfolding
the resulting clauses w.r.t. gcd(X,Y,Z), we derive:

18. new2(M,N,X,Y,Z,D) :- M>1, N>1, X>Y, X1=X-Y, Z#D,
newl (M,N,X1,Y,Z), gcd(X1,Y,D).

19. new2(M,N,X,Y,Z,D) :- M>1, N>1, X<Y, Y1=Y—X, Z#D,
newl (M,N,X,Y1,Z), gcd(X,Y1,D).

Since all the atoms occurring in clauses |18 and [19|have been derived by unfolding
atoms with the same predicate symbols, the UNFOLDING phase terminates.
DEFINITION INTRODUCTION. Clauses[I8and[19|can be folded by using clause[I7]
thus, there is no need to introduce any new definition. Since no clause to be
processed is left the Transform,,,, exits the outermost while-loop.

FoLDING. Finally, we get the following final program S by folding clauses

[16], 18 and [I9) using the definition clause [I7}

20. incorrect :-M>1,N>1,M>N, X1=M—N, Z#D, new2(M,N,X1,N,Z,D).

21. incorrect :-M>1,N>1,M<N, Y1=N—M, Z#D, new2(M,N,M,Y1,Z,D).

22. new2(M,N,X,Y,Z,D) :-M>1,N>1, X>Y, X1=X—Y, Z#D,
new2(M,N,X1,Y,Z).

23. new2(M,N,X,Y,Z,D) :-M>1, N>1,X<Y,YI=Y—X, Z#D,
new2(M,N,X,Y1,Z).

The final program consisting of clause 22] and [23| contains no constrained
facts. Hence both predicates incorrect and new2 are useless and all clauses of S
can be deleted. Thus, the Verification Conditions Analysis trivially terminates by
producing the answer ‘correct’ and we conclude that the imperative program
gcd is correct with respect to the given properties w;n; and @error- O

The application of the powerful transformation rules we have considered in
this chapter enables the verification of a larger class of properties, but it does
not entirely fit into the automated strategy used in Chapter[5] We are currently
considering the issue of designing fully mechanizable strategies for guiding the
application of our program transformation rules.

The rule-based program transformation technique presented here is related to
conjunctive partial deduction (CPD) [48], a technique for the specialization of
logic programs with respect to conjunctions of atoms. There are, however, some
substantial differences between CPD and the approach we have presented here.

131

First, CPD is not able to specialize logic programs with constraints and, thus,
it cannot be used to prove the correctness of the GCD program where the role
of constraints is crucial. Indeed, using the ECCE conjunctive partial deduction
system [100] for specializing the program consisting of clauses {1 S1OY11]}
with respect to the query incorrect, we obtain a residual program where the
predicate incorrect is not useless. Thus, we cannot conclude that the atom
incorrect does not belong to the least model of the program, and thus we
cannot conclude that the program is correct. One more difference between CPD
and our technique is that we may use constraint replacement rules which allow
us to evaluate terms over domain-specific theories. In particular, we can apply
the goal replacement rules using well-developed theories for data structures like
arrays, lists, heaps and sets (see [20, 110 [70}, T4}, 126 [140] for some formalizations
of these theories).

132

CHAPTER 8

The VeriMAP Software Model Checker

In this chapter we present our tool for program verification, called VeriMAP,
which is based on the transformation techniques for CLP programs presented in
Chapters

The current version of VeriMAP can be used for verifying partial correctness
properties of C programs that manipulate integers and arrays.

From the CLP representation of the given C program and the initial and er-
ror properties, VeriMAP generates a set of verification conditions (VC’s) in the
form of CLP clauses. The VC generation is performed by a transformation that
consists in specializing (with respect to the given C program and the initial and
error properties) a CLP program that defines the operational semantics of the
C language and the proof rules for verifying partial correctness (see Chapter [3)).
Then, the CLP program made out of the generated VC’s is transformed by ap-
plying unfold/fold transformation rules. This transformation ‘propagates’ the
constraints occurring in the CLP clauses and derives equisatisfiable, easier to
analyze VC’s (see Chapters [4] and . During constraint propagation VeriMAP
makes use of constraint solvers for linear (integer or rational) arithmetic and
array formulas (see Chapter @ In a subsequent phase the transformed VC’s
are processed by a lightweight analyzer that basically consists in a bounded un-
folding of the clauses. Since partial correctness is in general undecidable, the
analyzer may not be able to detect the satisfiability or the unsatisfiability of
the VC’s and, if this is the case, the verification process continues by iterat-
ing the transformation and the propagation of the constraints in the VC’s (see
Chapter [5)).

This chapter is structured as follows. In Section[8.I]we present the architecture
of the software model checker. Then, in Section we show through some

133

Ite‘ataj Va|fla unknown

CIL Interpreter ¢ J
CProgan (toCLP | (Vartication Unfold/Fold Anal trueffalse
Poperty | Transator »| Conditions Transformer » Anayzer
— |—> Generator

Proof Rules ﬁf ﬁ

Transformation Strategies

Constraint Domain - — -
Th—> Unfolding || Generalization || Constraint Replacement
DataTheory || Operators Operators Solvers Rules

Figure 14: The VeriMAP architecture.

examples how to use the VeriMAP tool.

8.1 Architecture

The VeriMAP tool consists of three modules (see Figure [14). (1) A C-to-CLP
Translator (C2CLP) that constructs a CLP encoding of the C program and of
the property given as input (that is, it performs the CLP Translation step). (2)
A Verification Conditions Generator (VCG) that generates a CLP program rep-
resenting the VC’s for the given program and property (that is, it performs the
Verification Conditions Generation step). The VCG module takes as input also the
CLP representations of the operational semantics of CIL and of the proof rules
for establishing partial correctness. (3) An Iterated Verifier (IV) that attempts
to determine whether or not the VC’s are satisfiable by iteratively applying un-
fold/fold transformations to the input VC’s, and analyzing the derived VC’s
(that is, it performs the Verification Conditions Transformation and Verification
Conditions Analysis steps).

The C2CLP module is based on a modified version of the CIL tool [I15]. This
module first parses and type-checks the input C program, annotated with the
property to be verified, and then transforms it into an equivalent program writ-
ten in CIL that uses a reduced set of language constructs. During this transfor-
mation, in particular, commands that use while’s and for’s are translated into
equivalent commands that use if-then-else’s and goto’s. This transforma-
tion step simplifies the subsequent processing steps. Finally, C2CLP generates
as output the CLP encoding of the program and of the property by running a
custom implementation of the CIL visitor pattern [I15]. In particular, for each

134

program command, C2CLP generates a CLP fact of the form at(L,C), where C
and L represent the command and its label, respectively. C2CLP also constructs
the clauses for the predicates phiInit and phiError representing the formulas
Yinit and Yerror that specify the property.

The VCG module generates the VC’s for the given program and property
by applying a program specialization technique based on equivalence preserving
unfold/fold transformations of CLP programs [60]. Similarly to what has been
proposed in [I119], the VCG module specializes the interpreter and the proof
rules with respect to the CLP representation of the program and the property
generated by C2CLP (that is, the clauses defining at, phiInit, and phiError).
The output of the specialization process is the CLP representation of the VC’s.
This specialization process is said to ‘remove the interpreter’ in the sense that
it removes every reference to the predicates used in the CLP definition of the
interpreter in favour of new predicates corresponding to (a subset of) the ‘pro-
gram points’ of the original C program. Indeed, the structure of the call-graph
of the CLP program generated by the VCG module corresponds to that of the
control-flow graph of the C program.

The IV module consists of two submodules: (i) the Unfold/Fold Transformer,
and (ii) the Analyzer. The Unfold/Fold Transformer propagates the constraints
occurring in the definition of phiInit and phiError through the input VC’s
thereby deriving a new, equisatisfiable set of VC’s. The Analyzer checks the
satisfiability of the VC’s by performing a lightweight analysis. The output of
this analysis is either (i) true, if the VC’s are satisfiable, and hence the program
is correct, or (ii) false, if the VC’s are unsatisfiable, and hence the program
is incorrect (and a counterexample may be extracted), or (iii) unknown, if the
lightweight analysis is unable to determine whether or not the VC’s are satis-
fiable. In this last case the verification continues by iterating the propagation
of constraints by invoking again the Unfold/Fold Transformer submodule. At
each iteration, the IV module can also apply a Reversal transformation [42],
with the effect of reversing the direction of the constraint propagation (either
from philInit to phiError or vice versa, from phiError to philnit).

The VCG and IV modules are realized by using MAP [10§], a transformation
engine for CLP programs (written in SICStus Prolog), with suitable concrete
versions of Transformation Strategies. There are various versions of the trans-
formation strategies which, as indicated in [42], are defined in terms of: (i)
Unfolding Operators, which guide the symbolic evaluation of the VC’s, by con-
trolling the expansion of the symbolic execution trees, (ii) Generalization Op-
erators [62], which guarantee termination of the Unfold/Fold Transformer and

135

are used (together with widening and convex-hull operations) for the automatic
discovery loop invariants, (iii) Constraint Solvers, which check satisfiability and
entailment within the Constraint Domain at hand (for example, the integers
or the rationals), and (iv) Replacement Rules, which guide the application of
the axioms and the properties of the Data Theory under consideration (like,
for example, the theory of arrays), and their interaction with the Constraint
Domain.

8.2 Usage

VeriMAP can be downloaded from http://map.uniroma2.it/VeriMAP and can
be run by executing the following command:

./VeriMAP program.c
where program.c is the C program annotated with the property to be verified.
VeriMAP has options for applying custom transformation strategies and for
exiting after the execution of the C2CLP or VCG modules, or after the execution
of a given number of iterations of the IV module.

8.3 Proving Partial Correctness with the VeriMAP Tool

In this section we show how to use VeriMAP on two simple examples. Let us
consider the C Program listed below.

1 int x, y;

2 void sum_and set(int z) {
3 X = xty;

4 y = z;

5 %

6 int main() {

7 if x <y {

8 sum_and_set (0);
9 if (x> y)

10 goto END;

11 }

12 while (x <= y)
13 x=x+1;

14 END:

15 return O;

136

http://map.uniroma2.it/VeriMAP

16

}

The property considered in this example is defined by the formulas @iy =
y > 0 and Yerror = < 0, which are encoded as follows within a C comment.

18
19
20
21
22

/*

% MAP_specification

phiInit(G) :- lookup(scalar(int(y)),G,Y), Y>=0.
phiError(G) :- lookup(scalar(int(x)),G,X), X=<0.

*/

The argument G of phiInit and phiError is a list of pairs binding the global
variables of the C program to the corresponding CLP variables. This binding
is obtained by using the lookup predicate which is compiled away during the
Verification Conditions Generation step.

In order to be compliant with the rules of the TACAS Verification Compe-
tition [12], a user may also encodes initial and error properties the program
as calls to the functions __VERIFIER_assume and __VERIFIER_assert, thereby
producing the following C program.

© 00 O T i W N~

e e e e e
N O U W N~ O

int x, y;

void sum_and_set(int z) {
X = x+y;
y =z

}

void main() {
__VERIFIER_assume(y >= 0);
if (x <y) {
sum_and_set (0);
if (x > y)
goto END;
}
while (x <= y)
x=x+1;
END:
__VERIFIER_assert(x > 0);
}

We assume that the program to be verified, together with the property, is stored
in a file named examplel.c.

137

By executing ./VeriMAP examplel.c we get as output: Answer: true,
which means that the given program is correct. In the examples presented in
this section, the Unfold/Fold Transformer module makes use of a generalization
operator based on standard widening.

In the following we will see how this answer is produced. In particular, we
will list the commands needed to invoke each module described in Section [8.2]
and the output produced by each module.

C-to-CLP Translation

The C2CLP module is invoked by the command . /VeriMAP --c2clp examplel.c.
The output is the following set of CLP clauses (examplel.pl), which define the
predicates fun/4, at/2 and gvars/1 representing the function declarations, the
C statements, and the global variable declarations, respectively.

© 00 O Ui Wi

I N N T N T N R R S U ot T e S e S S S G S
W N OO0 Uik W F— O

138

% function declarations

fun(sum_and_set, [id(loc(scalar(int(z))))], [],entry_point(addr(9))).

fun(main, [], [id(loc(scalar(int(x))))],entry_point(addr(11)).

% function definitions

at(lab(9,inst) ,asgn(id(glb(scalar(int(x)))),
aexp(plus(aexp(id(glb(scalar(int(x))))),
aexp(id(glb(scalar(int(y))))))),addr(9.1))).

at(lab(9.1,inst) ,asgn(id(glb(scalar(int(y)))),
aexp(const (int (0))) ,addr(10))).

at(lab(10,ret) ,ret(aexp(id(loc(scalar(int(w))))))).

at(lab(11,ifte),ite(bexp(1lt(aexp(id(glb(scalar(int(x))))),
aexp(id(glb(scalar(int(y))))))),addr(12) ,addr(17))).

at(lab(12,inst),call(sum_and_set, [aexp(id(glb(scalar(int(x)))))],
id(undef),addr(13))).

at(lab(13,ifte) ,ite(bexp(gt (aexp(id(glb(scalar(int(x))))),
aexp(id(glb(scalar(int(y))))))),addr(14) ,addr(17))).

at(lab(14,goto) ,goto(addr(22))).

at(lab(17,goto) ,goto(addr(18))).

at(lab(18,loop) ,ite(bexp(lte(aexp(id(glb(scalar(int(x))))),
aexp(id(glb(scalar(int(y))))))),addr(20),addr(19))).

at(lab(19,goto) ,goto(addr(22))).

at(lab(20,inst) ,asgn(id(glb(scalar(int(x)))),
aexp (plus(aexp(id(glb(scalar(int(x))))),
aexp(const(int(1))))),addr(17))).

25 at(lab(22,ret) ,ret(aexp(const(int(0))))).
26 at(lab(h,halt),halt).
27 % global variables

28 gvars([

29 (id(glb(scalar(int(x)))) ,aexp(id(undef))),
30 (id(glb(scalar(int(y)))) ,aexp(id(undef)))
31 .

The predicate fun(Id,Parameters,LocalVars,EntryAddr) represents the func-
tion definitions, where: (i) Id is the identifier of the function, (ii) Parameters
is the list of the formal parameters, (iii) LocalVars is the list of the local vari-
ables, and (iv) EntryAddr is the address of the first command in the body of
the function. For instance, lines 5-10 represent:

int sum_and_set(int z) { x = x+y; y = 0; }

The predicate at(Lab,Cmd) represents a C command, where: (i) Lab is of the
form lab(Addr,Type) and represents the label of the command (in particular,
Addr and Type represent the address of the entry point and the command type,
respectively), and (ii) Cmd represents the given C command. For instance, lines
11-12 represent the conditional command at lines 7-11 of the given C program.
The first argument of ite represents the expression of the command, where:
(i) 1t represents the ‘<’ operator, (ii) bexp and aexp represent boolean and
arithmetic expressions, respectively, and (iii) loc and glb represent local and
global variable identifiers, respectively. The second and third arguments of ite
represent the address of the first instruction of the conditional branches.

The predicate gvars(GlbList) represents the list of global variables. In
the example we have a two global variables id(glb(scalar(int(y)))) and
id(glb(scalar(int(x)))), which are uninitialized (see aexp(id(undef))).

Verification Conditions Generation

By executing the command ./VeriMAP --vcg examplel.c the verification pro-
cess stops after the execution of the VCG module. This module specializes the
following proof rules for proving partial correctness:

correct :- \+ incorrect.
incorrect :- elem(X,init), reach(X,U).
reach(X,U) :- elem(X,error).

reach(X,U) :- tr(X,Y), reach(Y,U).
elem(X,init) :- phiInit(X).

U W N =

139

6 elem(X,error) :- phiError(X).

where \+ denotes negation, tr denotes the transition relation that defines the
CIL Interpreter, elem(X,init) and elem(X,error) denote the properties that
characterize the initial and error configurations, respectively. Thus, correct
holds if and only if there exists no error configuration which is reachable from
some initial configuration. The predicate tr/2 is defined by the CLP clauses
presented in Section

The generation of the VC’s is performed by specializing the proof rules and
the interpreter with respect to the set of CLP clauses produced by applying
C2CLP to examplel.c, that is, the clauses for at, phiInit, and phiError. In
the following we present an excerpt of the log file produced by invoking the VC'G
module.

7 [...] <--- missing lines here
8 Transformed program:

9 new7(A,B) :- A-B=<0, new5(4A,B).

10 new5(A,B) :- C=1+A, A-B=<0, new5(C,B).
11 new4(A,B) :- C=A+B, D=0, new7(C,D).
12 new3(A,B) :- A-B=< -1, new4(A,B).

13 new3(A,B) :- A-B>=0, new5(A,B).

14 new2(A,B) :- new3(A,B).

15 newS5(A,B) :- A=<0, A-B>=1.

16 new7(A,B) :- A=<0, A-B>=1.

17 incorrect :- A>=0, new2(B,A).

18 correct :- \+incorrect.

Unfold/Fold Transformation

By executing . /VeriMAP --transform examplel.c the verification process ter-
minates after one execution of the Unfold/Fold Transformer module.

This module transforms the VC’s generated as output by the VCG module.
In order to maximize code reuse, the VC’s are first converted into a transition
relation representation.

The excerpt of the log file below shows the part of the transition relation tr
(lines 20-25) corresponding to the clauses listed at lines 9-14, and the three
elem facts (line 26-28) corresponding to the clauses at lines 15-17, respectively.
Lines 31-40 list the transformed program, and lines 42-44 give some statistics
about the transformation (in particular, the number of Unfold-Definition-Fold

140

cycles, the number of clauses introduced by the definition rule, and the time
required by the transformation process).

19 1Initial program:

20 tr(s(new7,A,B),s(new5,A,B)) :- A-B=<0.

21 tr(s(new5,A,B),s(new5,C,B)) :- C=1+A, A-B=<0.
22 tr(s(new4,A,B),s(new7,C,D)) :- C=A+B, D=0.

23 tr(s(new3,A,B),s(newd4,A,B)) :— A-B=< -1.

24 tr(s(new3,A,B),s(new5,A,B)) :— A-B>=0.

25 tr(s(new2,A,B),s(new3,A,B)).

26 elem(s(newb5,A,B),error) :- A=<0, A-B>=1.

27 elem(s(new7,A,B),error) :- A=<0, A-B>=1.

28 elem(s(new2,A,B),initial) :- B>=0.

