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Abstract. We introduce a general framework for constraint satisfaction and optimization where
classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily
cast. The framework is based on a semiring structure, where the set of the semiring specifies the
values to be associated with each tuple of values of the variable domain, and the two semiring
operations (1 and 3) model constraint projection and combination respectively. Local consistency
algorithms, as usually used for classical CSPs, can be exploited in this general framework as well,
provided that certain conditions on the semiring operations are satisfied. We then show how this
framework can be used to model both old and new constraint solving and optimization schemes, thus
allowing one to both formally justify many informally taken choices in existing schemes, and to prove
that local consistency techniques can be used also in newly defined schemes.


Categories and Subject Descriptors: I.1.2 [Algebraic Manipulation]: Algorithms—analysis of algo-
rithms; I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—uncertainty; “fuzzy”, and
probabilistic reasoning; I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and
Methods.


General Terms: Algorithms, Theory.


Additional Key Words and Phrases: Constraint solving, dynamic programming, local consistency,
non-crisp constraint reasoning.


1. Introduction


Classical constraint satisfaction problems (CSPs) [Montanari 1974; Mackworth
1992] are a very expressive and natural formalism to specify many kinds of
real-life problems. In fact, problems ranging from map coloring, vision, robotics,
job-shop scheduling, VLSI design, etc., can easily be cast as CSPs and solved
using one of the many techniques that have been developed for such problems or
subclasses of them.1
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However, they also have evident limitations, mainly due to the fact that they
do not appear to be very flexible when trying to represent real-life scenarios
where the knowledge is not completely available nor crisp. In fact, in such
situations, the ability of stating whether an instantiation of values to variables is
allowed or not is not enough or sometimes not even possible. For these reasons,
it is natural to try to extend the CSP formalism in this direction.


For example, in Rosenfeld et al. [1976], Dubois et al. [1993], and Ruttkay
[1994], CSPs have been extended with the ability to associate with each tuple, or
to each constraint, a level of preference, and with the possibility of combining
constraints using min-max operations. This extended formalism has been called
Fuzzy CSPs (FCSPs). Other extensions concern the ability to model incomplete
knowledge of the real problem [Fargier and Lang 1993], to solve over-con-
strained problems [Freuder and Wallace 1992], and to represent cost optimiza-
tion problems.


In this paper, we define a constraint solving framework where all such
extensions, as well as classical CSPs, can be cast. However, we do not relax the
assumption of a finite domain for the variables of the constraint problems. The
main idea is based on the observation that a semiring (i.e., a domain plus two
operations satisfying certain properties) is all that is needed to describe many
constraint satisfaction schemes. In fact, the domain of the semiring provides the
levels of consistency (which can be interpreted as cost, or degrees of preference,
or probabilities, or others), and the two operations define a way to combine
constraints together. More precisely, we define the notion of constraint solving
over any semiring. Specific choices of the semiring will then give rise to different
instances of the framework, which may correspond to known or new constraint
solving schemes.


In classical CSPs, so-called local consistency techniques2 have been proved to
be very effective when approximating the solution of a problem. In this paper, we
study how to generalize these techniques to our framework, and we provide
sufficient conditions over the semiring operations which assure that they can also
be fruitfully applied to the considered scheme. By “fruitfully applicable,” we
mean that (1) the algorithm terminates and (2) the resulting problem is
equivalent to the given one and it does not depend on the nondeterministic
choices made during the algorithm. In particular, such conditions rely mainly on
having an idempotent operator (the 3 operator of the semiring).


The advantage of our framework, that we call SCSP (for Semiring-based CSP),
is that one can hopefully see his own constraint solving paradigm as an instance
of SCSP over a certain semiring, and can inherit the results obtained for the
general scheme. In particular, one can immediately see whether a local consis-
tency technique can be applied. In fact, our sufficient conditions, which are
related to the chosen semiring, guarantee that the above basic properties of local
consistency hold. Therefore, if they are satisfied, local consistency can safely be
applied. Otherwise, it means that we cannot be sure that in general local
consistency will be meaningful in the chosen instance.


