
Soft Constraint Programming to Analysing
Security Protocols

TR IAT-B4-2001-013

Giampaolo Bella and Stefano Bistarelli

1 Universiti. Catania, Dipartimento di Matematica e Informatica,
Viale A. Doria 6, I-95125 Catania, Italy.

giamp@dmi.unict.it
2 CNR Pisa, Istituto per le Applicazioni Telematiche

Via G. Moruzzi, 1 I-56124 Pisa, Italy.
Stefano.Bistarelli@iat.cnr.it

Abstract. Security protocols stipulate how remote principals of a com-
puter network should interact in order to obtain specific security goals.
The crucial goals of confidentiality and authentication may be achieved
in various forms. Using soft (rather than crisp) constraints, we develop a
uniform formal notion for the two goals. They are no longer formalised
as mere yes/no properties as in the existing literature, but gain an extra
parameter, the security level. For example, different messages can en-
joy different levels of confidentiality, or a principal can achieve different
levels of authentication with different principals.
The goals are formalised within a general framework for protocol anal-
ysis that is amenable to mechanisation by model checking. Following
the application of the framework to analysing the asymmetric Needham-
Schroeder protocol [BB01], we have recently discovered a new attack
on that protocol. We briefly describe that attack, and demonstrate the
framework on a bigger, largely deployed protocol consisting of three
phases, Kerberos.

1 Introduction

A number of applications ranging from electronic transactions over the Inter-
net to banking transactions over financial networks make use of security pro-
tocols. It has been shown that the protocols often fail to meet their claimed
goals [AN96,Low96], so a number of approaches for analysing them formally have
been developed [Low95,BR97,Pau98,Bel99]). The threats to the protocols come
from malicious principals who manage to monitor the network traffic building
fake messages at will. A major protocol goal is confidentiality, confirming that
a message remains undisclosed to malicious principals. Another crucial goal is
authentication, confirming a principal’s participation in a protocol session.

However, both goals are a lot more complicated than the intuition just given.
Focusing on confidentiality, we remark that different messages require “specific
degrees of protection against disclosure” [Gra01]. For example, a user password

requires higher protection than a session key, which is only used for a single
protocol session. Intuitively, a password ought to be “more confidential” than a
session key. Also, a confidentiality attack due to off-line cryptanalysis should not
be imputed to the protocol design. Focusing on authentication, we observe that
a certificate stating that K is a principal A’s public key authenticates A very
weakly. The certificate only signifies that A is a registered network principal,
but in fact confers no guarantee about A’s participation in a specific protocol
session. A message signed by A’s private key authenticates A more strongly, for
it signifies that A participated in the protocol in order to sign the message.

It is somewhat surprising that confidentiality and authentication are for-
malised in a mere “yes or no” fashion in the existing literature, so one can just
say whether a key is confidential or not, or whether a principal authenticates
himself with another or not. The motivation for our research was the develop-
ment of a finer formal notion for the various forms of the two goals. We have
developed the notions of l-confidentiality and of l-authentication, where l is the
security level signifying the strength with which the goal is met. The security
level belongs to the career set of a semiring, as our notions rest on semiring-
based soft constraint programming. Each principal assigns his own security level
to each message — different levels to different messages — expressing the prin-
cipal’s trust on the confidentiality of the message. So, we can formalise that
different goals are granted to different principals. In the following, we indicate
by {|m|}K the ciphertext obtained encrypting message m with key K, and avoid
external brackets of concatenated messages. We assume the reader to be familiar
with the basic concepts of cryptography.

By a preliminary analysis, we can study what goals the protocol achieves
in ideal conditions where no principal acts maliciously. An empirical analysis
may follow, whereby we can study what goals the protocol achieves on a specific
network configuration arising from the protocol execution in the real world.
These outlines suggest that our notation is uniform: there is not a single attacker,
but all principals are attackers if they perform, either deliberately or not, some
operation that is not admitted by the protocol policy. For example, Lowe’s popular
attack on the asymmetric Needham-Schroeder protocol [Low95] follows from a
malicious principal C’s masquerading as A with B, after A initiated a session
with C. This scenario clearly contains an authentication attack following the
confidentiality attack whereby C learns B’s nonce Nb for A. Lowe reports that,
if B is a bank for example, C can steal money from A’s account as follows [Low95,
§3]

C → B : {|Na,Nb, “Transfer£1000 from A’s account to C’s”|}Kb

The bank B would honour the request believing it came from the account holder
A.

Applying our framework to the same scenario, we have discovered a new
confidentiality attack whereby B unintentionally learns A’s nonce Na for C.
This attack may have dangerous consequences on C in case B realises, possibly
much later, what Na is. Readapting Lowe’s example, we observe that, if A is a

bank, B can steal money from C’s account as follows

B → A : {|Na,Nb, “Transfer£1000 from C’s account to B’s”|}Ka

The bank A would honour the request believing it came from the account holder
C. Our empirical analysis has highlighted uniformly both attacks in terms of
decreased security levels: both C’s security level on Nb and B’s security level on
Na become lower than they would be if C didn’t act maliciously.

Our framework, which extends and supersedes an existing kernel [BB01], is
mature to be demonstrated on a largely deployed protocol, Kerberos. Our pre-
liminary analysis of the protocol highlights that the loss of an authorisation key
would be more serious than the loss of a service key, and that the authentication
of the protocol responder with the initiator is somewhat weaker than the au-
thentication of the initiator with the responder. Our empirical analysis focuses
on how cryptanalysis undermines the protocol goals. We remark that, since we
only deal with unbounded but finite quantities, our framework is amenable to
mechanisation by model checking, although this exceeds the purposes of this
paper.

After an outline on semiring-based SCSPs (§2), our framework for protocol
analysis is described (§3). Then, the Kerberos protocol is introduced (§4) and
analysed (§5). Some conclusions (§6) terminate the presentation.

2 Soft constraints

Several formalisations of the concept of soft constraints are currently available
[SFV95,DFP93,FW92,FL93]. In the following, we refer to one that is based on c-
semirings [BMR95,BMR97,Bis01], which can be shown to generalise and express
many of the others [BFM+96,BFM+99].

A soft constraint may be seen as a constraint where each instantiation of
its variables has an associated value from a partially ordered set. Combining
constraints will then have to take into account such additional values, and thus
the formalism has also to provide suitable operations for combination (×) and
comparison (+) of tuples of values and constraints. This is why this formalisation
is based on the concept of semiring, which is just a set plus two operations.