29

30 Transformed program:

31 new9(A,B) :- A= -1+C, B=0, C=<1, new9(C,B).
32 new8(A,B) :- A= -1+C, B=0, C=<1, new9(C,B).
33 new7(A,B) :- B=0, A=<0, new8(A,B).

34 newb5(A,B) :- A= -1+C, B= -1+C, C>=1, new5(C,B).
35 new4(A,B) :- A=-(B)+C, D=0, B>=0, B-1/2%C>=1/2, new7(C,D).
36 new3(A,B) :- A-B=< -1, B>=0, new4(A,B).

37 new3(A,B) :- B>=0, A-B>=0, new5(A,B).

38 new2(A,B) :- B>=0, new3(A,B).

39 incorrect :- A>=0, new2(B,A).

40 correct :- \+incorrect.

41

42 #UDF-iteration(s): 9

43 #definitions: 9

44 Elapsed time 10ms
Analysis

As a last step, the . /VeriMAP examplel.c command invokes the Analyzer mod-
ule which detects the absence of facts in the transformed CLP program (lines
31-40). Thus, no unfolding will ever derive a fact for the predicate incorrect,
and hence the predicate correct is true. The Analyzer module produces the
output Answer:

true, meaning that the program in examplel.c is correct.

141

Iterated Verification

Now we consider a second C program (in file example2.c)

int x=0, y=0, n;
while (x < n) {
X = x+1;
y = ytx;
}
__VERIFIER_assert(x<=y);

S T W N~

By executing the command ./VeriMAP example2.c we get: Answer: unknown.
Indeed, at the end of the process we derive the following program:

1 newlO(A,B,C,D) :- D=0, B>=0, A-B>=1, A-C>=0.

2 new8(A,B,C) :- D=1, A-B=<0, A>=0, A-C>=0, new9(A,B,C,D).
3 new8(A,B,C) :- D=0, B>=0, A-B>=1, A-C>=0, newl0(A,B,C,D).
4 new5(A,B,C) :- A=0, B=0, D=1, C=<0, new6(A,B,C,D).
5 new4(A,B,C) :- A= -1+D, B=E-D, D>=1, C-D>=0, E-D>=0,
new4 (D,E,C).
6 new4(A,B,C) :- A>=0, B>=0, A-C>=0, new8(A,B,C).
7 [...] <--- missing lines here
8 new2(A,B,C) :- A=0, B=0, new3(4,B,C).
9 incorrect :- A=0, B=0, new2(A,B,C).
10 correct :- \+incorrect.

where the presence of the constrained fact at line 1 allows the lightweight an-
alyzer to give neither the answer true nor the answer false. Thus, the IV
module performs one more invocation of the transformation and analysis sub-
modules. (The first step of the Unfold/Fold Transformer is an application of the
Reversal transformation to enable the propagation of the constraints occurring
in the definition of phiError).

The excerpt of the log file reported below shows some information about the
transformation performed at the second iteration of IV.

11 TInitial program:
12 tr(s(new2,A,B,C),s(new3,A,B,C)) :- A=0, B=0.

13 [...] <--- missing lines here
14 +tr(s(new4,A,B,C),s(new4,D,E,C)) :-
15 A= -1+D, B=E-D, D>=1, C-D>=0, E-D>=0.

16 tr(s(new4,A,B,C),s(new8,A,B,C)) :-
17 A>=0, B>=0, A-C>=0.

142

18 tr(s(new5,A,B,C),s(new6,A,B,C,D)) :-

19 A=0, B=0, D=1, C=<0.

20 tr(s(new8,A,B,C),s(new9,A,B,C,D)) :-
21 D=1, A-B=<0, A>=0, A-C>=0.

22 tr(s(new8,A,B,C),s(newl0,A,B,C,D)) :-
23 D=0, B>=0, A-B>=1, A-C>=0.

24 elem(s(new2,A,B,C),initial) :-

25 A=0, B=0.

26 elem(s(newl0,A,B,C,D),error) :-

27 D=0, B>=0, A-B>=1, A-C>=0.

28

29 Transformed program:

30 new3(A,B,C) :- B>=0, A-B>=1, A-C>=0, new4(A,B,C).

31 new2(A,B,C,D) :- D=0, B>=0, A-B>=1, A-C>=0, new3(A,B,C).
32 incorrect :- A=0, B>=0, C-D>=0, C-B>=1, new2(C,B,D,A).
33 correct:- \+incorrect.

34

35 #definitions: 5

36 #UDF-iteration(s): 5

37 Elapsed time 10ms

Since the transformed CLP program contains no constrained facts, the Ana-
lyzer module concludes that the program of example2.c is correct and returns
Answer: true.

The iterated verification shown here has been performed by executing the com-
mand ./VeriMAP --iterations=2 example2.pl (where ‘--iterations=2’
specifies that the maximal number of iterations to be executed is 2).

143

PART Il

SYNTHESIS

CHAPTER 1

Synthesizing Concurrent Programs
using Answer Set Programming

We consider concurrent programs consisting of finite sets of processes which in-
teract with each other by using a shared variable ranging over a finite domain.
The interaction protocol is realized in a distributed manner, that is, every pro-
cess includes some instructions which operate on the shared variable.

Even for a small number of processes, interaction protocols which guarantee a
desired behaviour of the concurrent programs may be hard to design and prove
correct. Thus, people have been looking for methods for the automatic synthesis
of concurrent programs from the formal specification of their behaviour. Among
those methods we recall the ones proposed by Clarke and Emerson [25], Manna
and Wolper [107], and Attie and Emerson [7, 8], which use tableau-based al-
gorithms, and those proposed by Pnueli and Rosner [122], and Kupferman and
Vardi [96], which use automata-based algorithms.

In contrast with those approaches we do not present an ad-hoc algorithm for
synthesizing concurrent programs and, instead, we propose a framework based
on logic programming by which we reduce the problem of synthesizing concur-
rent programs to the problem of computing models of a logic program encoding
a given specification. We assume that behavioural properties of concurrent pro-
grams, such as safety or liveness properties, are specified by using formulas of
the Computation Tree Logic (CTL), which is a very popular propositional tem-
poral logic over branching time structures [25, 27]. This temporal, behavioural
specification ¢ is encoded as a logic program II,. We also assume that the pro-
cesses to be synthesized satisfy suitable structural properties, such as symmetry
properties, which specify that all processes follow the same cycling pattern of

147

possible actions. Such structural properties cannot be easily specified by using
CTL formulas and, in order to overcome this difficulty, we use, instead, a simple
algebraic structure which can be specified in predicate logic and are encoded
as a logic program II,. Thus, the specification of a concurrent program to be
synthesized consists of a logic program II = II, U II, which encodes both the
behavioural and the structural properties that the concurrent program should
enjoy.

In order to construct models of the program II, we use logic programming with
the answer set semantics and we show that every answer set of Il encodes a con-
current program satisfying the given specification. Thus, by using an Answer Set
Programming (ASP) solver, such as the ones presented in [66], 53] [71], [89), 99] 134],
which computes the answer sets of logic programs, we can synthesize concurrent
programs which enjoy the desired behavioural and structural properties. We
have performed some synthesis experiments (see Chapter [4]) and, in particular,
we have synthesized some protocols which are guaranteed to enjoy behavioural
properties such as mutual exclusion, starvation freedom, and bounded overtak-
ing, and also suitable symmetry properties. However, the synthesis framework
we propose is general and it can be applied to many other classes of concurrent
systems and properties besides those mentioned above.

The remaining part of this chapter is devoted to recall some basic notions and
the terminology we will use.

1.1 Preliminaries

In this section we will present: (i) the syntax of (a variant of) the guarded
commands [51], which we use for defining concurrent programs, (ii) some basic
notions of group theory, which are required for defining the so-called symmetric
concurrent programs, and (iii) some fundamental concepts of Computation Tree
Logic and of Answer Set Programming, which we use for our synthesis method.

1.1.1 Guarded commands

The guarded commands we consider are defined from the following two ba-
sic sets: (i) variables, v in Var, each ranging over a finite domain D,, and
(ii) guards, g in Guard, of the form: ¢ ::= true | false | v=d | =g | g1 A g,
with v € Var and d € D,. We also have the following derived sets whose def-
initions are mutually recursive: (iii) commands, ¢ in Command, of the form:

148

cu= skip| v:i=d | c1;co | if gc £fi | do gc od, where ¢;” denotes the sequen-
tial composition of commands which is associative, and (iv) guarded commands,
gc in GCommand, of the form: gc ::= g—c | geq || gcy, where ‘[’ denotes the
parallel composition of guarded commands which is associative and commuta-
tive.

The operational semantics of commands can be described in an informal way
as follows. skip does nothing. v :=d stores the value d in the location of the
variable v. In order to execute ci;co the command c¢; is executed first, and
if ¢; does not fail (see below) then the command ¢z is executed. In order to
execute if gey || ... [g¢,, £i, with n > 1, one of the guarded commands g — ¢
in {gcy,...,gc,} whose guard g evaluates to true, is non-deterministically cho-
sen, and then c is executed; otherwise, if no guard of a guarded command in
{gcq, ..., gc, } evaluates to true, then the whole command if ... fi terminates
with failure. In order to execute do gc; || ... [g¢,, od, with n > 1, one of
the guarded commands g — ¢ in {gcy,...,gc,} whose guard g evaluates to
true, is non-deterministically chosen, then ¢ is executed and the whole com-
mand do...od is executed again; otherwise, if no guard of a guarded command
in {gcq,...,gc,} evaluates to true, then the execution proceeds with the next
command. The formal semantics of commands will be given in the next section.

1.1.2 Groups

A group G is a pair (5, o), where S is a set and o is a binary operation on S satis-
fying the following axioms: (i) Vz,y € S.zoy € S, (ii) Vz,y,z € S. (xoy) oz =
zo(yoz), (iii) Je€ S.Vz € S. eor =zxoe=z, and (iv) Vx € S.Jy € S. zoy=yox = e.
The element e is the identity of the group GG and the cardinality of S is the order
of the group G. For any x € S, for any n > 0, we write 2" to denote the term
xo...ox with n occurrences of z. We stipulate that 20 is e.

A group G = (S,0) is said to be cyclic iff there exists an element x € S,
called a generator, such that S = {z" | n > 0}. We denote by Perm(S) the
set of all permutations on the set S, that is, the set of all bijections from S
to S. Perm(S) is a group whose operation o is function composition and the
identity e is the identity permutation, denoted id. Given a finite set S, the
order of a permutation p in Perm(S) is the smallest natural number n such that
p" = id.

149

1.1.3 Computation Tree Logic

Computation Tree Logic (CTL) is a propositional branching time temporal
logic [27]. The underling time structure is a tree of states. Every state denotes
an instant in time and may have many successor states. There are quantifiers
over paths of the tree: A (for all paths) and E (for some path), which are used
for specifying properties that hold for all paths or for some path, respectively.
Together with these quantifiers, there are temporal operators such as: X (next
state), F (eventually), G (globally), and U (until), which are used for specifying
properties that hold in the states along paths of the tree. Their formal semantics
will be given below.

Given a finite nonempty set Elem of elementary propositions ranged over by
p, the syntax of CTL formulas ¢ is as follows:

@ u=p | oraps |~ | EXp [EGo | E[p1Ugps]
We introduce the following abbreviations:

(i) true for pv—p, where ¢ is any CTL formula,
(ii) false for —true,

(@08) 1V 2 for ~(mp1a—pe),
(iv) EFgp for E[trueU ¢]
(v) AGp for =EF ¢,
(vi) AF ¢ for =EG —p,
(
(

7
vii) Al 1Ugps] for =E[—pa U (mp1 A —p2)] A AF 2, and
viii) AX ¢ for =EX = ¢.

The semantics of CTL is provided by a Kripke structure = (S, Sy, R, \), where:
(i) S is a finite set of states, (ii) So C S is a set of initial states, (iii) R C S xS
is a total transition relation (thus, Vue S. veS. (u,v) €R), and (iv) A: S —
P(Elem) is a total labelling function that assigns to every state s € S a subset
A(s) of the set Elem. A path 7 in K from a state s is an infinite sequence
(s0, 81, .. .) of states such that, for all i > 0, (s;, s;+1) € R. The fact that a CTL
formula ¢ holds in a state s of a Kripke structure K will be denoted by IC, s F .
For any CTL formula ¢ and state s, we define the relation K, s F ¢ as follows:

150

K,sEp iff pel(s)

K,sE - iff IC,s F ¢ does not hold
K,s E 1 Apa iff KC,sF 1 and K,s F @9
K,s EEX¢p iff there exists (s,t) € R such that K,t F ¢

KC,s E E[p1U o] iff there exists a path (sg,s1,82,...) in K with sop=s
such that for some ¢>0, K, s; E ¢2 and
for all 0<j <4, K, 55 F 1

K,s EEGyp iff there exists a path (so,s1,s2,...) in K with so=s
such that for all :>0, IC,s; F .

Thus, in particular we have that: (i) K,s F EX ¢ holds iff in K there exists a
successor of state s which satisfies ¢, (ii) K,s F E[p1U @] holds iff there exists a
path in C starting at s along which there exists a state where @9 holds and ¢
holds in every preceding state, and (iii) K,sF EG ¢ holds iff in K there exists a
path starting at s where ¢ holds in every state along that path.

1.1.4 Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based
on logic programs and their answer set semantics. Now we recall some basic
definitions of ASP and for those not recalled here the reader may refer to [10),
19, 54, 168, [69L [136]. A term t is either a variable X or a function symbol f of
arity n (>0) applied to n terms f(t1,...,t,). If n=0 then f is called a constant.
An atom is a predicate symbol p of arity n (>0) applied to n terms p(t1, ..., t,).
A rule is an implication of the form:
A1V ... VA Qt1 A .. AQy ADOE Ayl A ... ADOL Ay,

where ay,...,ax, ags1,...,ay (for kK >0, n > k) are atoms and ‘not’ denotes
negation as failure. A rule with k£ >1 is said to be a disjunctive rule and each
atom in {ay,...,ar} is called a disjunct. A rule with k=1 is called normal. A

rule with £=0 is called an integrity constraint. A rule with k = n is called a fact.
A logic program 11 is a set of rules. It is said to be a disjunctive logic program if
there exists a disjunctive rule and it is said to be a normal logic program if for
every rule k<1.

Given a rule 7, we define the following sets: H(r) ={a1,...,ax}, BT(r) =
{ak+1s---yam}, B~(r) ={am+1,.-.,an}, and B(r) = B¥(r) U B~(r) and we
introduce the following abbreviations: head(r)=Vqcp () a: pos(r)=Ascp+(r) @
neg(r) = Aaecp-(r) D0t a, and body(r)=pos(r)aneg(r).

Given two logic programs II; and Ils, we say that 11 is independent of 1ls,
denoted Ily > I1y, if for each rule r5 in Ily, for each predicate symbol p occurring

151

in H(rq), there is no rule r; in II; such that p occurs in B(r1).

A term, or an atom, or a rule, or a program is said to be ground if no variable
occurs in it. A ground instance of a term, or an atom, or a rule, or a program is
obtained by replacing every variable occurrence by a ground term constructed
by using function symbols appearing in II. The set of all the ground instances of
the rules of a program I is denoted by ground(II). Note that if a program II has
function symbols with positive arity, then ground(II) may be infinite. However,
as indicated at the beginning of Section[d] for our purposes we only need a finite
subset of that infinite set.

An interpretation I of a program II is a (finite or infinite) set of ground
atoms. By <I_ we denote the set {p <—| p€ I} of facts. The Gelfond-Lifschitz
transformation of ground(Il) with respect to an interpretation I is the program
ground(I)! = {head(r) + pos(r) | r € ground(I1) and B~(r) NI = (}. For any
rule 7 € ground(I1), we say that I satisfies r if (BT(r) C I and B~ (r)NI = 0)
implies H(r) NI # (. An interpretation I is said to be an answer set of II if I
is a minimal model of ground(I1)!, that is, I is a minimal set (with respect to
set inclusion) which satisfies all rules in ground(IT)!. The answer set semantics
assigns to every program II the set ans(II) of its answer sets.

Given a program II = I U Ily, the following fact holds [54]: if I3 > Iy, then

ans(H) = UMGans(Hl) ans(U HQ)

152

CHAPTER 2

Specifying Concurrent Programs

A concurrent program consists of a finite set of processes that are executed in
parallel in a shared-memory environment, that is, processes that interact with
each other through a shared variable. We assume that the shared variable ranges
over a finite domain. With every process we associate a distinct local variable
ranging over a finite domain which is the same for all processes. Every process
may test and modify the shared variable and its own local variable by executing
guarded commands.

Definition 10 (k-process concurrent program). For k> 1, let x1, ..., X
be local variables ranging over a finite domain £ and let y be a shared variable
ranging over a finite domain D. For ¢ = 1,...,k, a process P; is a guarded
command of the form

P;: true — if gc; [... gen, £i
where every guarded command gc in geq [... [gep, is of the form:

gc: x;i=lny=d — x;:=1;y:=d
with (I,d) # (I',d'). We assume that, for i =1,... k, the guards (that is, the
expressions to the left of —) of any two guarded commands of process P; are
mutually exclusive, that is, for all pairs (I, d), there is at most one occurrence of
the guard ‘x;=IAy=d’ in process F;.
A k-process concurrent program C'is a command of the form:
C: xp:=11;...;xp:=l; y:=d; do Py [|...[| Px od

The (k + 1)-tuple {I1,...,l,d) is said to be the initialization of C. O

153

Example 11. Let £ be {t,u} and D be {0,1}. A 2-process concurrent program
C is:
X1:=1t; Xg9:=t; y:=0; do P[P od

where P; and P, are defined as follows:

Py : true — if Py true — if
X1=tAy=0— x1:=u; y:=0 Xo=tAy=1-—xp:=u; y:=1
| xi=uAy=0—x1:=t;y:=1 [x2=uAy=1—x9:=1t;y:=0
fi fi

This program realizes a protocol which ensures mutual exclusion between the
two processes P; and P». For ¢ = 1,2, process P; either ‘uses a resource’ in its
critical section, that is, the value of x; is u, or ‘thinks’ in its noncritical section,
that is, the value of x; is t. The shared variable y gives the processes P; and
P, the turn to enter the critical section: if y=0, process P; enters the critical
section (x1 =u), while if y=1, process P, enters the critical section (xg=1u).
Note that in a real concurrent program, while P; is in its noncritical (or
critical) section it may execute arbitrary commands not affecting the values
of the local and the shared variables. However, for the sake of simplicity, we
omit such arbitrary commands and we will consider only those commands which
are relevant to the interaction between processes. (A similar approach is taken
in [25] where synchronization skeletons are considered.) O

Now we introduce the semantics of k-process concurrent programs by using
Kripke structures. Given a k-process concurrent program C, a state of C' is any
(k+1)-tuple (I, ..., I, d), where: (i) the first k¥ components are values for the
local variables x1,...,xx of C, one local variable for each process P;, and (ii) d
is a value for the shared variable y of C'. Given any state s, by s(x;) we denote
the value of the local variable of process P; in state s and, similarly, by s(y) we
denote the value of the shared variable in state s.