In this paper, we consider several known and new constraint-solving frame-
works, casting them as instances of SCSP, and we study the possibility of applying


2 See, for example, Freuder [1978; 1988], Mackworth [1977; 1992], Montanari [1974], and Montanari
and Rossi [1986].
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local consistency algorithms. In particular, we confirm that CSPs enjoy all the
properties needed to use such algorithms, and that they can also be applied to
FCSPs. Moreover, we consider probabilistic CSPs [Fargier and Lang 1993], and
we see that local consistency algorithms might be meaningless for such a
framework, as well as for weighted CSPs (since the above-cited sufficient
conditions do not hold).


We also define a suitable notion of dynamic programming over SCSPs, and we
prove that it can be used over any instance of the framework, regardless of the
properties of the semiring. Furthermore, we show that when it is possible to
provide a whole class of SCSPs with parsings trees of bounded size, then the
SCSPs of the class can be solved in linear time.


The notion of semiring for constraint solving has been used also in Giacobazzi
et al. [1992]. However, the use of such a notion is completely different from ours.
In fact, in Giacobazzi et al. [1992] the semiring domain (hereby denoted by A) is
used to specify the domain of the variables, whereas here we always assume a
finite domain (hereby denoted by D) and A is used to model the values
associated with the tuples of values of D.


The work which is most related to ours is the one presented in Schiex et al.
[1995]. However, the structure they use is not a semiring, but a totally ordered
commutative monoid. This means that the order (to be used to compare different
tuples) is always total, while in our framework it is in general partial, and this
may be useful in some cases, like for example for the instances in Section 7. Also,
they associate values with constraints instead of tuples. Moreover, while our aim
is to study the properties of the semiring (i.e., mainly the idempotency of 3) that
are sufficient to safely use the local consistency algorithms, they investigate the
use of the values associated with the constraints for deriving useful lower bounds
for branch-and-bound algorithms. Finally, they also study the generalization of
the property of arc-consistency, and they show that strict monotonicity of the
operator of the monoid guarantees that achieving this generalized notion is
NP-complete. Note, however, that one can pass from one formulation to the
other by using an appropriate transformation [Bistarelli et al. 1996], but only if a
total order is assumed.


The paper is organized as follows: Section 2 defines c-semirings and their
properties. Then Section 3 introduces constraint problems over any semirings
and the associated notions of solution and consistency. Then, Section 4 intro-
duces the concept of local consistency for SCSPs and gives sufficient conditions
for the applicability of the local consistency algorithms. Section 5 describes a
dynamic programming algorithm to solve SCSPs that can be applied to any
instance of our framework, without any condition. Then, Section 6 studies several
instances of the SCSP framework and for each of them proves the applicability,
or not, of the local consistency algorithms. Section 7 shows that our framework
allows also for a mixed form of reasoning, where problems are optimized
according to several criteria.


This paper is a revised and extended version of Bistarelli et al. [1995]. The
main changes with respect to that paper, apart from the greater level of detail
and formalization throughout the whole paper, concern the definition of local
consistency algorithms instead of the less general k-consistency algorithms, the
more extensive use of typed locations both for local consistency and for dynamic
programming, the description of dynamic programming as a particular local
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consistency algorithm, and the proof that in some cases (of SCSPs with bounded
parsing tree) dynamic programming has a linear complexity.


2. C-Semirings and Their Properties


We extend the classical notion of constraint satisfaction to allow also for (1)
noncrisp statements and (2) a more general interpretation of the operations on
such statements. This allows us to model both classical CSPs and several
extensions of them (like fuzzy CSPs [Dubois et al. 1993; Ruttkay 1994], partial
constraint satisfaction [Freuder and Wallace 1992], etc.), and also to possibly
define new frameworks for constraint solving. To formally do that, we associate a
semiring with the standard notion of constraint problem, so that different choices
of the semiring represent different concrete constraint satisfaction schemes. In
fact, such a semiring will give us both the domain for the noncrisp statements and
also the allowed operations on them.