A semiring is a tuple 〈A, +,×,0,1〉 such that:

– A is a set and 0,1 ∈ A;
– + is commutative, associative and 0 is its unit element;
– × is associative, distributes over +, 1 is its unit element and 0 is its absorbing

element.

A c-semiring is a semiring 〈A,+,×,0,1〉 such that: + is idempotent, 1 as its
absorbing element and × is commutative.

Let us consider the relation ≤S over A such that a ≤S b iff a + b = b. Then
it is possible to prove that (see [BMR97]):

– ≤S is a partial order;

– + and × are monotone on ≤S ;
– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A, a + b = lub(a, b).

Moreover, if × is idempotent, then: + distribute over ×; 〈A,≤S〉 is a complete
distributive lattice and × its glb.

Informally, the relation ≤S gives us a way to compare (some of the) tuples
of values and constraints. In fact, when we have a ≤S b, we will say that b is
better than a. Below, a ≤S b will be often indicated by ≤.

A constraint system is a tuple CS = 〈S,D,V〉 where S is a c-semiring, D is
a finite set (the domain of the variables) and V is an ordered set of variables.

Given a semiring S = 〈A,+,×,0,1〉 and a constraint system CS = 〈S,D,V〉,
a constraint is a pair 〈def , con〉 where con ⊆ V and def : D|con| → A. Therefore,
a constraint specifies a set of variables (the ones in con), and assigns to each
tuple of values of these variables an element of the semiring.

A soft constraint problem is a pair 〈C, con〉 where con ⊆ V and C is a set of
constraints: con is the set of variables of interest for the constraint set C, which
however may concern also variables not in con.

Notice that a classical CSP is a SCSP where the chosen c-semiring is:

SCSP = 〈{false, true},∨,∧, false, true〉.

Fuzzy CSPs [DFP93,Rut94,Sch92] can instead be modelled in the SCSP
framework by choosing the c-semiring:

SFCSP = 〈[0, 1],max, min, 0, 1〉.

Figure 1 shows a fuzzy CSP. Variables are inside circles, constraints are repre-
sented by undirected arcs, and semiring values are written to the right of the
corresponding tuples. Here we assume that the domain D of the variables con-
tains only elements a and b.

a −−> 0.9
b −−> 0.1

<b, b> −−> 0
<b, a> −−> 0
<a, b> −−> 0.2
<a, a> −−> 0.8

a −−> 0.9
b −−> 0.5

X Y

Fig. 1. A fuzzy CSP.

2.1 Combining and projecting soft constraints

Given two constraints c1 = 〈def 1, con1〉 and c2 = 〈def 2, con2〉, their combi-
nation c1 ⊗ c2 is the constraint 〈def , con〉 defined by con = con1 ∪ con2 and
def (t) = def 1(t ↓con

con1
) × def 2(t ↓con

con2
), where t ↓X

Y denotes the tuple of values
over the variables in Y , obtained by projecting tuple t from X to Y . In words,

combining two constraints means building a new constraint involving all the
variables of the original ones, and which associates to each tuple of domain val-
ues for such variables a semiring element which is obtained by multiplying the
elements associated by the original constraints to the appropriate subtuples.

Given a constraint c = 〈def , con〉 and a subset I of V, the projection of c
over I, written c ⇓I is the constraint 〈def ′, con′〉 where con′ = con ∩ I and
def ′(t′) =

∑
t/t↓con

I∩con
=t′ def (t). Informally, projecting means eliminating some

variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

In short, combination is performed via the multiplicative operation of the
semiring, and projection via the additive operation.

2.2 Solutions

The solution of an SCSP problem P = 〈C, con〉 is the constraint Sol(P) =
(
⊗

C) ⇓con. That is, we combine all constraints, and then project over the
variables in con. In this way we get the constraint over con which is “induced”
by the entire SCSP.

For example, each solution of the fuzzy CSP of Figure 1 consists of a pair
of domain values (that is, a domain value for each of the two variables) and
an associated semiring element. Such an element is obtained by looking at the
smallest value for all the subtuples (as many as the constraints) forming the
pair. For example, for tuple 〈a, a〉 (that is, x = y = a), we have to compute the
minimum between 0.9 (which is the value for x = a), 0.8 (which is the value for
〈x = a, y = a〉) and 0.9 (which is the value for y = a). Hence, the resulting value
for this tuple is 0.8.

3 Constraint Programming for Protocol Analysis

This section presents our framework for analysing security protocols. Using soft
constraints requires the definition of a c-semiring.

Our security semiring (§3.1) is used to specify each principal’s trust on the
security of each message, that is each principal’s security level on each mes-
sage. The security levels range from the most secure (highest) level unknown
to the least secure (lowest) level public. Intuitively, if A’s security level on m is
unknown, then no principal (included A) knows m according to A, and, if A’s
security level on m is public, then all principals potentially know m according
to A. The lower A’s security level on m, the higher the number of principals
knowing m according to A. For simplicity, we state no relation between the
granularity of the security levels and the number of principals.

Using the security semiring, we define the network constraint system (§3.2),
which represents the computer network on which the security protocols can be
executed. The development of the principals’ security levels from manipulation
of the messages seen during the protocol sessions can be formalised as a security

entailment (§3.3), that is an entailment relation between constraints. Then, given
a specific protocol to analyse, we represent its assumptions in the initial SCSP
(§3.4). All admissible network configurations arising from the protocol execution
as prescribed by the protocol designers can in turn be represented in the policy
SCSP (§3.5). We also explain how to represent any network configuration arising
from the protocol execution in the real world as an imputable SCSP (§3.6).

Given a security level l, establishing whether our definitions of l-
confidentiality (§3.7) or l-authentication (§3.8) hold in an SCSP requires cal-
culating the solution of the imputable SCSP and projecting it on certain princi-
pals. The higher l, the stronger the goal. For example, unknown-confidentiality
is stronger than public-confidentiality, or, A’s security level on B’s public key
(learnt via a certification authority) being public enforces public-authentication
of B with A, which is the weakest form of authentication. We can also formalise
confidentiality attacks or authentication attacks. The definitions are given within
specific methodologies of analysis.

By a preliminary analysis, we can study what goals the protocol achieves
in ideal conditions where no principal acts maliciously. We concentrate on the
policy SCSP, calculate its solution, and project it on a principal of interest. The
process yields the principal’s security levels, which allow us to study what goals
the protocol grants to that principal in ideal conditions, and which potential
attacks would be more serious than others for the principal. For example, the
most serious confidentiality attacks would be against those messages on which
the principal has the highest security level.