Definition 11 (Reachability). Let C be a k-process concurrent program. We
say that state sy is one-step reachable from state s, and we write Reach(s1, s2),
if there exists a process P;, for some i € {1,...,k}, with a guarded command
of the form: x; = s1(x;)Ay = s1(y) — % := s2(%x;); y := s2(y), and for all j €
{1,...,k} different from 4, s1(x;) = s2(x;). We say that sy is reachable from s;
if Reach®(s1,s2), where by Reach™ we denote the reflexive, transitive closure of
Reach. O

Note that our definition of the transition relation Reach formalizes the inter-
leaving semantics of guarded commands.

154

Definition 12 (Kripke structure associated with a k-process concurrent
program). Let C be a k-process concurrent program of the form

C: x:=l1;...;x5:=lp; y:=d; do P{[]...[Px od
Let Reach be the reachability relation associated with C' which we assume to
be total. The Kripke structure K associated with C' is the 4-tuple (S, Sp, R, A),

where:
(i) S ={s| Reach*(sg,s)} C LF x D is the set of reachable states from s,

(%) S() = {80}:{<l1, ce ,lk, d>},

(791) R = Reach C S§x S, and

() forall (I, ..., lg,d) € S, \({l1,...,lk,d)) = {local(P1,l1), ..., local(Py,),
shared(d)}, where for i = 1,...,k, the elementary proposition local(P;, ;)
denotes that the local variable x; of process P; has value [;, and analogously,
the elementary proposition shared(d) denotes that the shared variable y has
value d.

The set Elem of the elementary propositions is {local(P;,l;) | i=1,...,k} U

{shared(d) | d € D}. O

Note that, since every state has a successor state, every concurrent program is
a nonterminating program.

For every given state s, for every i € {1,...,k}, if (xi=lay=d — x;:=
lI's y:=d') is a guarded command in P; such that [=s(x;) and d=s(y), then we
say that P; is enabled in s and the guard x;=IAy=d holds in s.

Example 12. Given the 2-process concurrent program C' of Example the
associated Kripke structure is depicted in Figure We depict it as a graph
whose nodes are the states reachable from the initial state sy = (t,t,0). Each
transition from state s to state ¢ is associated with the guarded command whose
guard holds in s. For the initial state sg, we have that A(sg) = {local(Py,t),
local(P, t), shared(0)} and, similarly, for the values of A for the other states. [

Definition 13 (Satisfaction relation for a k-process concurrent pro-
gram). Let C be a k-process concurrent program with initialization sg, K be
the Kripke structure associated with C, and ¢ be a CTL formula. We say that
C satisfies p, denoted C'F ¢, if K, s9 F ¢. O

Example 13. Let us consider the 2-process concurrent program C' defined in
Example The fact that the critical section associated with the value u of
the local variable is executed in a mutually exclusive way, is formalized by the
CTL formula ¢ =ger AG —(local(Pr,u) A local(P,u)). We have that C' |= ¢ holds

155

(u,t,0)

X1=tAy=0—=x:=u;y:=0 X1=uAy=0—=x;:=t;y:=1

e

— (t,t,0) (t,t,1)

Xo=uAy=1—xo:=t;y:=0 Xo=tAy=1—=x=uy:=1

N

(t,u,1)

Figure 15: The graph representing the transition relation Reach of the Kripke
structure associated with the concurrent program of Example Each arc is
labelled by the guarded command which causes that transition according to
Definition The initial state is sp = (t,t,0).

because for the Kripke structure K of Example [12| (see Figure , we have that
K, so = . Indeed, there is no path starting from the initial state (t,t, 0) which
leads to either the state (u,u,0) or the state (u,u,1). O

In the literature (see, for instance, [7), 27, [56]) it is often considered the case
where concurrent programs consist of similar processes, the similarity being
determined by the fact that all processes follow the same cycling pattern of
possible actions.

We formalize some structural properties which extend the notion of similarity.
In particular, for any two distinct processes P; and P; in a concurrent pro-
gram, we assume that process P; can be obtained from process P; by permuting
the values of the shared variable y. For instance, in Example [IT] the guarded
commands in P, can be obtained from those in P; by interchanging 0 and 1.
Moreover, it is often the case that all processes of a given concurrent program
C also share additional structural properties, such as the fact that the tests and
the assignments performed on the local variables are the same for all processes
in C. For instance, in Example [L1] we have that both processes P; and P> may
change state by changing the value of their local variables from t to u or from
uto t.

Now we formalize those structural properties by introducing the k-symmetric
program structures.

156

Definition 14 (k-symmetric program structure). For k£ > 1, let £ be a
finite domain for the local variables xi,...,x;, and D be a finite domain for
the shared variable y. A k-symmetric program structure o= {f,T,ly,do) over L
and D consists of: (i) a k-generating function f€ Perm(D), which is either the

identity function id or a generator of a cyclic group {id, f, f2,..., f*~1} of order
k, (ii) a local transition relation T C Lx L which is total over £, (iii) an element
lo € L, and (iv) an element dy € D. a

Definition 15 (k-process symmetric concurrent program). For any k> 1,
let o= (f,T,lp, dp) be a k-symmetric program structure. A k-process concurrent
program is said to be symmetric w.r.t. o if it is of the form x:=1y;...;x :=
lo;y:=dp; do Pi|...[| Py od and, for alli € {1,...,k}, for all guarded commands
gc of the form x;=lany=d — x;:=1";y:=d’, we have that:

(i) (I,I'Y €T and

(11) gcis in P; iff (X(imodk)+1 :l/\y:f(d) — X(imod k)+1 ::l,; y= f(d/)) Is in
Plimod k)+1- O

Example 14. Let us consider the 2-process concurrent program C of Exam-
ple The group Perm(D) of permutations over D={0, 1} consists of the fol-
lowing two permutations: id={(0,0),(1,1)} (that is, the identity permutation)
and f={(0,1),(1,0)}. The program C' is symmetric w.r.t. the 2-symmetric pro-
gram structure (f, T, t, 0), where the local transition relation 7" is {(t,u), (u,t)}.
Indeed, its initialization is: x;:=t; x2:=1t; y:=0, and processes P} and P, are
as follows:
P true — if
X1=tAy=0— x1:=u; y:=0
| x1=uAay=0—x:=t;y:=1
fi
P true — if
xo=tAy=f(0) = xo:=u; y:= f(0)
[xe=uay=f(0) = xo:=%; y:=f(1)
fi O

157

CHAPTER 3

Synthesizing Concurrent Programs

Now we present our method based on Answer Set Programming for synthesizing
a k-process symmetric concurrent program from a CTL formula encoding a given
behavioural property and a k-symmetric program structure encoding a given
structural property.

Definition 16 (The synthesis problem). Given a CTL formula ¢ and a
k-symmetric program structure o over the finite domains £ and D, the synthesis
problem consists in finding a k-process concurrent program C' such that C' F ¢
and C' is symmetric with respect to o. O

The synthesis problem can be solved by applying the following two-step proce-
dure:
(Step 1) we generate a k-process symmetric concurrent program C, and
(Step 2) we verify whether or not C' satisfies a given behavioural property .

By Definition from any process P;, with ¢ = 1,...,k, we derive process
Plimod k)+1 by applying the k-generating function f to the guarded commands
of P;, thereby deriving the guarded commands of P04 £)+1- Thus, Step 1 can
be performed by generating process P, and using f for generating the other k—1
processes. Then Step 2 reduces to the test of the satisfiability relation /C, sq F ¢,
where: (i) K is the Kripke structure associated with C, and (ii) state sq is the
initial state of I corresponding to the initialization of C.

We present a solution to the synthesis problem in a purely declarative manner
by reducing it to the problem of computing the answer sets of a logic program
II encoding an instance of the synthesis problem. The logic program II is the
union of a program II, which encodes a structural property ¢ and a program
IT, which encodes a behavioural property .

159

In Theorem [we will prove that every answer set of II encodes a k-process
concurrent program satisfying ¢ and which is symmetric w.r.t. 0. We have that
I, is independent of II, (that is, II, > II;) and, thus, we can first compute the
answer sets of II, and then use those answer sets, together with program II,
to test whether or not the encoded k-symmetric concurrent program satisfies ¢.

Programs II, and II, are introduced by the following Definitions [I7] and [T8]
respectively.

Definition 17 (Logic program encoding a structural property). Let
o= (f,T,ly,dy) be a k-symmetric program structure over the finite domains £
and D and sg be the (k+1)-tuple (lp,...,lo,dp). The logic program II, is as
follows:

1.1 enabled(1,X1,Y) v disabled(1, X1,Y) + reachable({Xy,..., X, Y))
1.2 enabled(2,X,Y) «+ gc(2,X,Y, X" Y")

1.k enabled(k,X,Y) < ge(k, X, Y, X" Y")
2.1 gc(1, XY, X1, Y1)v...vge(1, X, Y, X, Yy) < enabled(1,X,Y) A
candidates(X,Y, [(X1,Y1),..., (Xm, Ym)])

2.2 gc(2,X,2, X', 7") + gc(1, X, Y, X", Y') A perm(Y, Z) n perm(Y', Z")

2.k ge(k, X, Z,X',7") + ge(k—1, XY, X", Y)aperm(Y, Z)aperm(Y', Z")

3.1 reachable(sg) <

3.2 reachable((X1,..., Xy, Y)) < tr((X7,.... X, Y"), (X1,... . X, Y))

4.1 tr((X1,.. ., Xk, Y) (X1, ..., Xk, Y')) < reachable({ X1, ..., X, Y))A
gc(1,X1,Y, X, Y)

4k tr((X1,... . Xk, Y),(X1,...,. X}, Y)) < reachable({X1, ..., Xk, Y))A
ge(k, Xi, Y, X1, Y')

5.« reachable({X1,..., X, Y)) Anot enabled(1, X1,Y)A... A
not enabled(k, Xx,Y)
together with the following two sets of ground facts:

(i) {candidates(l,d,L(l,d)) - | l€ Lad €D}, where L(l,d) is any list repre-
senting the set of pairs {(I',d") | (l,LI')eT A de€D a (I,d)#{',d)}

(ii) {perm(d,d') < | d,d' €D A f(d) = d'}. O

160

In this program, for i=1, ..., k, the predicate gc(i,l,d,l’,d’") holds iff in process
P; there exists the guarded command x; =lay=d — x;:=1";y:=d (see also
Definition .

Rule 1.1 states that in every reachable state, process P; is either enabled (that
is, one of its guards holds) or disabled. Rule 1.1 is used to derive atoms either
of the form enabled(1,X1,Y) or of the form disabled(1,X1,Y). If an atom of
the form enabled(1, X1,Y) is derived, then a guarded command for process P
(that is, an atom of the form gc(1, XY, X;,Y;)) is generated by using Rule 2.1.
Note that, without Rule 1.1, no atom for the predicates enabled and gc could
be generated and, therefore, no concurrent program would be synthesized.

Rules 1.4, with ¢ = 2,..., k, state that any process P; is enabled in state s if
P; has a guarded command of the form x;= X Ay=Y — x;:=X'; y:=Y’, for
some values of X’ and Y, such that X =s(x;) and Y =s(y).

The disjunctive Rule 2.1 generates a guarded command for process P; by
first enumerating all candidate guarded commands for that process (through
the predicate candidates) and then selecting one candidate which corresponds
to a disjunct of its head. Each guarded command consists of the guard x; =
X ay=Y, encoded by using the atom enabled(1,X,Y’), and a command x; :=
Xi; y:=Y;, encoded by a pair (X;,Y;) in the list which is the third argument of
candidates(X,Y, L(l,d)).

The number m of pairs (X;,Y;) in the list L(l,d) is uniquely determined by
the values | and d of the variables X and Y, respectively, in enabled(1, X,Y).
(It can be shown that |D|—1<m <|L|:|D|—1.) Thus, Rule 2.1 actually stands for
a set of rules, one rule for each value of m, and this set of rules can effectively
be derived only when the set of facts for the predicate candidates is computed.

For instance, let us consider the sets T' = {(a,b), (a,a), (b,a)} and D =
{0,1}. For X =b, Y =0, we have that candidates(b,0,[(a,0),(a,1)]) holds
(recall that a guarded command should change either the value of the local
variable or the value of the shared variable), and for X =a, Y =0, we have
that candidates(a,0,[(a, 1), (b,0), (b, 1)]) holds. Hence, when Y = 0, we have
two instances of Rule 2.1, one for m=2 and one for m=3.

Rules 2.2-2.k realize Definition In particular, they allow us to derive the
guarded command for processes Ps, ..., P, from the guarded commands gener-
ated for process P;. Note that, due to our definition of a symmetric program
structure, the subscript of the process used for the initial choice (1 in our case)
is immaterial, in the sense that any other choice for that subscript produces a
solution satisfying the same behavioural and structural properties.

Rules 3.1, 3.2, and 4.1-4.k define, in a mutually recursive way, the reacha-

161

bility relation (encoded by the predicate reachable) and the transition relation
R (encoded by the predicate ¢r) of the Kripke structure associated with the
concurrent program to be synthesized.

Rule 5 is an integrity constraint enforcing that any answer set of Il, is a
model of II, — {Rule 5} which does not satisfy the body of Rule 5. Thus, Rule 5
guarantees that the transition relation R is total, that is, in every reachable
state there exists at least one enabled process.

Now let us present the logic program II, which encodes a given behavioural
property ¢. Note that program II, depends on program II, for the definition of
the transition relation ¢r(S,T") and for the initial state sp, which is assumed to
be the (k+1)-tuple (lo, ..., lo, dp).

Definition 18 (Logic program encoding a behavioural property). Let
¢ be a CTL formula. The logic program IL, encoding ¢ is as follows:

1. < not sat(sg,)
sat(S, F) < elem(S, F)
sat(S, not(F)) < not sat(S, F)
sat(S, and(Fy, F3)) < sat(S, F1) A sat(S, F»)
sat(S, ex(F)) < tr(S,T) a sat(T, F)
sat(S, eu(F1, Fr)) + sat(S, F3)
sat(S, eu(F1, Fr)) < sat(S, F1) A tr(S,T) a sat(T,eu(F1, F»))
sat(S, eg(F)) < satpath(S, T, F) A satpath(T,T, F)
9. satpath(S,T,F) < sat(S,F) a tr(S,T)
10. satpath(S,V, F) < sat(S,F) a tr(S,T) a satpath(T,V, F)
together with the following two sets of ground facts:
(i) {elem(s,local(P;,1)) + | 1<i<kas€LFxD as(x;) =1}
(ii) {elem(s, shared(d)) < | s€ LFxD a s(y)=d}. O

0N oUW

Note that in the ground facts defining elem, for i=1, ..., k, by s(x;) we denote
the i-th component of s and by s(y) we denote the (k + 1)-th component of s
(see Chapter [2| for this notational convention). In Rule 1 of program IL,, by
abuse of language, we use ¢ to denote the ground term representing the CTL
formula ¢. In particular, in the ground term ¢ we use the function symbols not,
and, ex, eu and eg to denote the operators =, A, EX, EU, and EG, respectively.

Rules 2-10, taken from [I17], encode the semantics of CTL formulas as follows:
(i) sat(s, 1)) holds iff the formula v holds in state s, and (i7) satpath(s,t,1)) holds
iff there exists a path from state s to state ¢ such that every state in that path
(except possibly the last one) satisfies the formula 1. Rule 1 is an integrity

162

constraint enforcing that any answer set of IT is a model of (II, UIl,) — {Rule 1}
satisfying sat(so,).

Now we establish the correctness (that is, the soundness and completeness) of
our synthesis procedure. It relates the k-process symmetric (with respect to o)
concurrent programs satisfying ¢ with the answer sets of the logic program
IL, UIl,. Let us first introduce the following definition.

Definition 19 (Encoding of a k-process concurrent program). Let C be
a k-process concurrent program of the form xy:=1Iy;...;x;:=1[}; y:=d; do Py I
... [Px od. Let M be a set of ground atoms. We say that M encodes C if, for
all 4,1,d,l’,d', the following holds:

ge(i, 1, d,l',d)ye M iff (xj=Iay=d — x;:=1';y:=d’) is a guarded command
in Pz O

Theorem 9 (Soundness and completeness of synthesis). Let ¢ be a CTL
formula and o be a k-symmetric program structure over the finite domains £
and D. Then, there exists a k-process concurrent program C' such that (i) C'E ¢
and (ii) C' is symmetric w.r.t. o iff there exists an answer set M € ans(I1, UIl,)
such that M encodes C. O

The following theorem establishes the complexity of our synthesis procedure
as a function of the synthesis parameters, that is, (i) the number k of processes,
(ii) the size |p| of the CTL behavioural property ¢ defined to be the number of
operators and elementary propositions occurring in ¢, and (iii) the cardinalities
of £ and D which are the domains of f and T, respectively. When we state
the complexity result with respect to one parameter, we assume that the others
remain constant.

Theorem 10 (Complexity of synthesis). For any number k> 1 of processes,
for any symmetric program structure o over £ and D, and for any CTL formula
¢, an answer set of the logic program II,UII, can be computed in (i) exponential
time w.r.t. k, (ii) linear time w.r.t. |¢|, and (iii) nondeterministic polynomial
time w.r.t. |[£| and w.r.t. |D|. a

It is known (see, for instance, [96]) that the problem of synthesis from a
CTL specification ¢ is EXPTIME-complete w.r.t. |¢|. In order to compare the
complexity of our synthesis procedure with that of other techniques which can
be found in the literature [7, [8, 25, 06, 80], note that the parameters of our
synthesis procedure are not mutually independent. In particular, as we will
see in the following section, the usual behavioural properties considered for the

163

mutual exclusion problem, determine a CTL specification whose size depends
on the number k of processes. However, since our ASP synthesis procedure has
time complexity which is exponential w.r.t. k, it turns out that our translation
yields a synthesis procedure which still belongs to the EXPTIME class and,
thus, it matches the complexity of the synthesis problem.