Definition 2.1 (semiring). A semiring is a tuple ^ A, sum, 3, 0, 1& such that


—A is a set and 0, 1 [ A;
—sum, called the additive operation, is a commutative (i.e., sum(a, b) 5 sum(b,


a)) and associative (i.e., sum(a, sum(b, c)) 5 sum(sum(a, b), c)) operation
such that sum(a, 0) 5 a 5 sum(0, a) (i.e., 0 is its unit element);


—3, called the multiplicative operation, is an associative operation such that 1 is
its unit element and a 3 0 5 0 5 0 3 a (i.e., 0 is its absorbing element);


—3 distributes over sum (i.e., for any a, b, c [ A, a 3 sum(b, c) 5 sum((a 3
b), (a 3 c))).


In the following, we will consider semirings with additional properties of the
two operations. Such semirings will be called c-semiring, where “c” stands for
“constraint”, meaning that they are the natural structures to be used when
handling constraints.


Definition 2.2 (c-semiring). A c-semiring is a tuple ^ A, 1, 3, 0, 1& such that


—A is a set and 0, 1 [ A;
—1 is defined over (possibly infinite) sets of elements of A as follows:3


—for all a [ A, ({a}) 5 a;
— (À) 5 0 and ( A) 5 1;
— (ø Ai, i [ S) 5 ({ ( Ai), i [ S}) for all sets of indices S (flattening


property).


—3 is a binary, associative and commutative operation such that 1 is its unit
element and 0 is its absorbing element;


—3 distributes over 1 (i.e., for any a [ A and B # A, a 3 (B) 5 ({a 3
b, b [ B})).


Operation 1 is defined over any set of elements of A, also over infinite sets.
This will be useful later in proving Theorem 2.9. The fact that 1 is defined over


3 When 1 is applied to a two-element set, we will use the symbol 1 in infix notation, while in general
we will use the symbol in prefix notation.
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sets of elements, and not pairs or tuples, automatically makes such an operation
commutative, associative, and idempotent. Moreover, it is possible to show that 0
is the unit element of 1; in fact, by using the flattening property we get


({a, 0}) 5 ({a} ø À) 5 ({a}) 5 a. This means that a c-semiring is a
semiring (where the sum operation is 1) with some additional properties.


It is also possible to prove that 1 is the absorbing element of 1. In fact, by
flattening and by the fact that we set ( A) 5 1, we get ({a, 1}) 5 ({a}
ø A) 5 ( A) 5 1.


Let us now consider the advantages of using c-semirings instead of semirings.
First, the idempotence of the 1 operation is needed in order to define a partial
ordering #S over the set A, which will enable us to compare different elements
of the semiring. Such partial order is defined as follows: a #S b iff a 1 b 5 b.
Intuitively, a #S b means that b is “better” than a, or, from another point of
view, that, between a and b, the 1 operation chooses b. This ordering will be
used later to choose the “best” solution in our constraint problems.


THEOREM 2.3 (#S IS A PARTIAL ORDER). Given any c-semiring S 5 ^ A, 1, 3,
0, 1&, consider the relation #S over A such that a #S b iff a 1 b 5 b. Then #S is a
partial order.


PROOF. We have to prove that #S is reflexive, transitive, and antisymmetric:


—Since 1 is idempotent, we have that a 1 a 5 a for any a [ A. Thus, by
definition of #S, we have that a #S a. Thus, #S is reflexive.


—Assume a #S b and b #S c. This means that a 1 b 5 b and b 1 c 5 c.
Thus, c 5 b 1 c 5 (a 1 b) 1 c 5 a 1 (b 1 c) 5 a 1 c. Note that here
we also used the associativity of 1. Thus #S is transitive.