An empirical analysis may follow, whereby we can study what goals the
protocol achieves on a specific network configuration arising from the protocol
execution in the real world. We concentrate on the corresponding imputable
SCSP, calculate its solution and project it on a principal of interest: we obtain
the principal’s security levels on all messages. Having done the same operations
on the the policy SCSP, we can compare the outcomes. If some level from the
imputable is lower than the corresponding level from the policy, then there is an
attack in the imputable SCSP. In fact, some malicious activity contributing to
the network configuration modelled by the imputable SCSP has taken place so
to lower some security level allowed by the policy SCSP.

The following, general treatment is demonstrated in §4.

3.1 The Security Semiring

Let n be a natural number. We define the set L of security levels as follows.

L = {unknown, private, traded1, traded2, . . . , tradedn, public}
Although our security levels may appear to resemble Abadi’s

types [Aba97,Aba99], there is in fact little similarity. Abadi associates
each message to either type public, or secret, or any, whereas we define an
unbounded number of security levels, and each principal associates a level of his
own to each message as explained in the following. Also, while Abadi’s public
and private cannot be compared, our levels are linearly ordered.

The security levels express each principal’s trust on the security of each
message. Clearly, unknown is the highest security level. We will show how, under
a given protocol, a principal assigns unknown to all messages that do not pertain
to the protocol, and to all messages that the principal does not know. A principal
will assign private to all messages that, according to himself, are known to him
alone, such as his own long-term keys, the nonces invented during the protocol
execution, or any secrets discovered by cryptanalysis. In turn, a principal will
assign tradedi to the messages that are exchanged during the protocol: the higher
the index i, the more the messages have been handled by the principals, and
therefore the more principals have potentially learnt those messages. So, public
is the lowest security level. These security levels generalise, by the unbounded
number of tradedi levels, the four levels that we have presented elsewhere [BB01].

We introduce an additive operator, +sec, and a multiplicative operator,
×sec. To allow for a compact definition of the two operators, and to simplify
the following treatment, let us define a convenient double naming:
– unknown ≡ traded−1

– private ≡ traded0

– public ≡ tradedn+1

Let us consider an index i and an index j both belonging to the closed interval
[−1, n + 1] of integers. We define +sec and×sec by the following axioms.

Ax. 1: tradedi +sec tradedj = tradedmax(i,j)

Ax. 2: tradedi ×sec tradedj = tradedmin(i,j)

Theorem 1 (Security Semiring). The structure
Ssec = 〈L,+sec,×sec, public, unknown 〉 is a c-semiring.

Proof hint. Clearly, Ssec enjoys the same properties as the structure
Sfinite−fuzzy = 〈{−1, . . . , n + 1},min, max, ,−1, n + 1〉. Indeed, the security
levels can be mapped into the values in the range −1, . . . , n + 1 (unknown being
mapped into 0, public being mapped into n + 1); +sec can be mapped into func-
tion min; ×sec can be mapped into function max. Moreover, Sfinite−fuzzy can
be proved a c-semiring as done with the fuzzy semiring [BMR97].

3.2 The Network Constraint System

We define a constraint system CSn = 〈Ssec,D,V〉 where:

– Ssec is the security semiring (§3.1);
– V is an unbounded set of variables.
– D is an unbounded set of values including the empty message {||} and all

atomic messages, as well as all messages recursively obtained by concatena-
tion and encryption.

We name CSn as network constraint system. The elements of V stand for the
network principals, and the elements of D represent all possible messages. Atomic
messages typically are principal names, timestamps, nonces and cryptographic

keys. Concatenation and encryption operations can be applied an unbounded
number of times.

Notice that CSn does not depend on any protocols, for it merely portrays
the topology of a computer network on which any protocol can be implemented.
Members of V will be indicated by capital letters, while members of D will be
in small letters.

3.3 Computing the Security Levels by Entailment

Recall that each principal associates his own security levels to the messages.
Those levels evolve while the principal participates in the protocol and performs
off-line operations such as encryption, concatenation, decryption, and splitting.
We define four rules to compute the security levels that each principal gives to the
newly generated messages. The rules are presented in Figure 2, where function
def is associated to a generic constraint projected on a generic principal A.

Encryption:
def (m1) = v1; def (m2) = v2; def ({|m1|}m2

) = v3; v1, v2 < unknown

def ({|m1|}m2
) = (v1 +sec v2)×sec v3

Concatenation:
def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3; v1, v2 < unknown

def ({|m1, m2|}) = (v1 +sec v2)×sec v3

Decryption:
def (m1) = v1; def (m−1

2) = v2; def ({|m1|}m2
) = v3; v2, v3 < unknown

def (m1) = v1 ×sec v2 ×sec v3

Splitting:
def (m1) = v1; def (m2) = v2; def ({|m1, m2|}) = v3; v3 < unknown

def (m1) = v1 ×sec v3; def (m2) = v2 ×sec v3

Fig. 2. Computation rules for security levels.

Encryption and concatenation build up new messages from known ones. The
new messages must not get a worse security level than the known ones have. So,
the corresponding rules choose the better of the given levels. Precisely, if mes-
sages m1 and m2 have security levels v1 and v2 respectively, then the encrypted
message {|m1|}m2

and the compound message {|m1, m2|}, whose current level be
some v3, get a new level that is the better of v1 and v2, “normalised” by v3. This

normalisation, which is done in terms of the ×sec operator, influences the result
only if the new level is better than the current level.

Decryption and splitting break down known messages into new ones. The
new messages must not get a better security level than the known ones have.
So, the corresponding rules choose the worse of the given levels by suitable
applications of ×sec, and assign it to the new messages. Recall that, in case
of asymmetric cryptography, the decryption key for a ciphertext is the inverse
of the key that was used to create the ciphertext. So the rule for decryption
considers the inverse of message m2 and indicates it as m−1

2 . Conversely, in
case of symmetric cryptography, we have m−1

2 = m2. The rule for splitting
presupposes that concatenation is transparent in the sense that, for any index
n, an n-component message can be seen as a 2-component message, namely
{|m1,m2, . . . ,mn|} = {|m1, {|m2, . . . , mn|}|}. We now define a binary relation be-
tween constraints.