164

CHAPTER 4

Synthesis examples

In this chapter we present some experimental results obtained by applying our
procedure for the synthesis of various mutual exclusion protocols.

In order to compute the answer sets of a logic program P with an ASP
solver, we should first construct the set ground(P). This set is constructed by
a grounder which is either a standalone tool, such as gringo [53] or Iparse [133],
independent of the ASP solver, or is a built-in module of the ASP solver, as in
the DLV system [99].

If a logic program P has function symbols with positive arity, then ground(P)
is infinite. Thus, in particular, ground(Il) is infinite. However, in order to
compute the answer sets of II, we only need some finite subsets of ground(II).
These subsets are constructed by most grounders by means of the so called
domain predicates, which specify the finite domains over which the variables
should range [53], [99] 133].

In our case, a finite set of ground rules is obtained from program II, by intro-
ducing in the body of each of the Rules 2-10 a domain predicate so that terms
representing CTL formulas are restricted to range over subterms of ¢. (Here
and in what follows, when we refer to a subterm, we mean a non necessarily
proper subterm.) In particular, a rule of the form sat(S,1) < Body is replaced
by sat(S,v) < Body ad(1)), where d is the domain predicate defined by the set
{d(¢)+ | ¥ is a subterm of ¢} of ground facts. The correctness of this replace-
ment relies on the fact that, in order to prove sat(sg,) by using Rules 2-10,
it is sufficient to consider only the instances of these rules where subterms of ¢
occur.

Note that, by using a grounder after the introduction of domain predicates,
we get a set of ground instances of Rules 2-10 whose cardinality is linear in the

165

number of subterms of ¢ and, hence, in the size of ¢. This fact is relevant for
the complexity results stated in Theorem

In our synthesis experiments, in order to define the k-symmetric program
structures of the programs to be synthesized, we have made the following choices
for: (i) the domain £ of the local variables x;’s, (ii) the domain D of the shared
variable y, (iii) the k-generating function f, (iv) the set T', (v) the value of [y € L,
and (vi) the value of dy€D.

We have taken the domain £ to be {t,w,u}, where t represents the noncritical
section, w represents the waiting section, and u represents the critical section.

We have taken the domain D to be {0,1,...,n}, where n depends on: (i) the
number k of the processes in the concurrent program to be synthesized, and
(ii) the properties that the concurrent program should satisfy. At the beginning
of every synthesis experiment we have taken n=1 and, if the synthesis failed,
we have increased the value of n by one unity at a time, hoping for a successful
synthesis with a larger value of n.

We have taken the k-generating function f to be either (i) the identity function
id, or (ii) a permutation among the |D|!/(k- (|D| — k)!) permutations of order k
defined over D.

We have taken the local transition relation 7" to be {(t,w), (w,w), (w,u), (u, t)}.
The pair (t,w) denotes that, once the noncritical section t has been executed, a
process may enter the waiting section w. The pairs (w,w) and (w,u) denote that
a process may repeat (possibly an unbounded number of times) the execution
of its waiting section w and then may enter its critical section u. The pair (u, t)
denotes that, once the critical section u has been executed, a process may enter
its noncritical section t.

Finally, we have taken [y to be t and dy to be 0.

For k = 2,...,6, we have synthesized (see Column 1 of Table various
k-process symmetric concurrent programs of the form x;:=t; ...;x;:=1t; y:=
0; do Py | ... [] Py od, which satisfies some behavioural properties among those
defined by the following CTL formulas (see Column 2 of Table .

(i) Mutual Ezclusion, that is, it is not the case that process P; is in its critical
section (x;=u), and process P; is in its critical section (x;=u) at the same time:
for all 4,7 in {1,...,k}, with i # j,

AG —(local(P;,u) A local(P;, u)) (ME)

(ii) Progression and Starvation Freedom, that is, (progression) every process P,
which is in the noncritical section, may enter its waiting section (that is, modify
the local variable x; from t to w), thereby requesting to enter the critical section,

166

and (starvation freedom) if a process P; is in waiting section (x; =w), then after
a finite amount of time, it will enter its critical section (x; =u): for all i in
{1,...,k},

AG ((local(P;, t) — EX local(P;, w))A(local(P;, w) — AF local(P;,u))) (SF)

(iii) Bounded Overtaking, that is, while process P; is in its waiting section, every
other process P; leaves its critical section at most once, that is, P; should not
be in its critical section u and then in its waiting section w and then again in its
critical section u, while P; is always in its waiting section w (see the underlined
subformulas): for all 4,7 in {1,...,k}, with i # 7,

AG = [local(P;,w) A local(P;,u) A

E [local(P;, w) U (local(P;, w) A local(Pj,w) A (BO)
E [local(P;,w) U (local(P;,w) A local(P;,u))])]]

(iv) Mazimal Reactivity, that is, if process P; is in its waiting section and all
other processes are in their noncritical sections, then in the next state P; will
be in its critical section: for all 7 in {1,...,k},

AG ((local(Pi, w) A Njeqa,. ky—giy local(Pj, t)) — EX local(P;, u)) (MR)

First, we have synthesized a simple protocol, called 2-mutez-1, for two pro-
cesses enjoying the mutual exclusion property (see row 1 of Table , and
then we synthesized various other protocols for two or more processes which
enjoy other properties. In that table the identifier k-mutez-p occurring in the
first column, denotes the synthesized protocol for k processes satisfying the
p (> 1) behavioural properties listed in the second column Properties. For in-
stance, program 2-mutex-4 is the synthesized protocol for 2 processes which
enjoys the four behavioural properties MFE, SF, BO, and MR. In each row of
Table we have shown the minimal cardinality (in Column |D|) and the k-
generating function (in Column f) for which the synthesis of the program of
that row succeeds.

The synthesis of program 2-mutex-1 succeeds with |D|=2 and both the iden-
tity function and the permutation f; ={(0,1),(1,0)} (see rows 1 and 2). The
syntheses of programs 2-mutex-2 and 2-mutex-3 fail for |D|=2 and the identity
function, but they succeed for |D|=2 and f; (see rows 3 and 4). The synthesis
of 2-mutex-4 fails for |D| =2 and any choice of a 2-generating function. Thus,
we increased |D| from 2 to 3. For |D|=3 and the identity function the synthesis
fails, but it succeeds for the permutation fo = {(0,1),(1,0),(2,2)} of order 2
(see row 5). If we use different permutations of order 2, instead of fa, we get

167

programs which are equal to the program 2-mutex-4 (presented in Figure ,
modulo a permutation of the values of the shared variable y.

The synthesis of 3-mutez-1 succeeds for |D| =2 and the identity function (see
row 6). The synthesis of 3-mutez-2 fails for |D| = 2 (the only choice for the
3-generating function is the identity function) and, thus, we increased |D| from
2 to 3. By using |D| =3 and the identity function, the synthesis fails, but it
succeeds for |D|=3 and the permutation f3={(0, 1), (1,2),(2,0)} of order 3 (see
row 7). This synthesis succeeds also by using different permutations of order 3,
and in all these cases we get programs which are equal to 3-mutez-2, modulo a
permutation of the values of the shared variable y.

The synthesis of 3-mutez-3 (see row 8) is analogous to that of 3-mutez-2 to
which row 7 refers.

The synthesis of 3-mutez-4 fails for |D| = 4,5, and 6, while it succeeds for
|D| = 7 and the permutation f; = {(0,1),(1,2),(2,0), (3,4), (4,5), (5,3), (6,6)}
which is of order 3 (see row 9).

The last rows 10, 11, and 12 of Table refer, respectively, to the programs
4-mutex-1, 5-mutex-1, and 6-mutexr-1 whose syntheses succeed for |D| =2 and
the identity function.

In Figure we present the synthesized program, called 2-mutez-4, for the
2-process mutual exclusion problem described in Example [[3] In Figure
we present the transition relation of the associated Kripke structure. Pro-
gram 2-mutez-4 is basically the same as Peterson algorithm [120], but, instead of
using three shared variables, each of which ranges over a domain of two values,
program 2-mutex-4 uses two local variables x; and xo which range over {t,w,u},
and a single shared variable y which ranges over {0, 1,2}.

The comparison between Peterson algorithm and our program 2-mutex-4 is
illustrated in Figure [I6, where in the upper part we have presented the origi-
nal Peterson algorithm for two processes and in the lower part our synthesized
Peterson-like algorithm derived by hand from the transition relation of pro-
gram 2-mutex-4 depicted in Figure Note that in Peterson algorithm the
three shared variables are assigned constant values, while in our algorithm we
pay the price of using a single shared variable y by the need of performing some
operations on that variable.

However, in Peterson algorithm if a process, say Pp, is in its waiting section
and the other process P, fails after assigning to ¢ and never does the assignment
to s, then P; cannot enter its critical section. This problem can be avoided
by assuming that the sequence of assignments to ¢ and s is atomic. In our
algorithm this problem does not arise simply because we have not a sequence of

168

’ Program ‘ Properties ‘ |D| ‘f Hans(H)H Time

(1) 2-mutez-1 | ME 2 | 10 0.01
(2) 2-mutez-1 | ME 2 | f 10 0.01
(3) 2-mutez-2 | ME, SF 2 | fi 2 0.03
(4) 2-mutez-3 | ME, SF, BO 2 | h 2 0.05
(5) 2-mutez-4 | ME,SF, BO, MR| 3 | fo 2 0.17
(6) 3-mutez-1 | ME 2 | 9 0.05
(7) 3-mutez-2 | ME, SF 3 | f3 6 3.49
(8) 3-mutez-3 | ME, SF, BO 3 | fs 4 132
(9) 3-mutez-4 | ME,SF, BO, MR| 7 fa 2916 | ~ 4.4 hours
(10) 4-mutes-1	ME	2 [id] 9	0.35		
(11) 5-mutes-1	ME	2 [dd] 9	2.89		
(12) 6-mutea-1	ME	2	id	9	20.43

Table 4.1: Column ‘Program’ shows the names of the synthesized programs.
k-mutex-p is the name of the k-process program satisfying the p behavioural
properties shown in column ‘Properties’. Column |D| shows the cardinality of the
domain {0, 1,...,n} of the shared variable y. Column f shows the k-generating
function used for the synthesis. Column |ans(II)| shows the number of answer
sets of II = II, UIl,. Column ‘Time’ shows the time expressed in seconds
(unless otherwise specified) to generate all answer sets of II, by using the ASP
solver claspD [53].

assignments, but a single assignment to y.

Let us briefly explain our hand derivation of the Peterson-like algorithm from
the algorithm described by guarded commands in Figure Let us consider
process P;. We have that:

(i) when Pj enters the waiting section or leaves the critical section, y is mod-
ified as follows: y := if y=2 then 1 else 2 (see the guarded commands (1), (2),
(3), (6), and (7)), and

(ii) when P; enters the critical section, y should be different from 1 and the
value of y is not modified (see the guarded commands (4) and (5)). For process
P, we replace 1 by 0.

As indicated in Figure [16|the two assignments to y (that is, y := if y=2 then
1 else 2 for Pj, and y:= if y=2 then 0O else 2 for P,) can be expressed as
assignments in Kleene 3-valued logic whose values are 0, 1, and 2. In that logic
we have that:

169

(i) X =gef 2 — X,

(i) x Ay =gef min(x,y),

(ili) x V y =4ef max(x,y), and

(iv) x = y =qef if x <y then 2 else 0. Note that in that logic x — y # —xVy.

In particular, for proess P, y := if y=2 then 1 is equal toy := (y—1)V1 and
for process P, is equal to y := (y—1).

Peterson Algorithm for the 2 processes P; and P, [120)]
q1 := false; qo := false; s:=1;

P, : while true do Py while true do
l1 : non-critical section 1; m1 : non-critical section 2;
Iy : q:=true; s :=1; mo . (@9 := true; s := 2;
l3: await (-q2) V (s = 2); ms: await (-q1) V (s =1);
lg : critical section 1; my : critical section 2;
Is: q1:= false; od ms: qo:= false; od

Synthesized Algorithm for the 2 processes P, and P (2-mutez-4)

y=0;
P; . while true do P while true do
l1 : mnon-critical section 1; mq : non-critical section 2;
la: yi=(y—=1)V1; me: yi=(y—1);
l3: await y # 1; mg: await y # 0O;
ly : critical section 1; my : critical section 2;
ls: y:=(y—1)V1; od ma: y:=(y—1); od

Figure 16: The original Peterson algorithm for 2 processes (above) compared
with our synthesized Peterson-like algorithm for 2 processes 2-mutez-4 (below)
derived by hand from the transition relation of Figure Implication and
disjunctions are performed in Kleene 3-valued logic.

4.1 Comparison of ASP Solvers on the Synthesis Exam-
ples

We have implemented our synthesis procedure by using the following ASP
solvers:

170

1.1

P true — if P : true — if

(1) X1=tAy=0— x;:=w; y:=2 Xo=tAy=0 — x9:=w; y:=2
(2) [xi=tay=1—x:=w; y:= | xe=tAay=1—x9:=w; y:=2
(3) [xi=tAay=2—x:=w; y:= | x2=tAy=2— x9:=w; y:=0
(4) | xi=wAy=0—x;:=u; y:=0 | xe=wAay=1-—x9:=u;y:=1
(5) [xi=wAy=2—x:=u y:= | xo=wAy=2— x9:=u; y:=2
(6) [xi=uAy=2—x:=t;y:=1 | x2=uAy=2— x9:=1t;y:=0
(7) [xi=uAy=0—x;:=t;y:=2 | xo=uAay=1—x9:=t;y:=2
fi fi

Figure 17: The two processes P; and P, of the synthesized 2-process concurrent program 2-mutez-4 of the
form x1:=t; x9:=t; y:=0; do P, [| P» od. It enjoys the properties ME, SF', BO, and MR.

(t,w,2) (w,t,2)

— (t,t (t,t,1)
2.6‘ 1.6
(t,u,2) (w,w, 1) (w,w,0) (u,t,2)

Figure 18: The transition relation of the Kripke structure associated with the 2-process concurrent program
2-mutez-4 of Figure An arch from s to t with label i.n indicates that the guarded command (n) of
process P; (see Figure causes the transition from state s to state t. The initial state is (t,t,0).

e clasp [66] (http://potassco.sourceforge.net/)

o claspD 53] (http://potassco.sourceforge.net/)
e cmodels [71] (http://www.cs.utexas.edu/~tag/cmodels/)

[
e DLV [99] (http://www.dlvsystem.com/dlv/)

]

[

(
e GnT [89] (http://www.tcs.hut.fi/Software/gnt/)

e smodels [134] (http://www.tcs.hut.fi/Software/smodels/)

The ground instances of II given as input to the solvers clasp, claspD, cmodels,
GnT, and smodels, have been generated by using gringo (http://potassco.
sourceforge.net/). All experiments have been performed on an Intel Core 2
Duo E7300 2.66GHz under the Linux operating system. In order to compare the
performance of the ASP solvers listed above, we have implemented the synthesis
procedure by using the following encodings of 11, (that is, the program which
generates the guarded commands): (i) Disjunctive Logic Program (denoted by
ITPLPY) | (ii) Normal Logic Program (denoted by ITY*F), and (iii) Stratified Choice
Integrity constraint Program (denoted by II5¢7) [I16]. In particular, program
PP s a straightforward encoding of the logic program II, of Definition
program ITIYEF is derived from II, by rewriting any rule of the form avb < c
as the pair of rules a + not b,c and b < not a, ¢, and program chj is derived
from II, by rewriting any rule of the form avb < ¢ as the choice rule [116]
{a,b} < c. We have executed each solver on each example using a 600 second
timeout. All times required to generate the first solution and all solutions are
reported in Tables , and for TIDEP TINEP " and HgC[, respectively.
Each table shows the results only for the ASP solvers which can to deal with
the considered encoding.

The experimental results reported in Table show that claspD is the ASP
solver with the best performance on all synthesis examples obtained by using
the ITPL? encoding. Regarding the other solvers we have that cmodels provides
better timings than GnT, but the former crashes when exercised on Programs
(2), (6), and (7) where GnT succeed.

Concerning the results obtained by using the TIY*" encoding (see Table ,
we observe that clasp and claspD, which is an extension of clasp for solving
disjunctive logic programs, are the tools that perform better on almost all ex-
amples. We also have that they provide approximately the same performance
on small instances (that is when the number of processes is small) of the syn-
thesis problem (Programs (1) to (6)). However, the performance gap between
clasp and claspD increases as the size of the instance of the synthesis problem

172

http://potassco.sourceforge.net/
http://potassco.sourceforge.net/
http://www.cs.utexas.edu/~tag/cmodels/
http://www.dlvsystem.com/dlv/
http://www.tcs.hut.fi/Software/gnt/
http://www.tcs.hut.fi/Software/smodels/
http://potassco.sourceforge.net/
http://potassco.sourceforge.net/

Table 4.2: Synthesis times using IT2F. Numbers in column ‘Program’ re-
fer to the synthesized programs listed in Table Column ‘First’ and col-
umn ‘All’ show the time expressed in seconds to generate, respectively, the first
answer set and all answer sets of IT = IIP?ZP U TI,. oo means ‘no answer within
600 second’. e means ‘tool crashes’.

Program claspD cmodels DLV GnT
First ‘ All || First ‘ All || First ‘ All || First ‘ All
(1) 0.01] 0.01] 0.01] 0.02] 0.01]0.02] 0.02] 0.04
(2) 0.01] 0.01] 0.02 el 0.01]0.09] 0.02] 0.05
(3) 0.03] 0.03] 0.06] 0.08] 021[1.18]] 0.12] 0.18
(4) 0.03] 0.05] 0.07[0.09] 016[319] 0.13] 0.23
(5) 014] 017] 026 057] oo| oo| 084 5.92
(6) 0.04] 0.05 e el 040] oo 0.12] 0.37
(7) 2.57| 3.49 e el oo| ool 12.65]308.06
(8) 282 432[482] 814] oo| ool 14.01]361.50
(9) |460.39 oo || 544.03 00 oo | 0 00 00
| (10) | 0.29] 035] 0.61] 3.27[7350] oo 1.17] 3.65]
| (1) | 2.07] 289] 3.10[106.04] oo| ool 10.90] 71.22]
| (12)] 12.39[2043] 1837 oo oo| oo][37687] oo

173

increases (Programs (10) and (11)). Despite of worse timing results, cmodels,
GnT and smodels succeed in synthesizing Program (12) where both clasp and
claspD fail. Note also that, however, claspD is able to synthesize all solutions
for Program (12) in 20.43 second if we consider the disjunctive logic program
encoding.