—Assume that a #S b and b #S a. This means that a 1 b 5 b and b 1 a 5 a.
Thus a 5 b 1 a 5 a 1 b 5 b. Thus, #S is antisymmetric. e


The fact that 0 is the unit element of the additive operation implies that 0 is
the minimum element of the ordering. Thus, for any a [ A, we have 0 #S a.


It is important to notice that both the additive and the multiplicative opera-
tions are monotone on such an ordering.


THEOREM 2.4 (1 AND 3 ARE MONOTONE OVER #S). Given any c-semiring
S 5 ^ A, 1, 3, 0, 1&, consider the relation #S over A. Then 1 and 3 are monotone
over #S. That is, a #S a9 implies a 1 b #S a9 1 b and a 3 b #S a9 3 b.


PROOF. Assume a #S a9. Then, by definition of #S, a 1 a9 5 a9.
Thus, for any b, a9 1 b 5 a 1 a9 1 b. By idempotence of 1, we also have a9


1 b 5 a 1 a9 1 b 5 a 1 a9 1 b 1 b, which, by commutativity of 1, becomes
a9 1 b 5 (a 1 b) 1 (a9 1 b). By definition of #S, we have a 1 b #S a9 1
b.


Also, from a 1 a9 5 a9 derives that, for any b, a9 3 b 5 (a9 1 a) 3 b 5
(by distributiveness) (a9 3 b) 1 (a 3 b). This means that (a 3 b) #S (a9 3
b). e


The commutativity of the 3 operation is desirable when such an operation is
used to combine several constraints. In fact, were it not commutative, it would
mean that different orders of the constraints give different results.
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Since 1 is also the absorbing element of the additive operation, then a #S 1
for all a. Thus, 1 is the maximum element of the partial ordering. This implies
that the 3 operation is intensive, that is, that a 3 b #S a. This is important since
it means that combining more constraints leads to a worse (with respect to the
#S ordering) result.


THEOREM 2.5 (3 IS INTENSIVE). Given any c-semiring S 5 ^ A, 1, 3, 0, 1&,
consider the relation #S over A. Then 3 is intensive, that is, a, b [ A implies a 3 b
#S a.


PROOF. Since 1 is the unit element of 3, we have a 5 a 3 1. Also, since 1 is
the absorbing element of 1, we have 1 5 1 1 b. Thus a 5 a 3 (1 1 b). Now,
a 3 (1 1 b) 5 {by distributiveness of 3 over 1} (a 3 1) 1 (a 3 b) 5 {1 unit
element of 3} a 1 (a 3 b). Thus, we have a 5 a 1 (a 3 b), which, by
definition of #S, means that (a 3 b) #S a. e


In the following, we will sometimes need the 3 operation to be closed on a
certain finite subset of the c-semiring.


Definition 2.6 ( AD-closed). Given any c-semiring S 5 ^ A, 1, 3, 0, 1&,
consider a finite set AD # A. Then 3 is AD-closed if, for any a, b [ AD , (a 3
b) [ AD.


We will now show that c-semirings can be assimilated to complete lattices.
Moreover, we will also sometimes need to consider c-semirings where 3 is
idempotent, which we will show equivalent to distributive lattices. See Davey and
Priestly [1990] for a deep treatment of lattices.


Definition 2.7 (lub, glb, lattice, complete lattice [Davey and Priestly 1990]).
Consider a partially ordered set S and any subset I of S. Then we define the
following:


—an upper bound (resp., lower bound) of I is any element x such that, for all y [
I, y # x (resp., x # y);


—the least upper bound (lub) (resp., greatest lower bound (glb)) of I is an upper
bound (resp., lower bound) x of I such that, for any other upper bound (resp.,
lower bound) x9 of I, we have that x # x9 (resp., x9 # x).