Definition 1 (Security entailment). Consider two constraints c1, c2 ∈ C
such that c1 = 〈def 1, con〉 and c2 = 〈def 2, con〉. We say that c1 entails c2,
and write c1 ` c2, iff def 2 can be obtained from def 1 by applying 0, 1 or more
times the rules in Figure 2 . We name ` as security entailment.

Theorem 2 (Security entailment). The relation ` from Definition 1 is an
entailment relation.

Proof hint. The relation ` enjoys the reflexivity and transitivity properties.

3.4 The Initial SCSP

The designer of a protocol must also develop a policy to accompany the protocol.
The policy for a protocol P is a set of rules stating, among other things, the
preconditions necessary for the protocol execution, such as which messages are
public, and which messages are private for which principals.

It is intuitive to capture these policy rules by our security levels (§3.1). Pre-
cisely, these rules can be translated into unary constraints. For each principal
A ∈ V, we define a unary constraint that states A’s security levels as follows. It
associates security level public to those messages that are known to all, typically
principal names and timestamps; level private to A’s initial secrets, such as keys
(e.g., A’s long-term key if P uses symmetric cryptography, or A’s private key if
P uses asymmetric cryptography, or A’s pin if P uses smart cards) or nonces;
level unknown to all remaining domain values (including, e.g., the secrets that
A will invent during the protocol execution, or other principals’ initial secrets).

This procedure defines what we name initial SCSP for P, which specifies the
principals’ security levels when no session of P has yet started. Notice that the
constraint store representing each principal’s security levels is computed using
the reflexive, transitive, closure of the entailment relation (§3.3). So, when a new
message is invented, the corresponding constraint is added to the store along with
all constraints that can be extracted by entailment.

Considerations on how official protocol specifications often fail to provide
a satisfactory policy [BMPT00] exceed the scope of this paper. Nevertheless,
having to define the initial SCSP for a protocol may help pinpoint unknown
deficiencies or ambiguities in the policy.

3.5 The Policy SCSP

The policy for a protocol P also establishes which messages must be exchanged
during a session between a pair of principals while no-one performs malicious
activity. The protocol designer typically writes a single step as A → B : m,
meaning that principal A sends message m to principal B. The policy typically
allows each principal to participate in a number of protocol sessions inventing a
number of fresh messages. Assuming both these numbers to be unbounded (not
infinite), an unbounded number of events may take place [DLMS99]1. These
events consist of principals’ inventing fresh messages (typically new nonces) and
principals’ sending messages constructed by concatenation and/or encryption.
No message is intercepted because no malicious principal is assumed to be active:
A’s sending m to B implies that B receives it.

We read from the protocol policy each allowed step of the form A → B : m
and its informal description, which explains whether A invents m or part of
it. Then, we build the policy SCSP for P by the algorithm in figure 3. The
algorithm adds new constraints to the initial SCSP according to the event that
is considered. If that event is a principal A’s inventing a message n, then a
unary constraint is added on variable A assigning security level private to the
domain value n, and unknown to all other values. If that event is a principal
A’s sending a message m to a principal B, then the solution of the current
SCSP is computed and projected on the sender variable A. The semiring value,
alias security level, associated to message m over A is considered. This level
is computed by entailment (§3.3) whenever m is obtained by manipulation of
other messages (rather than m being e.g. a fresh nonce just invented with security
level private by the previous case of the algorithm). Sending m on the network
exposes it to risks, hence we compute a new security level for it, which is one
level lower in the total order of L (§3.1) unless m is already public. Our choice of
decrementing the security level by one is generic and not restrictive. If specific
policies required a different choice, our algorithm could be trivially modified
accordingly.

A binary constraint that assigns the newly computed security level to the
tuple 〈{||},m〉 and unknown to all other tuples is now added to the current SCSP
on the pair of variables A and B. Incidentally, we remark that the constraint
store used to compute the solution is updated by entailment every time a new
constraint is added, namely every time a principal invents a new message or
sends a message computed by concatenation and/or encryption. This reasoning
is repeated for each of the unbounded number of events allowed by the policy.

1 If either number is infinite, then we may have infinite events, and protocol security
is undecidable [DLMS99].

When there are no more events to process, the current SCSP is returned as
policy SCSP for P, which is our formal model for the protocol.

Build Policy SCSP(P)
1. p ← initial SCSP for P;
2. for each event ev allowed by the policy for P do
3. if ev = (A invents n, for some A and n) then
4. p ← p extended with unary constraint on A that assigns private

to n and unknown to all other messages;
5. if ev = (A sends m to B not intercepted, for some A, m and B)

then
6. let 〈def , con〉 = Sol(p) ⇓{A} ∧ def (m) = tradedi in
7. if i = n + 1 then newlevel ← public

else newlevel ← tradedi+1;
8. p ← p extended with binary constraint between A and B that

assigns newlevel to 〈{||}, m〉 and unknown to all other tuples;
9. return p;

Fig. 3. Algorithm to construct the policy SCSP for P.

Termination of the algorithm is guaranteed by finiteness of the number of
allowed events. The algorithm is clearly linear in the number of allowed events,
which is in turn exponential in the length of the exchanged messages [DLMS99].
No correctness result can be stated of the algorithm as it merely builds a formal
model from an informal one. This is a limitation of formal analysis in general,
which is always offset by the adherence of the formal model to reality. Accord-
ing to Börger, that adherence should merely arise by inspection [B9̈9], and we
believe this is the case here. However, as with Ryan and Schneider’s analysis,
“our models are, like all mathematical models, only ever approximations to re-
ality” [RS00].

As we have observed, decrementing the security level on a message when it is
sent signifies that the more the message is manipulated the higher its risks. That
also adds uniformity to our treatment of confidentiality attacks: if a principal
merely intercepts a message m, the principal’s security level on m will be worse
than that stated by the policy SCSP, a condition that we will capture as an
attack (§3.7).

3.6 The Imputable SCSP

A real-world network history induced by a protocol P must account for malicious
activity by some principals. Each such history can be viewed as a sequence of
events of the forms: a principal’s inventing new messages, a principal’s sending
messages that are not intercepted, and a principal’s sending messages that are
intercepted. While the second event signifies that the intended recipient of a
message indeed gets the message, the third signifies that some malicious principal
prevents the delivery of the message that is sent.

We can model any network configuration at a certain point in any real-world
network history as an SCSP by modifying the algorithm given in figure 3 as
in figure 4 (unmodified fragments are omitted). The new algorithm takes as
inputs a protocol P and a network configuration nc originated from the protocol
execution. The processing of the third type of event is added: when a message
is sent by A to B and is intercepted by another principal C, the corresponding
constraint must be stated on the pair A, C rather than A,B.