Finally, concerning the results obtained by using II5¢! (see Table we
have that clasp is the ASP solver which performs better and, on large instances
(Programs (7)—(12)) it outperforms smodels.

4.2 Related Work

Pioneering works on the synthesis of concurrent programs from temporal speci-
fications are those by Clarke and Emerson [25] and Manna and Wolper [107]. In
both these works the authors reduce the synthesis problem to the satisfiability
problem of the given temporal specifications. Their synthesis methods exploit
the finite model property for propositional temporal logics which asserts that if
a given formula is satisfiable, then it is satisfiable in a finite model (whose size
depends on the size of the formula).

In [25] Clarke and Emerson propose the following three-phase method for
the synthesis of concurrent programs for a shared-memory model of execution:
Phase 1 consists in providing the CTL specification of the concurrent program;
Phase 2 consists in applying the tableau-based decision procedure for the satisfi-
ability of CTL formulas to obtain a model of the CTL specification; and Phase 3
consists in extracting the synchronization skeletons from the model of the CTL
specification.

Similarly, in [I07] Manna and Wolper present a method that uses a tableau-
based decision procedure for linear temporal logic (LTL) for the synthesis of
synchronization instructions for processes in a message-passing model of execu-
tion.

However, the approaches proposed in [25, [107] have some drawbacks. In
particular, they suffer from the state space explosion problem in that the models
from which the synchronization instructions are extracted, have sizes which are
exponential with respect to the number of processes. Moreover, the synthesized
instructions work for models of computation which require further refinements
for their use in a realistic architecture. Extensions of the synthesis methods
of [25, 107] have been proposed by Attie and Emerson in [7] to deal with the
state space explosion problem and allow an arbitrarily large number of processes
by exploiting similarities among them. Also Attie and Emerson in [8] present an

174

GLT

Table 4.3: Synthesis times using IIY“*. Numbers in column ‘Program’ refer to the synthesized programs listed
in Table Column ‘First” and column ‘All’ show the time expressed in seconds to generate, respectively,
the first answer set and all answer sets of II = IIJ'*F UTIL,. co means ‘no answer within 600 second’.

Program clasp claspD cmodels DLV GnT smodels
First | All|[[First | Al|| First| All|[| First| Al|| First| All| First| All
(1) [0.02] 0.02] 0.01] 0.0L[0.02] 0.02] 0.01]0.02] 0.02] 0.03] 0.02] 0.02
(2) [0.01] 0.01] 0.01] 0.02] 0.01 0.02] 0.02]0.04] 0.02] 0.03] 0.01] 0.01
3) | 0.03] 0.04] 0.03] 0.04]| 0.06] 0.08] 0.09]0.15[0.09] 0.09] 0.04] 0.04
(4 [0.04] 0.04] 0.04] 0.04] 0.08[0.08] 0.13]020| 011] 0.1[] 050[0.60
(5) [0.13] 0.16] 0.15] 0.19] 0.24] 0.31 o] oof 093] 1.06]] 0.26] 0.31
(6) | 0.05] 0.07] 0.04] 0.06] 0.06] 0.09] 0.77] ool 0.12] 017] 0.07[0.09
(7) [2.11] 3.08] 3.34] 4.38] 294[12.21 co| ool 32.90] 3651 5.56 | 18.86
(8) | 490 6.23] 3.30] 6.29] 7.18]18.90 co| ool 89.79] 96.79 12.76 | 61.22
(9) 00 00 00 00 00 00 00| 0 00 00 00 00
| (10) [029] 1.39] 0.31] 0.70]] 047] 0.74]12621| oo 0.84] 1.61] 0.63] 1.27]
| (11) [248]40.57[2.34[12.60]| 3.07] 6.57]] oo| ool 11.84] 41.63] 18.74] 31.10]
| (12) | oo] oof oo oo[1823[5518] oo ool 158.02]442.69 [[359.58 | 596.53 |

9.1

Table 4.4: Synthesis times using ITS¢/. Numbers in column ‘Program’ refer to the synthesized programs listed
in Table Column ‘First” and column ‘All’ show the time expressed in seconds to generate, respectively,
the first answer set and all answer sets of IT = 157 U II,. oo means ‘no answer within 600 second’. L means
‘no models at all’. (*) means ‘GnT is able to generate one out of two models’. e means ‘tool crashes’.

Program clasp claspD cmodels GnT smodels
First ‘ All || First ‘ All || First ‘ All || First ‘ All || First ‘ All
(1) 0.01] 0.01] 001] 001] 0.01] 0.02]] 0.02] 0.06] 0.01] 0.04
(2) 0.01] 0.01] 001] 0.01] 0.01] 0.03]] 0.03] 0.06] 0.01] 0.04
(3) 0.04] 0.05] 0.03] 0.04] 0.06] 0.07 L] L] o004] 004
(4) 0.04] 0.04] 006 0.06| 0.07] 0.08] 0.16] 0.21] 0.05] 0.06
(5) 013] 017 013] 018 025] 058] 036] (%] o072] 427
(6) 0.05] 0.04] 0.05] 0.06] 0.06] 0.12 L] L] o090] 013
(7) 1.33] 2.10[235] 3.83] 317 e 1] 1] 135.63]267.07
(8) 2.66 | 428 3.61] 5.69 E E L] 1]406.59 00
(9) | 444.14 00 00 oo || 262.45 00 00 00 00 00
| (10) | 0.30] 034] 030] 1.70]] 048] 320 1.60] 449] 0.95] 1.59]
| (A1) | 240] 289 2.25] 26.45] 3.19]106.34] 22.15]91.42] 20.76 [105.15 |
| (12) | 22.62[25.61[18.71[406.76 || 19.28| 00[[598.60| 00 499.96] oo

extension of their synthesis method to deal with a finer, more realistic atomicity
of instructions so that only read and write operations are required to be atomic.

The papers we have considered so far refer to the synthesis of the so called
closed systems, that is, the synthesis of programs whose processes are all speci-
fied by some given formulas. A different approach to the synthesis of concurrent
programs has been presented by Pnueli and Rosner in [122]. These authors
propose a method for synthesizing reactive modules of so called open systems,
that is, systems in which the designer has no control over the inputs which
come from an external environment. They introduce an automata-based syn-
thesis procedure from a specification given as a linear temporal logic formula.
The synthesis of open systems has also been studied by Kupferman and Vardi
in [96]. Also the method they propose is based on automata-theoretical tech-
niques. Paper [96] is important because it also presents some basic complexity
results for the synthesis problems when specifications are given by CTL formulas
or LTL formulas.

Our synthesis procedure follows the lines of [7), 25, 107] and considers con-
current programs to be closed systems. The advantage of our method resides
in the fact that we solve the synthesis problem in a purely declarative manner.
We reduce the problem of synthesizing a concurrent program to the problem of
finding the answer sets of a logic program without the need for any ad hoc algo-
rithm. Moreover, besides temporal properties, we can specify for the programs
to be synthesized, some structural properties, such as various symmetry prop-
erties. Then, our ASP program automatically synthesizes concurrent programs
which satisfy the desired properties. In order to reduce the search space when
solving the synthesis problem, we have used the notion of symmetric concurrent
programs which is similar to the one which was introduced in [7] to overcome
the state space explosion problem. Our notion of symmetry is formalized within
group theory, similarly to what has been done in [56] for the problem of model
checking.

To the best of our knowledge, there is only one paper [80] by Heymans,
Nieuwenborgh and Vermeir who make use, as we do, of Answer Set Program-
ming for the synthesis of concurrent programs. The authors of [80] have extended
the ASP paradigm by adding preferences among models and they have realized
an answer set system, called OLPS. They perform the synthesis of concurrent
programs following the approach proposed in [25] and, in particular, they use
OLPS for Phase 2 of the synthesis procedure, having reduced the satisfiabil-
ity problem of CTL formulas to the problem of constructing the answer sets of
logic programs. The encoding proposed by [80] yields a synthesis procedure with

177

NEXPTIME time complexity and, thus, it is not optimal because the complexity
of the problem of CTL satisfiability is EXPTIME [55].

On the contrary, our technique for reducing the satisfiability problem to the
construction of the answer sets of logic programs, does not require any extension
of the ASP paradigm. Indeed, we use standard ASP solvers, such as claspD [53],
and every phase of our synthesis procedure is fully automatic. In particular,
from any answer set we can mechanically derive the guarded commands which,
by construction, guarantee that the synthesized program satisfies the given be-
havioural and structural properties. Moreover, we show that our method has
optimal time complexity because it has EXPTIME complexity with respect to
the size of the temporal specification.

178

CHAPTER 5

Proofs

We first introduce the following notions which will be used in the proofs.

A nonempty set I of ground atoms is elementary [67] for a program ground(II)
if for all nonempty proper subsets S of I there exists a rule r in ground(Il) such
that: (i) H(r) NS =0, (ii)) BY(r)n(I—-S)#0, (iii)) H(r)Nn (I—-S) =0, and
(iv) BT (r)nS =0. A program ground(Il) is said to be Head Elementary set
Free (HEF, for short) if, for every rule r in ground(II), there is no elementary set
Z for ground(IT) such that |H(r) N Z| > 1. We say that II is HEF if ground(II)
is HEF. With any given HEF program II we associate a normal logic program
II"™ obtained from II by replacing every rule r of II of the form:

A1V ... VA & Afy1 A .. Ay A DOt a1 A ... ADOL Ay
for some k>1, by the following k£ normal rules:

aj < Nief1,.. k}—{j} RO Qi AQf+1 A . Ay ADOE A g1 A ... ATIOE Gy
for j=1,...,k. It can be shown that ans(II) = ans(II") [67].

The following Proposition [3]is required for the proofs of Theorem [9] and The-
orem [I01

Proposition 3. The logic program II, is Head Elementary set Free.

Proof. We assume by contradiction that there exists a rule r in ground(Il,)
and there exists a set Z which is an elementary set for ground(Il,) such that
|H(r)N Z|>1. If |H(r) N Z|>1, then either:
(i) r is an instance of Rule 1.1 of Definition [17| and there exist [€ £, d€D such
that

{enabled(1,1,d), disabled(1,1,d)} CZ, or
(ii) r is an instance of Rule 1.2 of Definition and there exist [,1',1" € L,
d,d',d" € D such that

179

{ge(1,1,d,l',d"), gc(1,1,d,1",d")} C Z.
Let us consider Case (i). Let S be a nonempty proper subset of Z such that
{enabled(1,1,d)} € S and {disabled(1,1,d)} ¢ S. Clearly, H(r) N (Z—-S) # 0.
This contradicts Condition (iii) for Z to be an elementary set for ground(Il,).
Case (ii) is analogous to Case (i). Thus, we get that ground(Il,) is HEF and,
by definition, also 11, is HEF. O

By this proposition and the fact that the transformation from II into II™
presented above, preserves the answer set semantics when applied to HEF pro-
grams [67], we have that ans(Il,) = ans(I}), where program II? is obtained
from program II, as follows:

(i) Rule 1.1 of program II, is replaced by the following two normal rules:

enabled(1, X1,Y) < not disabled(1, X1,Y)areachable((X1,..., Xk, Y))
disabled(1, X1,Y) < not enabled(1, X1, Y)areachable((Xy,...,Xk,Y)), and

(ii) Rule 1.2 of program II, is replaced by m normal rules, for i=1,...,m, each
of which is of the form:

9c(L, X, Y, X3, Yi) < Njeqr,..omy—qiy Rot ge(1, X, Y, X5, Y5) A
enabled(1, X,Y') A candidates(X,Y, (X1, Y1), ..., (Xm, Ym)]).
From the fact that II, > II, and ans(Il,) = ans(II}), we get that (see end of
Section :

ans(I) = ans(Ily UILs) =Upreans(,) ans(Ily U M) =Unreans(iz) ans(Ily U ﬁ) =
ans(Il, UIIY).

Therefore, in order to compute all answer sets of program II, UIl,, we can
give II,UII} as input to an answer set solver which does not support disjunctive
logic programs.

Proof of Theorem @

In order to prove Theorem [9 we first introduce the following Lemma A.2 stating
the correctness of the logic program II, (see Definition .

Let K = (S,80,R,) be a Kripke structure. We introduce the program Py,
called encoding of IC, consisting of ground(Il, — {Rule 1}) U {tr(s,t) < | (s,t) €
R}. O

Note. Px is a locally stratified normal program, thus it has a unique stable model
[6] which coincides with its unique answer set M |{q¢ satpath, etem, tr}-

180

Lemma 1 (Correctness of II,). Let £=(S,Sp, R, \) be a Kripke structure
and Px be the encoding of . For all states s€ S and CTL formulas ¢ we have
that: IC, s F ¢ iff sat(s,p) € M(Px) O

Proof of A.2

The proof is by structural induction on ¢. By induction hypothesis we assume
that, for all states s € D and for all proper subformulas v of ¢

K,s k=1 iff sat(s,v) € M(Px) (1)

Now we consider the following cases.

Case 1. (i is an elementary proposition e of the form local(P;,1) or of the form

shared(d))
For all states s € S we have that:
K,skEe
iff s(x;) =1 (or s(y) =d) (by Point (iv) of Def.
iff elem(s,e) € M(Px (by Points (i) and (ii) of Def. [18 and
by definition of M (Px))
iff sat(s,e) € M(Px) (by Rule 2 of TI, and def. of M (Px))
Case 2. (¢ is =)
For all states s € S we have that:
K,s):)
iff K, s | 1 does not hold (by def. of K, s = =), see Sect.
it sat(s,) ¢ M(Px) (by ()
iff sat(s,) € M(Px) (M(Px) is an answer set of Px)
Case 3. (¢ is Y1 A1)
For all states s € § we have that:
lC? s): sz)l A 1/)2
iff IC,s =11 and K, s = 1o (by def. of K, s =11 A 1)g, see Sect.
iff sat(s,yn) € M(Px) and sat(s,2) € M(Px) (by (1))
iff sat(s,yn A2) € M(Px) (by Rule 4 of I, and M (Px) is an answer
set of Px)
Case 4. (¢ is EX)
For all states s € § we have that:
K,skEEXy
iff there exists a state s’ € S such that
(s,8'y € Rand K,s' =1 (by def. of K, s E EX1, see Sect.

181

iff there exists a state s’ € S such that:
(i) tr(s,s’) € M(Px), and
(ii) sat(s',1) € M(Px) (by def. of Pc and (}))
iff there exist a state s’ € S and
a clause of the form sat(s, ex(v)) < t(s,s’) A sat(s',9) in P

such that:
(i) t(s,s") € M(Px), and
(ii) sat(s’',v) € M(Px) (by def. of Px)
iff sat(s,ex(v))) € M(Px) (by Rule 5 of P¢ and M (Px) is an answer

set of Px)

Case 5. (¢ is EU[y1,12])

For any set Y of states, let 7ey(Y') denote the set {s € S|K,s Er}U({s € S |
K,s =1}n {s €S | 3¢’ € S such that (s,s') € R and s’ € Y}). From [27] we
have that C,s = EU[t1, 4] holds iff s € Ifp(7ey), where Ifp(tey) = 7g, Thus,
we have to show that, for all states s € S, s € Ifp(tey) iff sat(s,eu(v1,12)) €
M (Px). Let Pey be ground({Rule 6, Rule 7}) U {sat(s,¢1) € M(Px) | s €
S} U {sat(s,12) € M(Px) | s € S} U {tr(s,t) € M(Px) | s,t € S}, and T,
be the immediate consequence operator [6]. We proceed by induction on h: for
all b > 0, for all s € S, s € 7,(0) iff sat(s,eu(yr, o)) € TE,(0). The base
case trivially holds because 72,(0)) = 0 = 7£,(0)). Now, we assume the following
inductive hypothesis:

for all s € S, s € 78,(0) iff sat(s, eu(v1,12)) € T, (0) (1)

and we prove that, for all s € S, s € 7251 (0) iff sat(s, eu(ir,12)) € TE, (D).
We have that:
s ey (0)

iff either IC,s = 1o (by def. of Tgy)
or K, s = 11 and there exists a state s’ € S such that
(s,8") € R and s’ € 78,(0) (by def. of Tgy)
iff either sat(s,v2) € TE,(0) (by (11))
or sat(s, 1) € T, (0) and there exists a state s’ € S such that
(s,8') € R and sat(s', eu(1,) € Ty (0) (by (1))
iff there exists a clause v € P such that:
either
(i)~ is of the form sat(s,eu(t1,12)) < sat(s,12), and
(i) sat(s, o) € TE,(0) (TE,(0) is a model of Pgy)

or there exists a state s’ € S such that:
(i) v is of the form sat(s, eu(i1,12)) « sat(s, 1) At(s,s") A

182

sat(s', eu(P1,19)),
(i) sat(s,y1) € TE(D),
(ili) t(s,s’) € T, (D), and

(iv) sat(s', eu(tr,2)) € TE, (D) (by definition of Pgy and
TE,(0) is a model of Pey)
iff sat(s, eu(i1,12)) € T, (0) (T8, (0) is a model of Pey)

Case 6. (¢ is EG(¢)))

In order to prove this case we make use of the following Proposition A.3 [27]. Let
K = (8,80, R,\) be a Kripke structure and K' = (S, S}, R’, \') be the Kripke
structure obtained from K as follows: &' = {s € S| K,s E ¢}, S = {s € So |
IC,S E 1!1}, R =R |3/><5/, and N = \ |S"

Proposition 4. K, s F EGv iff (i) s; € S’, and (ii) there exists a path in K’ that
leads from s1 to some node s; in a nontrivial strongly connected component of
the graph (S, R').