A lattice is a partially ordered set where every subset of two elements has a lub
and a glb. A complete lattice is a partially ordered set where every subset has a
lub and a glb.


We will now prove a property of partially ordered sets where every subset has
the lub, which will be useful in proving that ^ A, #S& is a complete lattice. Notice
that when every subset has the lub, then also the empty set has the lub. Thus, in
partial orders with this property, there is always a global minimum of the partial
order (which is the lub of the empty set).


LEMMA 2.8 (LUB f GLB). Consider a partial order ^ A, #& where there is the
lub of every subset I of A. Then there exists the glb of I as well.


PROOF. Consider any set I # A, and let us call LB(I) the set of all lower
bounds of S. That is, LB(I) 5 { x [ A u for all y [ I, x #S y}. Then consider
a 5 lub(LB(I)). We will prove that a is the glb of I.
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Consider any element y [ I. By definition of LB(I), we have that all elements
x in LB(I) are smaller than y, thus y is an upper bound of LB(I). Since a is by
definition the smallest among the upper bounds of LB(I), we also have that a
#S y. This is true for all elements y in I. Thus, a is a lower bound of I, which
means that it must be contained in LB(I). Thus, we have found an element of A
which is the greatest among all lower bounds of I. e


THEOREM 2.9 (^ A, #S& IS A COMPLETE LATTICE). Given a c-semiring S 5 ^ A,
1, 3, 0, 1&, consider the partial order #S. Then ^ A, #S& is a complete lattice.


PROOF. To prove that ^ A, #S& is a complete lattice it is enough to show that
every subset of A has the lub. In fact, by Lemma 2.8, we would get that each
subset of A has both the lub and the glb, which is exactly the definition of a
complete lattice.


We already know by Theorem 2.3 that ^ A, #S& is a partial order. Now,
consider any set I # A, and let us set m 5 sum(I) and n 5 lub(I). Taken any
element x [ I, we have that x 1 m 5 (by flattening) sum({ x} ø I) 5 sum(I)
5 m. Therefore, by definition of #S, we have that x #S m. Thus, also n #S m,
since m is an upper bound of I and n by definition is the least among the upper
bounds.


On the other hand, we have that m 1 n 5 (by definition of sum) sum({m} ø
{n}) 5 (by flattening and since m 5 sum(I)) sum(I ø {n}) 5 (by giving an
alternative definition of the set I ø {n}) sum(øx[I({ x} ø {n})) 5 (by
flattening) sum({sum({ x} ø {n}), x [ I}) 5 (since x #S n and thus sum({ x}
ø {n}) 5 n) sum({n}) 5 n. Thus, we have proved that m #S n, which,
together with the previous result (that n #S m) yields m 5 n. In other words,
we proved that sum(I) 5 lub(I) for any set I # A. Thus, every subset of A, say
I, has a least upper bound (which coincides with sum(I)). Thus, ^ A, #S& is a
lub-complete partial order. e


Note that the proof of the previous theorem also says that the sum operation
coincides with the lub of the lattice ^ A, #S&.


THEOREM 2.10 (3 IDEMPOTENT IMPLIES ^ A, #S& DISTRIBUTIVE AND 3 5 GLB).
Given a c-semiring S 5 ^ A, 1, 3, 0, 1&, consider the corresponding complete lattice
^ A, #S&. If 3 is idempotent, then we have that:


(1) 1 distributes over 3;
(2) 3 coincides with the glb operation of the lattice;
(3) ^ A, #S& is a distributive lattice.