Build Imputable SCSP(P, nc)
...

2. for each event ev in nc do
...

8.1. if ev = (A sends m to B intercepted by C, for some A, m, B and C)
then

8.2. let 〈def , con〉 = Sol(p) ⇓{A} ∧ def (m) = tradedi in
8.3. if i = n + 1 then newlevel ← public

else newlevel ← tradedi+1;
8.4. p ← p extended with binary constraint betweeen A and C that

assigns newlevel to 〈{||}, m〉 and unknown to all other tuples;
...

Fig. 4. Algorithm to construct an imputable SCSP for P (fragment).

The new algorithm outputs what we name an imputable SCSP for P. Clearly,
there exist an unbounded number of imputable SCSPs for P, each representing
a different network configuration. Both the initial SCSP and the policy SCSP
may be viewed as imputable SCSPs.

3.7 Formalising Confidentiality

A message is confidential if it is not known to an attacker. We regard as attacker
any principal other than the recipients that the protocol policy recommends for
the message.

A formal definition of confidentiality should account for the variety of require-
ments that can be stated by the protocol policy. For example, a message might
be required to remain confidential during the early stages of a protocol but its
loss during the late stages might be tolerated, as is the case with SET [BMPT00].
That protocol typically uses a fresh session key to transfer some certificate once,
so the key loses its importance after the transfer terminates.

Another possible requirement is that certain messages, such as those signed
by a root certification authority to associate the principals to their public
keys [BMPT00], be entirely reliable. Hence, at least those messages must be

assumed to be safe from cryptanalysis. Also, a protocol may give different guar-
antees about its goals to different principals, so our definition of confidentiality
must depend on the specific principal that is considered.

Using the security levels, we develop uniform definitions of confidentiality and
of confidentiality attack that account for any policy requirement. Intuitively, if a
principal’s security level on a message is l, then the message is l-confidential for
the principal because the security level in fact formalises the principal’s trust on
the security, meant as confidentiality, of the message (see the beginning of §3).
Thus, if an imputable SCSP features a principal with a lower security level on a
message w.r.t. the corresponding level in the policy SCSP, then that imputable
SCSP bears a confidentiality attack.

Here, l denotes a generic security level, m a generic message, A a generic
principal. Also, P indicates the policy SCSP for a generic security protocol, and
p and p′ some imputable SCSPs for the same protocol. We define Sol(P) ⇓{A}=
〈Def A, {A}〉, Sol(p) ⇓{A}= 〈def A, {A}〉, and Sol(p ′) ⇓{A}= 〈def ′A, {A}〉.

Definition 2 (l-confidentiality). l-confidentiality of m in p for A ⇐⇒
def A(m) = l.

A preliminary analysis of confidentiality A preliminary analysis of the
confidentiality goal can be conducted on the policy SCSP for the given protocol.

Let us calculate the solution of the policy SCSP, and project it on some
principal A. Let us suppose that two messages m and m′ get security levels l
and l′ respectively, l′ < l. Thus, even if no principal acts maliciously, m′ must
be manipulated more than m, so A trusts that m′ will be more at risk than m.
We can conclude that the protocol achieves a stronger confidentiality goal on m
than on m′ even if it is executed in ideal conditions. Also, m may be used to
encrypt m′, as is the case with Kerberos (§5.1) for example. Therefore, losing
m to a malicious principal would be more serious than losing m′. We address a
principal’s loss of m as confidentiality attack on m. A more formal definition of
confidentiality attack cannot be given within a preliminary analysis because no
malicious activity is formalised. So, the following definition concerns potential
confidentiality attacks that may occur during the execution

Definition 3 (Potential, worse confidentiality attack). Suppose that there
is l-confidentiality of m in P for A, that there is l′-confidentiality of m′ in P for
A, and that l′ < l; then, a confidentiality attack on m would be worse than a
confidentiality attack on m′.

An empirical analysis of confidentiality By an empirical analysis, we con-
sider a specific real-world scenario arising from the execution of a protocol and
build the corresponding imputable SCSP p. If the imputable SCSP achieves a
weaker confidentiality goal of some message for some principal than the pol-
icy SCSP does, then the principal has mounted, either deliberately or not, a
confidentiality attack on the message.

Definition 4 (Confidentiality attack).
Confidentiality attack by A on m in p ⇐⇒ l-confidentiality of m in P for A ∧ l′-
confidentiality of m in p for A ∧ l′ < l.

Therefore, there is a confidentiality attack by A on m in p iff def A(m) <
Def A(m). The more an attack lowers a security level, the worse that attack, so
confidentiality attacks can be variously compared. For brevity, we define only
two possible forms of comparison.

Definition 5 (Worse confidentiality attack on messages). Suppose that
there is a confidentiality attack on m in p, and that there is a confidentiality
attack on m′ in p such that def A(m) = def A(m′) = l, and Def A(m) < def A(m′);
then p bears a worse confidentiality attack on m′ than on m.

Definition 6 (Worse confidentiality attack in SCSPs). Suppose that there
is a confidentiality attack by A on m in p such that def A(m) = l, that there is
a confidentiality attack by A on m in p′ such that def ′A(m) = l′, and that l < l′;
then p bears a worse confidentiality attack on m than p′ does.

3.8 Formalising Authentication

The authentication goal enforces the principals’ presence in the network and
possibly their participation in specific protocol sessions. It is achieved by means
of messages that “speak about” principals. For example, in a symmetric cryptog-
raphy setting, given a session key Kab relative to the session between principals
A and B and known to both, message {|A,Na|}Kab received by B informs him
that A is running the session based on nonce Na and key Kab, namely the mes-
sage authenticates A with B. An equivalent message in an asymmetric setting
could be {|Nb|}Ka−1 , which B can decrypt using A’s public key. Also B’s mere
knowledge of Ka as A’s public key is a form of authentication of A with B.
Indeed, A must be a legitimate principal because Ka is typically certified by a
certificate of the form {|A,Ka|}Kca

, Kca being the public key of a certification
authority. It follows that security protocols may use a large variety of message
forms to achieve the authentication goal — the ISO standard in fact does not
state a single form to use [Int89].

In consequence, we declare a predicate speaks about(m,A), but do not pro-
vide a formal definition for it because this would necessarily have to be restric-
tive. However, the examples above provide the intuition of its semantics. There
is l-authentication of B with A if there exists a message such that A’s security
level on it is l, and the message speaks about B, and is known to B. This signifies
that B sent a message to A and A received it.