Now, let us consider the program Py constructed as indicated at the begin-
ning of this section. We prove that conditions (i) and (ii) of Lemma 4] hold iff
sat(s, eg(1)) € M(Pe):
sat(s1, eq(v))) € M(Px) iff (by Rule 8)
there exists a state s, € S’ such that
{ satpath(s1, sk,), satpath(sg,sg,v) } C M(Pc) iff (by def. of Px)
{ satpath(sy, sk,) < sat(s1,v) A tr(si,s2) A satpath(se, sk,),
satpath(sa, sk,) < sat(s2, V) A tr(sa, s3) A satpath(ss, sk, V),

satpath(sk—a, Sk, V) < sat(sg—2,1) A tr(sg—2,Sk—1) A
satpath(sg—1, Sk, V),
satpath(sg—1, sk, V) < sat(sg—1,v¢) A tr(sg—1,5,) } C P¢ iff
the following conditions holds:
(a) { sat(s1,v),sat(s2,v),.. ., sat(sp-1,¥) } S M(Pk) (by (1))
(b) { tr(s1,82),...,tr(sk—1,8%) } C M(Px) (by def. of Px)
(c) { satpath(sg,sk,v) } € M(Pxr)
iff the following conditions holds:
(a) { sat(s1,v),sat(s2,v),..., sat(sp-1,¥) } S M(Pk) (by (1))
(b) { tr(s1,s2),...,tr(sk—1,s%) } C M(Px) (by def. of Px)
(c) { satpath(sg, sk, V) < sat(sk,) A tr(sg, Sk,) A
satpath(sg, , Sk, V),
satpath(sg,, Sk, V) < sat(Sk,, ¥) A tr(Sk,, Sky) A

183

satpath(sg,, Sk, V),

satpath(sg, o, Sk, V) < sat(Sg, o, ¥) A tr(Sg, oy Sk,_y) A
satpath(sg, .y, Sn, V),
satpath(sg, ., Sk, V) < sat(sg, ,,) A tr(sg, ,.sk) }C P
iff the following conditions holds:

(a) {sat(s1,v),sat(s2,9), ..., sat(sg-1,¢)} S M(Px) (by (1))
(b) {tr(s1,s2),...,tr(sg—1,s%)} € M(Px) (by def. of Px)
(Cl) {Sat(sklvw)v Sat(3k27 1/})7 R Sat(sknflaw)} - M(PIC) (())
(c2) {tr(Sky Sky)y tT(Skys Sk)s -« s t7(Skyy_y» Sk) } © M (Pxc) (by def. of Px)
iff there exists a path m = s1,...,s; of length £ > 1 and s; belongs to

a nontrivial strongly connected component of (S', R'). O

Now we prove Theorem [9}

Let IT be the program II,UIL,. We need the following notation. Given a set P of
predicate symbols and a set M of atoms, we define M|p to be the set {A € M |
the predicate of A is in P}.

(if. Soundness) Let M be an answer set of II. Recall that o is of the form
(f,T,lo,dp). Let us consider a command C of the form: x;:=lp;...;x:=lp; y:=
do; do Py [... [Py od, where for i = 1,...,k, (xi=ilay=d — x;:=0;y:=d') is
in P; iff gc(i,l,d,l',d") € M.

We have the following two properties of C.

(CP1) For ¢ = 1,...,k, every guarded command in P; is of the form x; =
Iny=d — x;:=1; y:=d with (I,d) # (I',d'). Indeed, M is a model of II,
and, in particular, of the ground facts defining the predicate candidates (see

Definition .

(CP2) For i =1,...,k, the guards of any two guarded commands of process P;
are mutually exclusive. Indeed, the following holds. By Proposition [3| I, is
HEF. Hence, by Rule 2.1, for every [€ £ and d € D, at most one atom of the
form gc(1,1,d,1’,d") belongs to M. Since M is a supported model [2I], by Rule
2.4, fori = 2,..., k, we get that ge(i, 1, f(d),U, f(d)) € M iff ge(i—1,1,d,l',d) €
M. By using this fact we get that, for ¢ = 1,...,k, for every [€ £ and d € D,
at most one atom of the form gc(i,1,d,l’,d") belongs to M.

By Properties (CP1) and (CP2), C' is a k-process concurrent program (see Def-
inition [10)).

Now, we prove that: (i) C satisfies ¢ and (ii) C' is symmetric w.r.t. o.

184

Point (i). Let K = (S,Sp, R, \) be the Kripke structure associated with C,
constructed as indicated in Definition [[2]and Px be the encoding of K. We have
that:
M is an answer set of II
iff M is an answer set of II — {<— not sat(so,)} and sat(so,) € M
(by def. of integrity constraint)

iff M = M(IL, — {< not sat(sg,)} U
M ‘ {gc,enabled,disabled,reachable,tr,candidates,perm})
(by def. of I, UII,)

it M = M(Pk) UM |{gc,enabled,disabled,reachable,tr,candidates,perm})
(by def. of Px)
it M |{sat,5atpath,tr,elem}: M(Pk)
Since sat(s,) € M, we obtain that sat(s,p) € M(Py) and, thus, K, s F .

Point (ii). By construction, C' is of the form x;:= lp;...; %k := lo;y = do;
do Pi|...[P od. Let us now prove that Conditions (i) and (ii) of Definition [L5]
hold.

For all ge(i,l,d,l',d") € M we have that the pair (I',d') belongs to the list L
which is the third argument of candidates(l,d,L). By Point (i) of Definition
for every pair (I, d’) in L we have that (I,I') € T and, therefore, C satisfies
Condition (i) of Definition

Since M is a supported model of ground(II)™ and Rule 1.4, for 1 < i < k,
is the only rule in II whose head is unifiable with gc(i,1,d,l’,d") we have that
ge(i — 1,1,d,l',d") € M iff ge(i,l, f(d),l', f(d')) € M. Thus, Condition (ii) of
Definition [15]| holds for C' because f is a permutation of order k.

(only if. Completeness) Let C' be a k-process concurrent program which sat-
isfies ¢ and is symmetric w.r.t. o, and K be the Kripke structure (S,Sp, R, \)
associated with C whose processes are Py, ..., P;. We have to prove that there
exists an answer set M € ans(Il, UII,) which encodes C. Let M be defined as
follows.

M = {reachable(s) | s€S} (M.1)
U {tr(s,s') | (s,s') € R} (M.2)

U {ge(i,,d,lI',d) | (xi=lay=d — x;:=l;y:=d)
isin Pal<i<k} (M.3)

U {enabled(i,l,d) | 3U',d (xi=lany=d — x;:=1";y:=d)

185

isin Pial<i<k} (M.4)
U {disabled(1,s(x1),s(y)) | s € Sa
=3e (x1=s(x1)ay=s(y) = c¢) isin P} (M.5)
{sat(s,¢) | s€eSAK,sE Y} (M.6)
U {satpath(so, sn,®) | 3(s0,...,Sn)
Vi (0<i<n—K,s; Ev) } (
{elem(p,s) | seSape(s)} (
{perm(d,d') | d,d' €D A f(d) =d'} (
U {candidates(l,d, L(l,d)) < | leLAd €D} (

C

C C

where L(l,d) is any list representing the set {(I',d') | ({,I')eT A d' €D a (l,d)#
(I',d")} of pairs.

By M.3 and Definition 4.4 we have that M encodes C'. Now we prove that M
is an answer set of II, that is, (i) M is a model of ground(Il, UIL,)™ and (ii)
M is a minimal such model.

(i) We prove that for every rule r € ground(I1,UIL,)™ if B¥(r) C M then H(r)N
M # (). We proceed by cases. Let us first consider the rules in ground(Il,).

(Rule 1.1) Assume that r is enabled(1, 1, d)vdisabled(1, 1y, d) < reachable({l1, .. .,
li,d)). If reachable({ly, ..., 1, d)y) € M then, by M.1, we have that (l1,... I, d) €
S. Since R is a total relation, either P; is enabled in (I3, ...,l;,d) and conse-
quently, by M.4, enabled(1,11,d) € M, or it is not enabled and thus, by M.5,
disabled(1,11,d) e M.

(Rule 1.7, 4 > 1) Assume that r is enabled(i,l, d)«+ gc(i,1,d, ", d"). If gc(i,1,d, 1,
d') e M then, by M.3, (x;=Iay=d—x;:=0";y:=d') is in P;, and consequently,
by M.4, enabled(i,l,d) e M.

(Rule 2.1) Assume that r is gc(1,1,d,l1,d1)v ... v gc(1,1,d,lp, dn) < enabled(1,
l,d)n candidates(l,d, [(l1,d1), ..., {lm,dm)]) for some m>1. If enabled(1,1,d) €
M then, by M.4, there exists in P; a guarded command whose guard is x; =
I Ay = d and the associated command is encoded as a pair (I’,d') occurring in
the third argument of candidates(l,d, [(l1,d1),..., (lm,dm)]). Hence, by M.3,
we have that gc(1,1,d,l',d") e M.

(Rule 2.7, ¢ > 1) Assume that r is gc(i, 1, e,U',€') + ge(i—1,1,d,l',d") A perm(d, €)
Aperm(d’,€’), with ¢ > 1. By Definition [15| we have that (x; =Iay= f(d) —x;:=
Usy = f(d)) is in P iff (xi-1 =Iay=d —x-1:=1;y:=d') is in P,_y and,
therefore, if gc(i—1,1,d,l',d") € M, f(d) = e, and f(d') = €' then, by M.3,
ge(iylye ' e)ye M.

186

(Rule 3.1) Assume that r is reachable(sg) < . Since sp € S, we have that by
M .1, reachable(sg) € M.

(Rule 3.2) Assume that r is reachable({l1,. .. lg, d)) < tr({l},... 05, d"), (i1, ..,
l,d)). If we have that tr({(l,....l,d), (li,...,lg,d)) € M then, by M.2,
«n,... 0. dYy, (l,...lg,d)) € R. Thus, (l1,...,ly,d) € S and consequently,
by M.1, reachable((l1, ... i, d)) € M.

(Rule 4.1-4.k) Assume that r is tr(s,t) < reachable(s)a gc(i,l,d,l',d"), with
s(x;) =1, s(y)=d, t(x;) =, and t(y)=d'. If {reachable(s), gc(i,l,d,l';d")} C M
then s€S and there exists a guarded command of the form (x; =Iany=d—x;:=
I';y:=d') in P;. Thus, by Definition (s,t) € R and consequently, by M.2,
we get that tr(s,t)e M.

(Rule 5) Assume that r is <« reachable({l1,...,lk,d)). We show that reach-
able({l1, ... lp,d)) & M. Let us assume, by contradiction, that reachable({ly, ...,
lg,d)) € M and, thus, by M.1, (l1,...,lx,d) € S. Since R is total, for every
reachable state s, there exists a process P; which is enabled in s, that is, by
M .4, enabled(i,l;,d) € M, contradicting the hypothesis that r € ground(Il,)™,
that is, for all i € {1,...,k}, enabled(i,l;,d) & M.

Now we consider the rules in ground(IL,).

(Rule 1) Since C' satisfies ¢, by M.6 we have that sat(sg,) € M and, hence,
{+ not sat(so,)} = 0. Thus, no rule of ground(Il,)™ is obtained from
Rule 1 by the Gelfond-Lifschitz transformation.

(Rules 2-8) Let Px be the encoding of K. By definition M.6 = {sat(s,1)) |
seSAK,sFE ¢}. Moreover, by Lemma [I| we have that, for all s € S and CTL
formulas 1, if K, s F 9 then sat(s, 1) € M(Px). Thus, M.2UM.6UM.TUM.8 =
M (Px) is a model of Rules 2-8.

(Rule 9) Assume that r is satpath(s,t,v) < sat(s,¢)atr(s,t). Assume that
{sat(s,), tr(s,t)} € M. Then, K,s F 1 and (s,t) € R hold. Hence, by M.7,
we have that satpath(s,t,v) € M.

(Rule 10) Assume that 7 is satpath(ug, un,) < sat(ug,) Atr(ug,ur) A sat-
path(uy, un,). Assume that {sat(ug,)), tr(ug,u1), satpath(uy,u,,¥)} C M.
Then, K, uy F ¥, (up,u1) € R, and there exists a finite path (uq,...,uy), with
n>1, such that for all 1<i<n, K, u; E . Thus, by M.7, satpath(ug, un,)€ M.

(i) We have to prove that M is a minimal (w.r.t. set inclusion) model of
ground(T1)™. We prove it by contradiction. Let us assume that M’ is a model
of ground(I1)M such that M’ C M. Let z be a ground atom in M —M’. We
proceed by cases.

187

(Case A) Assume that z is gc(i,l,d,l’,d’). Thus, by M.3, there exists a guarded
command in C' whose encoding does not belong to M’, and consequently, M’
does not encode C.

(Case B) For every s € S, we define h(s) to be the least integer k>0 such that
Reach(sq, s) holds. Assume that z is reachable(s). Without loss of generality,
we may assume that s is a state such that Vr €S if reachable(r) € M—M’, then
h(r)>h(s). We have the following two cases.

(Case B.1) s = s9. We get a contradiction from the fact that M’ is a model of
ground(I1)M and, thus, M’ satisfies Rule 3.1.

(Case B.2) s # s9. We have that there exists no t € S such that tr(t,s) € M’
(otherwise, since M’ satisfies Rule 3.2, we would have reachable(s) € M'). Take
any t € S such that Reach™®~1(sq,t). Since M’ satisfies Rules 4.1-4.k and
tr(t,s) & M', one of the following two facts holds.

FEither (B.2.1) reachable(t) ¢ M'. By M.1 we have that reachable(t) € M, and
thus, reachable(t) € M —M’. Since h(t) <h(s), we get a contradiction with the
assumption that Vr € S if reachable(r) € M —M’, then h(r)>h(s).

Or (B.2.2) there exists no process i such that ge(i, t(x;), t(y), s(xi), s(y)) € M.
Therefore, the proof proceeds as in Case (A).

(Case C) Assume that z is enabled(i, [, d). Since M’ satisfies Rule 1.7, there exist
no !’ and d’, such that gc(i,1,d,l’,d") € M'. Therefore, the proof proceeds as in
Case (A).

(Case D) Assume that z is disabled(1,1,d). By M.4 and M.5, we have that
enabled(1,1,d) ¢ M. Since M' satisfies Rule 1.1, one of the following two facts
hold.

Fither (D.1) No atom of the form reachable((l,ls,...,lx,d)) belongs to M.
Therefore, the proof proceeds as in Case (B).

Or (D.2) enabled(1,1,d) belongs to M’. Therefore, we get a contradiction with
the facts that M’ C M and enabled(1,1,d) & M.

(Case E) Assume that z is tr(t,s). Since M’ satisfies Rules 4.1-4.k, one of the
following two facts hold.

Fither (E.1) reachable(t) & M'. Therefore, the proof proceeds as in Case (B).
Or (E.2) There is no process i such that ge(i, t(x;), t(y), s(x;), s(y)) € M'. There-
fore, the proof proceeds as in Case (A).

(Case F) Assume that z has one of these forms: sat(s, 1), or satpath(s,t,1)), or
elem(s,p). By M.6, M.7, M.8, and Lemma we have that M| satpath, clem, tr}

is the least Herbrand model of ground(Il,)™ U M| (tr}- Now, since M’ is an

188

M5
Herbrand model of ground(Il,)™ U M|y, we get that M|{¢ satpath,etem,tr} S
M’, thereby contradicting the assumption that z € M —M’. O

Proof of Theorem

Let |ground(Il)| denote the size (that is, the number of rules) of ground(II).
We have that |ground(IT)| is O(|L|?* - |DJ3 - |¢|), where k> 1. Moreover, since
program II, is an HEF (see Proposition logic program, II, can be transformed
into a normal logic program II? such that ans(Il,) = ans(II). We have that
|ground(I12)| = a1 + as + |ground(Il,)|, where a; depends on the number of
the ground instances of Rule 1.1 and oy depends on the number of the ground
instances of Rule 2.1. Now we have that: (i) oy is at most |£|* - |D| (indeed, the
ground instances of Rule 1.1 are at most |£|* - |D|), and (ii) ag is O(|£|? - |D|?)
(indeed, the ground instances of Rule 2.1 are at most |£|-|D|, and in any instance
of Rule 2.1 the value of m is at most |£| - |D]). Thus, a; + az is O(|L|* - |D|?)
and |ground(IT™)| is O(|L|?* - D3 - |¢)]).

Given a set I of ground atoms, (i) to compute ground(IT")! takes linear time
w.r.t. |ground(II™)|, (ii) to generate the minimal model M of ground(I1")! takes
linear time w.r.t. |ground(I1")?|, and (iii) to check whether or not I = M also
takes linear time w.r.t. |ground(II")!| (for more information on these results the
reader may refer to [129]). Hence, to verify whether or not a given set of ground
atoms is an answer set of II takes linear time w.r.t. |ground(II")|. Thus, the
verification that I is an answer set of Il takes exponential time w.r.t. k, linear
time w.r.t. ||, and polynomial time w.r.t. £ and w.r.t. D.

Now, the choice of a candidate answer set I can be done by: (i) choosing, for
each (I,d) € L x D, at most one ground atom in the set {gc(1,1,d,l’,d") | (I,I) €
Tad € Da(l,d) # (I',d)}, (ii) computing in O(k) time a ground atom of the
form gc(i,...), for i = 2,...,k, (iii) computing in O(|L|?* - |D|? - |p|) time the
ground instances of the rules in I, where the truth values of the gc atoms are
fixed as indicated at Steps (i) and (ii), thereby obtaining a stratified program,
and (iv) finally, computing in O(|£|3*-|D|3-|¢|) the unique stable model of that
stratified program.

Since Step (i) can be done in nondeterministic polynomial time w.r.t. |£| x|D],
we get the thesis. O

189

CHAPTER 6

Source code

In this section we list the source code used to synthesize 2-mutez-1 with claspD
(Program (2) in Table [4.1).

The disjunctive logic program
property

DLP
IIO

encoding a structural

This program is the encoding of the program II, of the Definition for k=2
where rules 2.1-2.2 have been obtained by unfolding the definition of candidates

and perm.

1 enabled(1,X1,Y) | disabled(1,X1,Y):- reachable(X1,X2,Y).

2 enabled(2,X2,Y) :- gc(2,X2,Y,X2p,Yp).

3

4 gc(1,t,Y,w,0) | gc(1,t,Y,w,1) |
enabled(1,t,Y).

5 gc(l,w,0,w,1) | gc(1,w,0,w,2) |

6 gc(1,w,0,u,0) | gc(l,w,0,u,1) |
enabled(1,w,0).

7 gcl,w,1,w,0) | gc(l,w,1,w,2) |

8 gc(l,w,1,u,0) | gc(l,w,1,u,1) |
enabled(1,w,1).

9 gc(l,w,2,w,0) | gc(l,w,2,w,1) |

10 gc(l,w,2,u,0) | gc(l,w,2,u,1) |

enabled(1,w,2).

gc(1,t,Y,w,2):

gc(1,w,0,u,2):

gc(l,w,1,u,2):

gc(1,w,2,u,2)

191

11 gec(l,u,Y,t,0) | ge(l,u,Y,t,1) | gc(l,u,Y,t,2):-
enabled(1,u,Y).