Definition 7 (l-authentication).
l-authentication of B with A in p ⇐⇒ ∃ m s.t. defA(m) = l < unknown ∧
speaks about(m,B) ∧ def B(m) < unknown.

Notice that the lower A’s security level on m, the weaker authentication. For
example, in an asymmetric-cryptography setting, there is public-authentication

of B with A by the certificate for B’s public key in any imputable SCSP where
A has received that certificate. Also, the spy could easily send a public message
that speaks about B (e.g. a message containing B’s identity), hence public-
authentication is very weak. Our definition also holds when B sends his message
that speaks about A via a trusted third principal.

A preliminary analysis of authentication As done with the confidentiality
goal (§3.7), a preliminary analysis of the authentication goal can be conducted
on the policy SCSP for the given protocol.

Once we calculate the solution of that SCSP, we can apply our definition of
l-authentication, and verify what form of authentication is achieved. In particu-
lar, if there is l-authentication of B with A, and l′-authentication of D with C,
l′ < l, then we can conclude that the protocol achieves a stronger authentication
goal of B with A, than of D with C. We address a principal’s masquerading as B
with A as authentication attack on A by means of B. A more formal definition of
authentication attack cannot be given at this stage, since no principal acts ma-
liciously in the policy SCSP, However, we can compare potential authentication
attacks that may happen during the protocol execution.

Definition 8 (Potential, worse authentication attack). Suppose that there
is l-authentication of B with A by m in P, that there is l′-authentication of D
with C by m′ in P, and that l′ < l; then an authentication attack on A by means
of B would be worse than an authentication attack on C by means of D.

An empirical analysis of authentication If the policy SCSP P achieves l-
authentication of B with A by m, and an imputable SCSP p achieves a weaker
form of authentication between the same principals by the same message, then
the latter SCSP bears an authentication attack.

Definition 9 (Authentication attack).
Authentication attack on A by means of B in p ⇐⇒ l-authentication of B with
A in P ∧ l′-authentication of B with A in p ∧ l′ < l.

If a malicious principal has intercepted a message m that authenticates B
with A, and forwarded m to B in some imputable SCSP p, then, according to
the previous definition, there is an authentication attack on A by means of B in
p.

4 The Kerberos Protocol

Kerberos is a protocol based on symmetric cryptography meant to distribute
session keys with authentication over local area networks. The protocol has been
developed in several variants (e.g. [MNSS89]), and also integrated with smart
cards [IH99]. Here, we refer to the version by Bella and Riccobene [BR97].

database

B

A

Tgs

Kas

1

4

3

2

6

5

Fig. 5. The Kerberos layout.

The layout in figure 5 shows that Kerberos relies on two servers, the Ker-
beros Authentication Server (Kas in brief), and the Ticket Granting Server (Tgs
in brief). The two servers are trusted, namely they are assumed to be secure
from the spy’s tampering. They have access to an internal database containing
the long-term keys of all principals. The database is in turn assumed to be se-
cure. Only the first two steps of the protocol are mandatory, corresponding to a
principal A’s authentication with Kas. The remaining steps are optional as they
are executed only when A requires access to a network resource B.

Authentication

1. A → Kas : A, Tgs,T1

2. Kas → A : {|authK , Tgs,Ta, {|A, Tgs, authK ,Ta|}Ktgs︸ ︷︷ ︸
authTicket

|}Ka

Authorisation

3. A → Tgs :

authTicket︷ ︸︸ ︷
{|A, Tgs, authK ,Ta|}Ktgs ,

authenticator︷ ︸︸ ︷
{|A,T2 |}authK , B

4. Tgs → A : {|servK , B,Ts, {|A, B, servK ,Ts|}Kb︸ ︷︷ ︸
servTicket

|}authK

Service

5. A → B :

servTicket︷ ︸︸ ︷
{|A, B, servK ,Ts|}Kb ,

authenticator︷ ︸︸ ︷
{|A,T3 |}servK

6. B → A : {|T3 + 1|}servK
Fig. 6. The Kerberos protocol.

In the authentication phase, the initiator A queries Kas with her identity, Tgs
and a timestamp T1 ; Kas invents a session key and looks up A’s shared key in
the database. It replies with a message sealed by A’s shared key containing the

session key, its timestamp Ta, Tgs and a ticket. The session key and the ticket
are the credentials to use in the subsequent authorisation phase, so we address
them as authkey and authticket respectively.

Now, A may start the authorisation phase. She sends Tgs a three-component
message including the authticket, an authenticator sealed by the authkey con-
taining her identity and a new timestamp T2 , and B’s identity. The lifetime of
an authenticator is a few minutes. Upon reception of the message, Tgs decrypts
the authticket, extracts the authkey and checks the validity of its timestamp Ta,
namely that Ta is not too old with respect to the lifetime of authkeys. Then, Tgs
decrypts the authenticator using the authkey and checks the validity of T2 with
respect to the lifetime of authenticators. Finally, Tgs invents a new session key
and looks up B’s shared key in the database. It replies with a message sealed by
the authkey containing the new session key, its timestamp Ts, B and a ticket.
The session key and the ticket are the credentials to use in the subsequent service
phase, so we address them as servkey and servticket respectively. The lifetime of
a servkey is a few minutes.

Hence, A may start the service phase. She sends B a two-component message
including the servticket and an authenticator sealed by the servkey containing
her identity and a new timestamp T3 . Upon reception of the message, B decrypts
the servticket, extracts the servkey and checks the validity of its timestamp Ts.
Then, B decrypts the authenticator using the servkey and checks the validity of
T3 . Finally, B increments T3 , seals it by the servkey and sends it back to A.

5 Analysing Kerberos

As a start, we build the initial SCSP for Kerberos. Figure 7 shows the fragment
pertaining to principals A and B. The assignment all keys → private signifies
that the constraint assigns level private to all principals’ long-term keys.

all_keys --> private

all_keys --> private

KAS

TGS

a --> public
b --> public
tgs --> public
kas --> public

a --> public
b --> public
tgs --> public
kas --> public

a --> public
b --> public
tgs --> public
kas --> public

a --> public
b --> public
tgs --> public
kas --> public

A
B

Kb --> private
Ka --> private

Fig. 7. The initial SCSP for Kerberos (fragment).