12 gc(2,X2,Z,X2p,Zp) :- gc(1,X2,Y,X2p,Yp), perm(Y,Z),
perm(Yp,Zp) .

13

14 reachable(X1,X2,Y) :- s0(X1,X2,Y).

15 reachable (X1p,X2p,Yp) :- reachable(X1,X2,Y),
tr(X1,X2,Y,X1p,X2p,Yp) .

16

17 tr(X1,X2,Y,X1p,X2,Yp) : - reachable(X1,X2,Y),
gc(1,X1,Y,X1p,Yp) .

18 tr(X1,X2,Y,X1,X2p,Yp) :- reachable(X1,X2,Y),
gc(2,X2,Y,X2p,Yp) .

19

20 :— reachable(X1,X2,Y), not enabled(1,X1,Y), not
enabled(2,X2,Y).

where: (i) variables X1,X2 X1p, and X2p range over £ = {t,w,u}, (ii) vari-
ables Y, Yp, and Z range over £ = {0,1,2}, (iii) the 2-generating function fo=
{(0,1),(1,0),(2,2)} is encoded by the following facts perm(0,1), perm(1,0)
and perm(2,2). (iv) the initial state is encoded by s0(t,t,0). Note that the lo-
cal transition relation T = {(t,w), (w,w), (w,u), (u, t)} is directly embedded into
the guarded commands for process P;.

The logic program 11, encoding a behavioural property

This program is the encoding of the program II, of the Definition [18|

1 sat(X1,X2,Y,local(pl,X1)) :- elem(local(pl,X1),X1,X2,Y).

2 sat(X1,X2,Y,local(p2,X2)) :- elem(local(p2,X2),X1,X2,Y).

3 sat(X1,X2,Y,shared(Y)) :- elem(shared(Y),X1,X2,Y).

4 sat(X1,X2,Y,n(F)) :- not sat(X1,X2,Y,F), dpn(F)), 1(X1),
1(X2), 4.

5 sat(X1,X2,Y,0(F,G)) :- sat(X1,X2,Y,F), dp(o(F,G)).

6 sat(X1,X2,Y,0(F,G)) :- sat(X1,X2,Y,G), dp(o(F,Q)).

7 sat(X1,X2,Y,a(F,G)) :- sat(X1,X2,Y,F), sat(X1,X2,Y,G),
dp(a(F,G)).

8 sat(X1,X2,Y,ex(F)) :- tr(X1,X2,Y,X1p,X2p,Yp),
sat (X1p,X2p,Yp,F), dp(ex(F)).

192

10

11

12

13

14

15

sat(X1,X2,Y,eu(F,G)) :- sat(X1,X2,Y,G), dp(eu(F,G)).
sat(X1,X2,Y,eu(F,G)) :- sat(X1,X2,Y,F),
tr(X1,X2,Y,X1p,X2p,Y), sat(X1p,X2p,Y,eu(F,G)),
dp(eu(F,G)).
sat(X1,X2,Y,ef(F)) :- sat(X1,X2,Y,F), dp(ef(F)).
sat(X1,X2,Y,ef(F)) :- tr(X1,X2,Y,X1p,X2p,Yp),
sat (X1p,X2p,Yp,ef (F)), dp(ef(F)).
sat(X1,X2,Y,eg(F)) :- satpath(X1,X2,Y,X1p,X2p,Yp,F),
satpath(X1p,X2p,Yp,X1p,X2p,Yp,F), dp(eg(F)).
satpath(X1,X2,Y,X1p,X2p,Yp,F) :- sat(X1,X2,Y,F),
tr(X1,X2,Y,X1p,X2p,Yp), dp(eg(F)).
satpath(X1,X2,Y,X1p,X2p,Yp,F) :- sat(X1,X2,Y,F),
tr(X1,X2,Y,X1pp,X2pp,Ypp) ,
satpath(X1pp,X2pp, Ypp,X1p,X2p,Yp,F), dp(eg(F)).

where: (i) variables X1,X1p,X1pp,X2, and X2p range over £ = {t,w,u}, (ii)
variables Y, Yp, and Z range over £ = {0, 1,2}, (iii) variables F and G range over
the term encoding the formula ¢ and its subterms, and (iv) predicate dp encodes

the domain predicate which restricts the domain of variables F and G.

As an example we list: (i) the domain predicates (lines 1-5), (ii) the elemen-
tary properties (lines 8-9), and (iii) the integrity constraint (line 10) needed to
ensure that processes P; and P, obtained by using IT = T4 U IL,, enjoy the
mutual execution property.

© 00 ~J O T i W N~

—
o

dp(n(ef (n(n(a(local(pl,u),local(p2,u))))))).
dp(ef(n(n(a(local(pl,u),local(p2,ul)))))).
dp(n(n(a(local(pl,u),local(p2,u))))).
dp(n(a(local(pl,u),local(p2,u)))).
dp(a(local(pl,u),local(p2,u))).

elem(local(pl,u),u,X2,Y) :- 1(X2), d(Y).
elem(local(p2,u),X1,u,Y) :- 1(X1), d(Y).

:— not

sat (X1,X2,Y,n(ef (n(n(a(local(pl,u),local(p2,u))))))),

s0(X1,X2,Y).

Note that the integrity constraint at line 10 is the encoding or Rule 1 of the
Definition

193

Conclusions

The first contribution of this thesis concerns the design of a general verifica-
tion framework and its implementation to perform software model checking of
imperative programs.

We have considered program transformation and constraint logic programming
(or, equivalently, constrained Horn clauses) as foundational building blocks to
define the verification framework.

Although the approach based on CLP program transformation shares many
ideas and techniques with abstract interpretation and automated theorem prov-
ing, we believe that it has some distinctive features that make it quite appealing.

Let us point out some advantages of the techniques for software model check-
ing which, like ours, use methodologies based on program transformation and
constraint logic programming.

1. The approach is parametric with respect to the program syntax and se-
mantics, because interpreters and proof systems can easily be written in
CLP, and verification conditions can automatically be generated by spe-
cialization. Thus, transformation-based verifiers can be easily adapted to
the changes of the syntax and the semantics of the programming languages
under consideration and also to the different logics where the properties of
interest are expressed.

2. Program transformation provides a uniform framework for program anal-
ysis. Indeed, abstraction operators can be regarded as particular general-
ization operators and, moreover, transformation-based verification can be
easily combined to other program transformation techniques, such as pro-
gram slicing, dead code elimination, continuation passing transformation,
and loop fusion.

3. By applying suitable generalization operators we can guarantee that trans-
formation always terminates and produces an equivalent program with re-

195

spect to the property of interest. Thus, we can apply a sequence of trans-
formations, thereby refining the analysis to the desired degree of precision.

Indeed, in this thesis we have shown that one can construct a framework where
the generation of verification conditions and their verification can both be viewed
as program transformations.

Let us summarize here the main contributions of this thesis with regard to
program verification.

(i) The adaptation and the integration of various techniques for specializ-
ing and transforming constraint logic programs into a general verification
framework which is parametric with respect to the various syntaxes and
semantics of the programming languages under consideration and also to
the various logics in which the properties of interest may be expressed.
This adaptation has required the customization of general purpose unfold-
ing and generalization strategies to the specific task of specializing the
interpreter of the programming language under consideration, as well as
the programs derived from the interpreter in subsequent iterations of the
method. In particular, we have adapted to our context suitable strategies,
based on operators often used in static program analysis such as widen-
ing and convex-hull, for the automatic discovery of loop invariants of the
imperative programs to be verified.

(ii) The implementation of our method into a prototype automatic tool, called
VeriMAP, based on the CIL tool [II5] and the MAP transformation sys-
tem [108]. The current version of the VeriMAP tool can be used for verifying
partial correctness properties of C programs that manipulate integers and
arrays.

(iii) We have considered a significant fragment of the C Intermediate Language,
and we have shown, through an extensive experimental evaluation on a large
set of examples taken from different sources, that our approach, despite its
generality, is also effective and efficient in practice.

The second contribution of this thesis is a synthesis framework based on An-
swer Set Programming (ASP), for the synthesis of concurrent programs satis-
fying some given behavioural and structural properties. Behavioural properties
are specified by formulas of the Computational Tree Logic (CTL) and structural
properties are specified by simple algebraic structures. The desired behavioural
and structural properties are encoded as logic programs which are given as in-
put to an ASP solver which, then, computes the answer sets of those programs.
Every answer set encodes a concurrent program satisfying the given properties.

196

Possible developments and directions for future research

In the future we intend to develop, within the general framework based on CLP
transformation, verification techniques that support other language features,
including recursive function calls, concurrency, and more complex data types,
such as pointers. These extensions require the enrichment our framework by
considering some more theories, besides the theory of arrays, so that one can
prove properties of programs manipulating dynamic data structures such as lists
or heaps, by using for a set of suitable constraint replacement rules based on
those theories. We think that an approach similar to the one we have used
to handle array programs could be able to deal with different, more complex
data structures. For some specific theories we could also apply the constraint
replacement rule by exploiting the results obtained by external theorem provers
or Satisfiability Modulo Theory solvers. As a further line of future research, we
plan to explore the application of our method to (universal) termination proofs
of imperative programs.

For what concerns our implementation of the verification framework, we have
that the current version of VeriMAP is limited to deal with partial correctness
properties of a subset of the C language. Moreover, the user is only allowed to
configure the transformation strategies by selecting different submodules for un-
folding, generalization, constraint solving, and replacement rules. Future work
will be devoted to extend the VeriMAP tool towards a more flexible tool that
enables the user to configure other parameters, such as: (i) the programming
language and its semantics, (ii) the properties and the proof rules for their ver-
ification (thus generalizing an idea proposed in [74]), and (iii) the theory of the
data types. Since program transformation essentially is a compilation technique,
we believe that its use, together with a careful design of the parameters men-
tioned at Points (i)—(iii), can be a key factor in the automated generation of
scalable program verifiers.

For what concerns our implementation of the synthesis framework, we ob-
served that, in practice, it works for synthesizing k-process concurrent programs
with a limited number k of processes because the grounding phase needed to
compute the answer sets, requires very large memory space for large values of
k. As a future work we plan to explore various techniques for reducing both the
search space of the synthesis procedure and the impact of the grounding phase
on the memory requirements.

197

Bibliography

1]

P. A. Abdulla, G. Delzanno, N. Ben Henda, and A. Rezine. Regular model
checking without transducers (On efficient verification of parameterized
systems). In Proceedings of the 13th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 07,
Lecture Notes in Computer Science 4424, pages 721-736. Springer-Verlag,
2007.

E. Albert, M. Gémez-Zamalloa, L. Hubert, and G. Puebla. Verification
of java bytecode using analysis and transformation of logic programs. In
Practical Aspects of Declarative Languages, PADL 07, Lecture Notes in
Computer Science 4354, pages 124-139. Springer, 2007.

F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina.
SAFARI: SMT-based abstraction for arrays with interpolants. In Proceed-
ings of the 24th International Conference on Computer Aided Verifica-
tion, CAV ’12, Lecture Notes in Computer Science 7358, pages 679-685.
Springer, 2012.

E. De Angelis, A. Pettorossi, and M. Proietti. Synthesizing concurrent pro-
grams using answer set programming. Fundamenta Informaticae, volume
120, number 3-4, pages 205-229, 2012.

K. R. Apt. Introduction to logic programming. In Handbook of Theoretical
Computer Science, pages 493-576. Elsevier, 1990.

K. R. Apt and R. N. Bol. Logic programming and negation: A survey.
Journal of Logic Programming, 19, 20:9-71, 1994.

199

7]

[13]

[16]

200

P. C. Attie and E. A. Emerson. Synthesis of concurrent systems with
many similar processes. ACM Transactions on Programming Languages
and Systems, 20:51-115, January 1998.

P. C. Attie and E. A. Emerson. Synthesis of concurrent programs for an
atomic read/write model of computation. ACM Transactions on Program-
ming Languages and Systems, 23:187-242, 2001.

T. Ball, V. Levin, and S. K. Rajamani. A decade of software model check-
ing with SLAM. Commun. ACM, 54(7):68-76, 2011.

C. Baral. Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, 2003.

N. Bensaou and I. Guessarian. Transforming constraint logic programs.
Theoretical Computer Science, 206:81-125, 1998.

D. Beyer. Second competition on software verification (Summary of SV-
COMP 2013). In Proceedings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 13,
Lecture Notes in Computer Science 7795, pages 594-609. Springer, 2013.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant
synthesis for combined theories. In Proceedings of the 8th International
Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI ’07, Lecture Notes in Computer Science 4349, pages 378-394.
Springer, 2007.

R. S. Bird. An introduction to the theory of lists. In Proceedings of the
NATO Advanced Study Institute on Logic of programming and calculi of
discrete design, pages 5—42. Springer-Verlag New York, Inc., 1987.

N. Bjgrner, A. Browne, and Z. Manna. Automatic generation of invari-
ants and assertions. In Proceedings of the 1st International Conference
on Principles and Practice of Constraint Programming, CP 95, Lecture
Notes in Computer Science 976, pages 589—-623. Springer, 1995.

N. Bjgrner, K. McMillan, and A. Rybalchenko. Program verification as
satisfiability modulo theories. In Proceedings of the 10th International
Workshop on Satisfiability Modulo Theories, SMT-COMP ’12, volume 20
of EPiC Series, pages 3—11. EasyChair, 2013.

[17]

[19]

[20]

[21]

[22]

N. Bjgrner, K. McMillan, and A. Rybalchenko. On solving universally
quantified horn clauses. In Proceedings of the 20th International Sym-
posium on Static Analysis, SAS ’13, Lecture Notes in Computer Science
7935, pages 105-125. Springer, 2013.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embedded
software. In The Fssence of Computation, Lecture Notes in Computer
Science 2566, pages 85—108. Springer, 2002.

P. Bonatti, F. Calimeri, N. Leone, and F. Ricca. Answer Set Program-
ming. In A 25-Year Perspective on Logic Programming, Lecture Notes in
Computer Science 6125. Springer, 2010.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In Proceedings of the 7th International Conference on
Verification, Model Checking, and Abstract Interpretation. VMCAI 06,
Lecture Notes in Computer Science 3855, pages 427-442. Springer, 2006.

S. Brass and J. Dix. Characterizations of the Stable Semantics by Partial
Evaluation. In Logic Programming and Nonmonotonic Reasoning, Lecture
Notes in Computer Science 928, pages 85-98. Springer, 1995.

M. Bravenboer and Y. Smaragdakis. Strictly declarative specification of
sophisticated points-to analyses. In Proceedings of the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 09, pages 243-262. ACM, 2009.

D. R. Brough and C. J. Hogger. Grammar-related transformations of logic
programs. New Generation Computing, 9(1):115-134, 1991.

R. M. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1):44—67, January 1977.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logics of Programs,
Lecture Notes in Computer Science 131, pages 52-71. Springer, Berlin,
1982.

201

[26]

[30]

33]

[34]

202

E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512-1542, 1994.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model
checking. In Proceedings of Logic in Computer Science, LICS ’89, pages
353-362. IEEE Computer Society, 1989.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In Proceedings of the 12th International
Conference on Computer Aided Verification, CAV ’00, Lecture Notes in
Computer Science 1855, pages 154-169. Springer, 2000.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fix-
points. In Proceedings of the 4th ACM-SIGPLAN Symposium on Princi-
ples of Programming Languages, POPL 77, pages 238-252. ACM, 1977.

P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM-SIGPLAN Symposium on Principles
of Programming Languages, POPL 79, pages 269-282. ACM Press, 1979.

P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor
for fully automatic and scalable array content analysis. In Proceedings
of the 38th ACM Symposium on Principles of programming languages,
POPL ’11, pages 105-118. ACM, 2011.

P. Cousot, R. Ganty, and J-F. Raskin. Fixpoint-Guided Abstraction Re-
finements. In Proceedings of the 14th International Symposium on Static
Analysis, SAS °07, Lecture Notes in Computer Science 4634, pages 333—
348. Springer, 2007.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proceedings of the 5th ACM Symposium
on Principles of Programming Languages, POPL 78, pages 84-96. ACM,
1978.

B. Cui and D. S. Warren. A system for tabled constraint logic program-
ming. In Proceedings of the 1st International Conference on Computational

[37]

[38]

[39]

[40]

[42]

Logic, CL ’00, Lecture Notes in Artificial Intelligence 1861, pages 478-492.
Springer-Verlag, 2000.

D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive
systems. ACM Transactions on Programming Languages and Systems,
19(2):253-291, 1997.

E. De Angelis. Software Model Checking by Program Specialization. In
Technical Communications of the 28th International Conference on Logic
Programming, ICLP 12, volume 17 of LIPIcs, pages 439-444, 2012.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Software
Model Checking by Program Specialization. In Proceedings of the 9th Ital-
ian Convention on Computational Logic, CILC ’12, pages 89-103. CEUR-
WS, 2012.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Specialization
with constrained generalization for software model checking. In Proceed-
ings of the 22nd International Symposium Logic-Based Program Synthesis
and Transformation, LOPSTR ’12, Lecture Notes in Computer Science
7844, pages 51-70. Springer, 2013.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verification
of imperative programs by constraint logic program transformation. In Se-
mantics, Abstract Interpretation, and Reasoning about Programs: FEssays
Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday,
SAIRP ’13), Electronic Proceedings in Theoretical Computer Science, vol-
ume 129, pages 186-210, 2013.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verification
of imperative programs through transformation of constraint logic pro-
grams. In Proceedings of the 1st International Workshop on Verification
and Program Transformation, VPT 13, volume 16 of EPiC Series, pages
30-41. EasyChair, 2013.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying
Programs via Iterated Specialization. In Proceedings of the ACM SIG-
PLAN 2018 Workshop on Partial Evaluation and Program Manipulation,
PEPM ’13, pages 43-52, New York, NY, USA, 2013. ACM.

203

[43]

[44]

204

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying
Programs via Iterated Specialization. Technical Report 11, TASI-CNR,
Roma, Italy, 2013.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying
Array Programs by Transforming Verification Conditions. In Proceedings
of the 15th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI 1/, Lecture Notes in Computer Science
8318, pages 182-202. Springer, 2014.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. VeriMAP:
A Tool for Verifying Programs through Transformations. In Proceedings
of the 15th 20th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems TACAS ’14, Lecture Notes in
Computer Science 8413, pages 568-574. Springer, 2014. To appear.