Then, we build the policy SCSP for Kerberos using algorithm
Build Policy SCSP (figure 3). Figure 8 shows the fragment pertaining to
principals A and B. The components that are specific of the session between A

and B, such as timestamps and session keys, are not indexed for simplicity. We
remark that the security levels of all other principals on the authkey authK and
on the servkey servK are unknown.

6:

5:

4:

3:

2:

1:

4

3

2

1

6

5

KAS

TGS

A B

a --> public
b --> public
tgs --> public
kas --> public

a --> public
b --> public
tgs --> public
kas --> public

a --> public
b --> public
tgs --> public
kas --> public

a --> public
b --> public
tgs --> public
kas --> public

<a,tgs,T1> --> public

<{| authK,tgs,Ta,authTicket |}_Ka> = -> traded1

<authTicket,authenticatorTGS,B> --> traded2

<{| servK,B,Ts,servTicket |}_authK> --> traded3

<servTicket,authenticatorB> --> traded4

authenticatorA --> traded5

authTicket = {| a,tgs,authK,Ta |}_Ktgs --> private

authenticatorTGS = {| a,T2 |}_authK --> traded1

servTicket = {| a,b,servK,Ts |}_Kb --> private

authenticatorB = {| a,T3 |}_servK --> traded3

authenticatorA = {| T3+1 |}_servK --> traded4

Ka --> private Kb --> private

all_keys --> private

all_keys --> private

Fig. 8. The policy SCSP for Kerberos (fragment).

5.1 Confidentiality

A preliminary analysis of confidentiality conducted on the policy SCSP in figure 8
highlights that the late protocol messages get worse security levels than the
initial ones do. So, let us consider a potential confidentiality attack whereby A
looses authK to some malicious principal other than B, and another potential
confidentiality attack whereby A or B loose servK to some malicious principal.
Since A’s security level on authK is traded1, and both A and B’s security levels
on servK are traded3, the former would be a worse confidentiality attack than
the latter, by definition 3. Indeed, having authK available, one can obtain servK
from decryption and splitting of message 4.

We can also conduct an empirical analysis by considering, for example, a
known-cleartext attack [RSA76] mounted by some malicious principal C on the
authenticator of message 3 to discover the authkey. (In brief, such an attack
works as follows. Since both principal names and timestamps are public, C knows
the body of the authenticator with a good approximation (she should just try out
all timestamps of, say, the last day). First, she invents a key, encrypts the known
body with it, and checks whether the result matches the encrypted authenticator
fetched from the network. If not, C “refines” her key [RSA76] and iterates the
procedure until she obtains the same ciphertext as the authenticator. At this
stage, she holds the encryption key, alias the authkey, because encryption is
injective.)

3:

3’:

4:

3’

4

3

C

<{| servK,B,Ts,servTicket |}_authK> --> traded3

<authTicket,authenticatorTGS’,B> --> traded1

<authTicket,authenticatorTGS,B> --> traded2

servTicket = {| a,b,servK,Ts |}_Kb --> private

authenticatorTGS = {| a,T2 |}_authK --> traded1

authTicket = {| a,tgs,authK,Ta |}_Ktgs --> private

authenticatorTGS’ = {| C,T2 |}_authK --> private

A

a --> public
b --> public
tgs --> public
kas --> public

TGS

a --> public
b --> public
tgs --> public
kas --> public

Ka --> private

all_keys --> private

authK --> private

Fig. 9. The imputable SCSP for an attack on an authkey (fragment).

Figure 9 presents the imputable SCSP corresponding to the mentioned at-
tack. This SCSP achieves private-confidentiality of authK for C, whereas the
policy SCSP achieved unknown-confidentiality of authK for C. Therefore, by
definition 4, there is a confidentiality attack by C on authK in the imputable
SCSP considered here. Notice that the key being private for C signifies that
C did not discover it because of a weakness of the protocol, otherwise the key
would have been tradedi for some i. Therefore, our notation also captures known-
cleartext attacks, which are due to weaknesses of the underlying cryptosystem.

Following the attack, C can forge an instance of message 3, and mislead Tgs
into thinking that the authkey is for use with C rather than with A.

5.2 Authentication

We now focus on the fragment of policy SCSP for Kerberos given in figure 8
to conduct a preliminary analysis of the authentication goal. In particular, we
study the authentication goals achieved between the pair of principals A and B.

By definition 7, there is traded4-authentication of A with B in the policy
SCSP. The definition holds for message 5, which speaks about A because it
mentions A. Likewise, there is traded5-authentication of B with A in the policy
SCSP. The definition holds for message 6, which speaks about B because it uses
the servkey that is associated to B.

We observe that authentication of B with A is weaker than authentication of
A with B even in the ideal conditions formalised by the policy SCSP. Intuitively,
this is due to the fact that the servkey has been handled both by A and B rather
than just by A. Hence, by definition 8, a principal C’s masquerading as A with
B would be a worse authentication attack than a principal D’s masquerading as
B with A.

Once we are given an authentication attack, we can build the corresponding
imputable SCSP, and conduct an empirical analysis of authentication (omitted
here), as described in §3.8.

6 Conclusions

We have developed a new framework for analysing security protocols, based
on a recent kernel [BB01]. Soft constraint programming allows us to conduct
a fine analysis of the confidentiality and authentication goals that a protocol
attempts to achieve. Using the security levels, we can formally claim that a
configuration induced by a protocol achieves a certain level of confidentiality
or authentication. That configuration may be ideal if every principal behaves
according to the protocol, as formalised by the policy SCSP; or, it may arise
from the protocol execution in the real world, where some principal may have
acted maliciously. We can formally express that different principals participating
in the same protocol session obtain different forms of those goals. We might even
compare the forms of the same goal as achieved by different protocols.

In relation to our work, we mention Mitchell et al.’s analysis by model check-
ing [MMS97]. They consider a version of Kerberos simplified of timestamps and
lifetimes — hence authkeys and servkeys cannot be distinguished — establishing
that a small system with an initiator, a responder, Kas and Tgs keeps the two
session keys secure from the spy. Bella and Paulson [BP98] verify by theorem
proving a version with timestamps of the same protocol. They do prove that
using a lost authkey will let the spy obtain a servkey. On top of this, one can
informally deduce that the first key is more important than the second in terms
of confidentiality. By contrast, our preliminary analysis of the protocol states
formally that the authkey is traded1-confidential and the servkey is traded3-
confidential (§5.1). Another finding is the difference between authentication of
initiator with responder and vice versa (§5.2).

Our analysis is amenable to mechanisation by model checking: we could con-
duct an empirical analysis on all imputable SCSPs, which are in a finite num-
ber [DLMS99]. These could be generated by an inductive definition whereby
a principal tells a new constraint at each step. The imputable SCSPs would be
each other similar, so their solutions could be computed efficiently using existing
tools [Geo99,GC98].

References

[Aba97] Mart́ın Abadi. Secrecy by typing in security protocols. In 14th Symposium
on Theoretical Aspects of Computer Science (STACS’97), Lecture Notes in
Computer Science. Springer-Verlag, 1997.

[Aba99] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, September 1999.

[AN96] M. Abadi and R. M. Needham. Prudent Engineering Practice for Crypto-
graphic Protocols. IEEE Transactions on Software Engineering, 22(1):6–15,
1996.

[B9̈9] E. Börger. High level system design and analysis using abstract state ma-
chines. In D. Hutter, W. Stephan, P. Traverso, and M. Ullman, editors,
Current Trends in Applied Formal Methods (FM-Trends’98), volume 1641
of LNCS, pages 1–43. Springer-Verlag, 1999.

[BB01] G. Bella and S. Bistarelli. Soft Constraints for Security Protocol Analysis:
Confidentiality. In Proc. of the 3rd International Symposium on Practical
Aspects of Declarative Languages (PADL’01), Lecture Notes in Computer
Science. Springer-Verlag, 2001. In press.

[Bel99] G. Bella. Modelling Security Protocols Based on Smart Cards. In Proc. of
the International Workshop on Cryptographic Techniques & E-Commerce
(CrypTEC’99), pages 139–146. City University of Hong Kong, 1999.

[BFM+96] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and Valued CSPs: Basic Properties and Comparison.
In Over-Constrained Systems. Springer-Verlag, 1996.

[BFM+99] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Ver-
faillie. Semiring-based csps and valued csps: Frameworks, properties, and
comparison. CONSTRAINTS: An international journal. Kluwer, 4(3), 1999.

[Bis01] S. Bistarelli. Soft Constraint Solving and Programming: a general frame-
work. PhD thesis, Dipartimento di Informatica - Università di Pisa, 2001.

[BMPT00] G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal Verifica-
tion of Cardholder Registration in SET. In Proc. of European Symposium on
Research in Computer Security (ESORICS 2000), LNCS. Springer-Verlag,
2000. In press.

[BMR95] S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings.
In Proc. of the 14th International Joint Conference on Artificial Intelligence
(IJCAI’95). Morgan Kaufman, 1995.

[BMR97] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving
and Optimization. Journal of the ACM, pages 201–236, 1997.

[BP98] G. Bella and L. C. Paulson. Kerberos Version IV: Inductive Analysis of the
Secrecy Goals. In Proc. of European Symposium on Research in Computer
Security (ESORICS’98), volume 1485 of LNCS, pages 361–375. Springer-
Verlag, 1998.

[BR97] G. Bella and E. Riccobene. Formal Analysis of the Kerberos Authentication
System. Journal of Universal Computer Science, 3(12):1337–1381, 1997.

[DFP93] D. Dubois, H. Fargier, and H. Prade. The Calculus of Fuzzy Restrictions as
a Basis for Flexible Constraint Satisfaction. In Proc. of IEEE International
Conference on Fuzzy Systems, pages 1131–1136. IEEE Press, 1993.

[DLMS99] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of
bounded security protocols. In N. Heintze and E. Clarke, editors, Proc.
FMSP’99, 1999.

[FL93] H. Fargier and J. Lang. Uncertainty in Constraint Satisfaction Problems: a
Probabilistic Approach. In Proc. of European Conference on Symbolic and
Qualitative Approaches to Reasoning and Uncertainty (ECSQARU), pages
97–104. Springer-Verlag, 1993.

[FW92] E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. AI Journal,
1992.

[GC98] Y. Georget and P. Codognet. Compiling semiring-based constraints with
clp(fd,s). In Proc. CP98, number 1520 in LNCS. Springer-Verlag, 1998.

[Geo99] Y. Georget. Extensions de la Programmation par Contraintes. PhD thesis,
Ecole Polytecnique, Paris, 1999.

[Gra01] Evelyn Gray. American national standard t1.523-
2001, telecom glossary 2000. published on the Web at
http://www.its.bldrdoc.gov/projects/telecomglossary2000, 2001.

[IH99] N. Itoi and P. Honeyman. Smartcard Integration with Kerberos V5. In
Proceedings of the USENIX Workshop on Smartcard Technology, 1999.

[Int89] International Organization for Standardization. Information processing sys-
tems – Open Systems Interconnection – Basic Reference Model – Part 2:
Security Architecture. ISO 7498-2, 1989.

[Low95] G. Lowe. An Attack on the Needham-Schroeder Public-Key Authentication
Protocol. Information Processing Letters, 56(3):131–133, 1995.

[Low96] G. Lowe. Some New Attacks upon Security Protocols. In In Proc. of
Computer Security Foundations Workshop (CSFW96), pages 139–146. IEEE
Press, 1996.

[MMS97] J. C. Mitchell, M. Mitchell, and U. Stern. Automated Analysis of Crypto-
graphic Protocols Using Murphi. In Proceedings of the 16th IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society Press, 1997.

[MNSS89] S. P. Miller, J. I. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos Au-
thentication and Authorisation System. Technical Plan Sec. E.2.1, MIT -
Project Athena, 1989.

[Pau98] L. C. Paulson. The Inductive Approach to Verifying Cryptographic Proto-
cols. Journal of Computer Security, 6:85–128, 1998.

[RS00] P. Y. A. Ryan and S. A. Schneider. The Modelling and Analysis of Security
Protocols: The CSP Approach. Addison-Wesley, 2000. In press.

[RSA76] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
21(2):120–126, 1976.

[Rut94] Zs. Ruttkay. Fuzzy Constraint Satisfaction. In Proc. of 3rd IEEE Interna-
tional Conference on Fuzzy Systems, pages 1263–1268, 1994.

[Sch92] T. Schiex. Possibilistic Constraint Satisfaction Problems, or “How to Handle
Soft Constraints?”. In Proc. of 8th Conference on Uncertainty in AI, pages
269–275, 1992.

[SFV95] T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Prob-
lems: Hard and Easy Problems. In Proc. of the 14th International Joint
Conference on Artificial Intelligence (IJCAI’95), pages 631–637. Morgan
Kaufmann, 1995.