E. De Angelis, A. Pettorossi, and M. Proietti. Using answer set program-
ming solvers to synthesize concurrent programs. Technical Report 19,
ITASI-CNR, Roma, Italy, 2012.

L. M. de Moura and N. Bjgrner. Z3: An efficient smt solver. In Pro-
ceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS ’08, Lecture Notes in
Computer Science 4963, pages 337-340. Springer, 2008.

D. De Schreye, R. Gliick, J. Jgrgensen, M. Leuschel, B. Martens, and
M. H. Sgrensen. Conjunctive partial deduction: Foundations, control,
algorithms, and experiments. Journal of Logic Programming, 41(2-3):231—
277, 1999.

G. Delzanno and A. Podelski. Model checking in CLP. In Proceedings
of the 5th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS 99, Lecture Notes in Com-
puter Science 1579, pages 223-239. Springer-Verlag, 1999.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computa-
tion, 3(1-2):69-116, 1987.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewod
Cliffs, N.J., 1976.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[60]

[61]

I. Dillig, T. Dillig, and A. Aiken. Fluid updates: beyond strong vs. weak
updates. In Proceedings of the 19th Furopean Conference on Programming
Languages and Systems, ESOP ’10, Lecture Notes in Computer Science
6012, pages 246-266. Springer, 2010.

C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. Koénig, M. Ostrowski,
and T. Schaub. Conflict-driven disjunctive answer set solving. In Proceed-
ings of the 11th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR '08), pages 422-432. AAAT Press, 2008.

T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Trans-
actions on Database Systems, 22:364-418, 1997.

E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, volume B, pages 997-1072. Elsevier, 1990.

E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal
Methods in System Design, 9:105-131, 1996.

S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical
Computer Science, 166:101-146, 1996.

F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for
specializing constraint logic programs. In Proceedings of the Tenth Inter-
national Workshop on Logic-based Program Synthesis and Transformation,
LOPSTR 00, Lecture Notes in Computer Science 2042, pages 125—-146.
Springer-Verlag, 2001.

F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of
infinite state systems by specializing constraint logic programs. In Proceed-
ings of the ACM SIGPLAN Workshop on Verification and Computational
Logic VCL’01, Florence (Italy), Technical Report DSSE-TR-2001-3, pages
85—96. University of Southampton, UK, 2001.

F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for
locally stratified constraint logic programs. In Program Development in
Computational Logic, Lecture Notes in Computer Science 3049, pages 292—
340. Springer-Verlag, 2004.

F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Improving reach-
ability analysis of infinite state systems by specialization. Fundamenta
Informaticae, 119(3-4):281-300, 2012.

205

[62]

[63]

[64]

[65]

[66]

[67]

206

F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization
strategies for the verification of infinite state systems. Theory and Practice
of Logic Programming. Special Issue on the 25th Annual GULP Confer-
ence, 13(2):175-199, 2013.

C. Flanagan. Automatic software model checking via constraint logic. Sci.
Comput. Program., 50(1-3):253-270, 2004.

C. Flanagan and S. Qadeer. Predicate abstraction for software verification.
In Proceedings of the 29th ACM Symposium on Principles of programming
languages, POPL 02, pages 191-202. ACM Press, 2002.

J. P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings
of the ACM SIGPLAN Symposium on Partial Fvaluation and Semantics
Based Program Manipulation, PEPM ’93, pages 88-98. ACM Press, 1993.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven
answer set solving. In Proceedings of the 20th International Conference of
Artificial Intelligence (IJCAI '07), pages 386-392. AAAI Press, 2007.

M. Gebser, J. Lee, and Y. Lierler. Head-elementary-set-free logic pro-
grams. In Proceedings of the 9th International Conference on Logic Pro-
gramming and Nonmotonic Reasoning (LPNMR 2007), Lecture Notes in
Computer Science 4483, pages 149-161. Springer, Berlin, 2007.

M. Gelfond. Answer sets. In Handbook of Knowledge Representation,
chapter 7, pages 285-316. Elsevier, 2007.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365-385, 1991.

S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures
for extensions of the theory of arrays. Ann. Math. Artif. Intell., 50(3-
4):231-254, 2007.

E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming
based on propositional satisfiability. Journal of Automated Reasoning,
pages 345-377, 2006.

D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis
of array operations. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages, POPL ’05, pages
338-350. ACM, 2005.

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[30]

S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Ry-
balchenko. HSF(C): A Software Verifier based on Horn Clauses. In Proc. of
the 18th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS ’12, Lecture Notes in Com-
puter Science 7214, pages 549-551. Springer, 2012.

S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Syn-
thesizing software verifiers from proof rules. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’12, pages 405-416, 2012.

B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Au-
tomatically Refining Abstract Interpretations. In Proceedings of the 12th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS ’08, Lecture Notes in Computer Science
4963, pages 443-458. Springer, 2008.

A. Gupta and A. Rybalchenko. InvGen: An efficient invariant generator.
In Proceedings of the 21st International Conference on Computer Aided
Verification, CAV ’09, Lecture Notes in Computer Science 5643, pages
634-640. Springer, 20009.

N. Halbwachs and M. Péron. Discovering properties about arrays in sim-
ple programs. In Proceedings of the ACM Conference on Programming
language design and implementation, PLDI 08, pages 339-348, 2008.

N. Halbwachs, Y. E. Proy, and P. Roumanoff. Verification of Real-Time
Systems using Linear Relation Analysis. Formal Methods in System De-
sign, 11:157-185, 1997.

K. S. Henriksen and J. P. Gallagher. Abstract interpretation of pic pro-
grams through logic programming. In Proceedings of the 6th IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation, SCAM 06,
pages 103-179, 2006.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Synthesis from tem-
poral specifications using preferred answer set programming. In Proceed-
ings of the 9th Italian Conference on Theoretical Computer Science, Lec-
ture Notes in Computer Science 3701, pages 280-294. Springer, Berlin,
2005.

207

[81]

208

K. Hoder, N. Bjgrner, and L. Mendonga de Moura. uZ- An efficient engine
for fixed points with constraints. In Proceedings of the 23rd International
Conference on Computer Aided Verification, CAV ’11, Lecture Notes in
Computer Science 6806, pages 457-462. Springer, 2011.

H. Hojjat, F. Konecny, F. Garnier, R. Iosif, V. Kuncak, and P. Riimmer.
A verification toolkit for numerical transition systems. In Proceedings of
the 18th International Symposium on Formal Methods, FM ’12, Lecture
Notes in Computer Science 7436, pages 247-251. Springer, 2012.

J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal
of Logic Programming, 19/20:503-581, 1994.

J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of con-
straint logic programming. Journal of Logic Programming, 37:1-46, 1998.

J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa. TRACER: A symbolic
execution tool for verification. In Proceedings of the 24th International
Conference on Computer Aided Verification, CAV ’12, Lecture Notes in
Computer Science 7358, pages 758-766. Springer, 2012.

J. Jaffar, J. A. Navas, and A. E. Santosa. Symbolic execution for verifica-
tion. Computing Research Repository, 2011.

J. Jaffar, J. A. Navas, and A. E. Santosa. Unbounded Symbolic Execution
for Program Verification. In Proceedings of the 2nd International Confer-
ence on Runtime Verification, RV ’11, Lecture Notes in Computer Science
7186, pages 396—411. Springer, 2012.

J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP
traversal. In Proceedings of the 15th International Conference on Princi-
ples and Practice of Constraint Programming, CP ’09, Lecture Notes in
Computer Science 5732, pages 454-469. Springer, 2009.

T. Janhunen and I. Niemeld. GnT — A Solver for Disjunctive Logic Pro-
grams. In Logic Programming and Nonmonotonic Reasoning, Lecture
Notes in Computer Science 2923, pages 331-335. Springer, 2004.

R. Jhala and R. Majumdar. Software model checking. ACM Computing
Surveys, 41(4):21:1-21:54, 2009.

[91]

[92]

[99]

[100]

R. Jhala and K. L. McMillan. A Practical and Complete Approach to
Predicate Refinement. In Proceedings of the 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 06, Lecture Notes in Computer Science 3920, pages 459-473.
Springer, 2006.

R. Jhala and K. L. McMillan. Array abstractions from proofs. In Proceed-
ings of the 19th International Conference on Computer Aided Verification,
CAV ’07, volume 4590 of Lecture Notes in Computer Science, pages 193—
206. Springer, 2007.

N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Auto-
matic Program Generation. Prentice Hall, 1993.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice Hall Professional Technical Reference, 2nd edition, 1988.

L. Kovacs and A. Voronkov. Finding loop invariants for programs over ar-
rays using a theorem prover. In Proceedings of the 12th International Con-
ference on Fundamental Approaches to Software Engineering, FASE 09,
Lecture Notes in Computer Science 5503, pages 470-485. Springer, 2009.

O. Kupferman and M. Y. Vardi. Synthesis with incomplete information. In
Applied Logic #16: Advances in Temporal Logic, pages 109-127. Kluwer
Academic Publishers, 2000.

S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predi-
cates. ACM Trans. Comput. Log., 9(1), 2007.

D. Larraz, E. Rodriguez-Carbonell, and A. Rubio. SMT-based array
invariant generation. In 14th International Conference on Verification,
Model Checking, and Abstract Interpretation, VMCAI 2013, Rome, Italy,
January 20-22, 2013, Lecture Notes in Computer Science 7737, pages 169—
188. Springer, 2013.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello. The DLV system for knowledge representation and reasoning. ACM
Transaction on Computational Logic, 7:499-562, 2006.

M. Leuschel. The ECCE partial deduction system and the DPPD
library of benchmarks, Release 3, Nov. 2000. Available from
http://www.ecs.soton.ac.uk/~mal.

209

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

210

M. Leuschel and M. Bruynooghe. Logic program specialisation through
partial deduction: Control issues. Theory and Practice of Logic Program-
ming, 2(4&5):461-515, 2002.

M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization
and polyvariance in partial deduction of normal logic programs. ACM
Transactions on Programming Languages and Systems, 20(1):208-258,
1998.

M. Leuschel and T. Massart. Infinite state model checking by abstract
interpretation and program specialization. In Proceedings of the 9th In-
ternational Workshop on Logic-based Program Synthesis and Transforma-
tion, LOPSTR 99, Lecture Notes in Computer Science 1817, pages 63-82.
Springer, 2000.

M. Leuschel and D. De Schreye. Constrained partial deduction. In Pro-
ceedings of the 12th Workshop Logische Programmierung, WLP ’97, pages
116-126, Munich, Germany, September 1997.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1987. Second Edition.

M. J. Maher. A transformation system for deductive database modules
with perfect model semantics. Theoretical Computer Science, 110:377-403,
1993.

Z. Manna and P. Wolper. Synthesis of communicating processes from tem-
poral logic specifications. ACM Transactions on Programming Languages
and Systems, 6(1):68-93, 1984.

MAP. The MAP transformation system.
http://www.iasi.cnr.it/~proietti/system.html. Also available
via a WEB interface from http://www.map.uniroma2.it/mapweb.

B. Martens and J. P. Gallagher. Ensuring global termination of partial
deduction while allowing flexible polyvariance. In Proceedings of the 12th
International Conference on Logic Programming (ICLP '95), June 13-16,
1995, Tokyo, Japan, pages 597—611. The MIT Press, 1995.

J. McCarthy. A basis for a mathematical theory of computation. In
Computer Programming and Formal Systems, pages 33—70. North-Holland,
1963.

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

J. McCarthy. Towards a mathematical science of computation. In Infor-
mation Processing : Proceedings of IFIP 1962, pages 21-28, Amsterdam,
1963. North Holland.

K. L. McMillan. Quantified invariant generation using an interpolat-
ing saturation prover. In Proceedings of 14th international conference
on Tools and algorithms for the construction and analysis of systems,
TACAS 08, volume 4963 of Lecture Notes in Computer Science, pages
413-427. Springer, 2008.

K. L. McMillan and A. Rybalchenko. Solving constrained Horn clauses
using interpolation. MSR Technical Report 2013-6, Microsoft Report,
2013.

S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking
takes off. Commun. ACM, 53(2):58-64, 2010.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In
Compiler Construction, Lecture Notes in Computer Science 2304, pages
209-265. Springer, 2002.

I. Niemeld. Answer set programming without unstratified negation. In
Proceedings of the 24th International Conference on Logic Programming,
ICLP 08, volume 5366 of Lecture Notes in Computer Science, pages 88—
92. Springer, 2008.

U. Nilsson and J. Liibcke. Constraint logic programming for local and sym-
bolic model-checking. In Proceedings of the First International Conference
on Computational Logic, CL 00, Lecture Notes in Artificial Intelligence
1861, pages 384—398. Springer-Verlag, 2000.

J. C. Peralta and J. P. Gallagher. Convex hull abstractions in special-
ization of CLP programs. In Logic Based Program Synthesis and Tran-
formation, 12th International Workshop, LOPSTR ’02, Lecture Notes in
Computer Science 2664, pages 90-108. Springer, 2003.

J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative
Programs through Analysis of Constraint Logic Programs. In Proceedings
of the 5th International Symposium on Static Analysis, SAS 98, Lecture
Notes in Computer Science 1503, pages 246—261. Springer, 1998.

211

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

212

G. L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3):115-116, 1981.

A. Pettorossi and M. Proietti. Future directions in program transforma-
tion. In Proceedings of the Workshop on Strategic Directions in Computing
Research, MIT, Cambridge, MA, USA, June 14-15, 1996, pages 99-102.
ACM SIGPLAN Notices 32/1, January 1997.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
programming languages, POPL ’89, pages 179-190, New York, NY, USA,
1989.

A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for Software
Model Checking with Abstraction Refinement. In Practical Aspects of
Declarative Languages, PADL 07, Lecture Notes in Computer Science
4354, pages 245-259. Springer, 2007.

F. Ranzato, O. Rossi-Doria, and F. Tapparo. A forward-backward ab-
straction refinement algorithm. In Proceedings of the 9th International
Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI 08, Lecture Notes in Computer Science 4905, pages 248-262.
Springer, 2008.

T. W. Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11-12):701-726, 1998.

J. C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science, LICS ’02, pages 55—74. IEEE Computer Society, 2002.

A. Rybalchenko. Constraint solving for program verification: Theory and
practice by example. InProceedings of the 22nd International Conference
on Computer Aided Verification, CAV ’10, Lecture Notes in Computer
Science 6174, pages 57—71. Springer, 2010.

H. Saidi. Model checking guided abstraction and analysis. In Proceedings
of the Tth International Symposium on Static Analysis, SAS ’00, Lecture
Notes in Computer Science 1824, pages 377-396. Springer, 2000.

J. S. Schlipf. Complexity and undecidability results for logic programming.
Annals of Mathematics and Artificial Intelligence, 15:257—288, 1995.

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

M. N. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quan-
tified array assertions. In Proceeding of the 16th International Symposium
on Static Analysis, SAS 2009, Lecture Notes in Computer Science 5673,
pages 3—18. Springer, 2009.

H. Seki. Unfold/fold transformation of stratified programs. Theoretical
Computer Science, 86:107-139, 1991.

M. H. Sgrensen and R. Gliick. An algorithm of generalization in positive
supercompilation. In Proceedings of the 1995 International Logic Program-
ming Symposium, ILPS ’95, pages 465—479. MIT Press, 1995.

T. Syrjénen. Lparse 1.0 user’s manual.
http://www.tcs.hut.fi/Software/smodels/, 2002.

T. Syrjanen and I. Niemeld. The Smodels system. In Proceedings of
the 6th International Conference on Logic Programming and Nonmotonic
Reasoning, LPNMR ’01, Lecture Notes in Computer Science 2173, pages
434-438. Springer, Berlin, 2001.

H. Tamaki and T. Sato. Unfold/fold transformation of logic programs.
In Proceedings of the Second International Conference on Logic Pro-
gramming, ICLP ’84, pages 127-138, Uppsala, Sweden, 1984. Uppsala
University.

M. Truszczynski. Logic programming for knowledge representation. In
Proceedings of the 23rd International Conference on Logic Programming,
ICLP 07, Lecture Notes in Computer Science 4670, pages 76-88. Springer,
2007.

M. H. van Emden and R. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733-742, 1976.

VeriMAP. The VeriMAP software model checker. Available at
http://www.map.uniroma2.it/VeriMAP.

J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design and Implemen-
tation, PLDI 04, pages 131-144. ACM, 2004.

213

[140] M. Wirsing. Algebraic specification. In Handbook of Theoretical Computer
Science, volume B, pages 675-788. Elsevier, 1990.

214

	Title Page
	Contents
	Acknowledgements
	Introduction
	I Verification
	Software Model Checking by Program Transformation
	A Transformation-based Verification Framework
	Related Work

	Transformation of Constraint Logic Programs
	Constraint Logic Programming
	Syntax of Constraint Logic Programs
	Semantics of Constraint Logic Programs

	Transformation Rules

	Generating Verification Conditions by Specializing Interpreters
	Encoding Imperative Programs into CLP
	Encoding Operational Semantics into CLP
	Encoding Partial Correctness into CLP
	Soundness of the CLP Encoding
	The Specialization Strategy
	Termination and Soundness of the Specialization Strategy

	Related Work

	Verifying Programs by Specializing Verification Conditions
	The Verification Method
	The Specialization Strategy
	Generalization Operators
	Generalization Strategy
	Termination and Soundness of the Specialization Strategy

	Experimental Evaluation
	Related Work

	Iterated Program Specialization
	The Verification Method
	The Iterated Specialization Strategy
	Propagation of Constraints
	Lightweight Correctness Analysis
	The Reverse Transformation
	Soundness of the Iterated Specialization Strategy

	Experimental Evaluation
	Related Work

	Verifying Array Programs
	Constraint Logic Programs on Arrays
	The Verification Method
	The Transformation Strategy
	Termination and Soundness of the Transformation Strategy

	Experimental Evaluation
	Related Work

	Recursively Defined Properties
	The VeriMAP Software Model Checker
	Architecture
	Usage
	Proving Partial Correctness with the VeriMAP Tool

	II Synthesis
	Synthesizing Concurrent Programs using Answer Set Programming
	Preliminaries
	Guarded commands
	Groups
	Computation Tree Logic
	Answer Set Programming

	Specifying Concurrent Programs
	Synthesizing Concurrent Programs
	Synthesis examples
	Comparison of ASP Solvers on the Synthesis Examples
	Related Work

	Proofs
	Source code

	Conclusions
	Bibliography