PROOF


(1) (a 1 b) 3 (a 1 c) 5 {since 3 distributes over 1}
((a 1 b) 3 a) 1 ((a 1 b) 3 c)) 5 {same as above}
((a 3 a) 1 (a 3 b)) 1 ((a 1 b) 3 c)) 5 {by idempotence of 3}
(a 1 (a 3 b)) 1 ((a 1 b) 3 c)) 5 {by intensivity of 3 and definition of
#S}
a 1 ((a 1 b) 3 c)) 5 {since 3 distributes over 1}
a 1 ((c 3 a) 1 (c 3 b)) 5 {by intensivity of 3 and definition of #S}
a 1 (c 3 b).
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(2) Assume that a 3 b 5 c. Then, by intensivity of 3 (see Theorem 2.5), we
have that c #S a and c #S b. Thus, c is a lower bound for a and b. To show
that it is a glb, we need to show that there is no other lower bound c9 such
that c #s c9. Assume that such c9 exists. We now prove that it must be c9 5
c:
c9 5 {since c #S c9}
c9 1 c 5 {since c 5 a 3 b}
c9 1 (a 3 b) 5 {since 1 distributes over 3, see previous point}
(c9 1 a) 3 (c9 1 b) 5 {since we assumed c9 #S a and c9 #S b, and by
definition of 3}
a 3 b 5 {by assumption}
c.


(3) This comes from the fact that 1 is the lub, 3 is the glb, and 3 distributes
over 1 by definition of semiring (the distributiveness in the other direction is
given by Lemma 6.3 in Davey and Priestly [1990], or can be seen in the first
point above). e


Note that, in the particular case in which 3 is idempotent and #S is total, we
have that a 1 b 5 max(a, b) and a 3 b 5 min(a, b).


3. Constraint Systems and Problems


We will now define the notion of constraint system, constraint, and constraint
problem, which will be parametric with respect to the notion of c-semiring just
defined. Intuitively, a constraint system specifies the c-semiring ^ A, 1, 3, 0, 1&
to be used, the set of all variables and their domain D.


Definition 3.1 (constraint system). A constraint system is a tuple CS 5 ^S, D,
V&, where S is a c-semiring, D is a finite set, and V is an ordered set of variables.


Now, a constraint over a given constraint system specifies the involved
variables and the “allowed” values for them. More precisely, for each tuple of
values (of D) for the involved variables, a corresponding element of A is given.
This element can be interpreted as the tuple’s weight, or cost, or level of
confidence, or else.


Definition 3.2 (constraint). Given a constraint system CS 5 ^S, D, V&,
where S 5 ^ A, 1, 3, 0, 1&, a constraint over CS is a pair ^def, con&, where


—con # V, it is called the type of the constraint;
—def: Dk 3 A (where k is the cardinality of con) is called the value of the


constraint.


A constraint problem is then just a set of constraints over a given constraint
system, plus a selected set of variables (thus a type). These are the variables of
interest in the problem, that is, the variables of which we want to know the
possible assignments compatibly with all the constraints.


Definition 3.3 (constraint problem). Given a constraint system CS 5 ^S, D,
V&, a constraint problem P over CS is a pair P 5 ^C, con&, where C is a set of
constraints over CS and con # V. We also assume that ^def1, con9& [ C and
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^def2, con9& [ C implies def1 5 def2. In the following we will write SCSP to
refer to such constraint problems.


Note that the above condition (that there are no two constraints with the same
type) is not restrictive. In fact, if in a problem we had two constraints ^def1,
con9& and ^def2, con9&, we could replace both of them with a single constraint
^def, con9& with def(t) 5 def1(t) 3 def2(t) for any tuple t. Similarly, if C were
a multiset, for example, if a constraint ^def, con9& had n occurrences in C, we
could replace all its occurrences with the single constraint ^def9, con9& with


def9~t! 5
def~t! 3 · · · 3 def~t!


n times


for any tuple t. However, this assumption implies that the operation of union of
constraint problems is not just set union, since it has to take into account the
possible presence of constraints with the same type in the problems to be
combined (at most one in each problem), and, in that case, it has to perform the
just described constraint replacement operations.


When all variables are of interest, like in many approaches to classical CSP,
con contains all the variables involved in any of the constraints of the given
problem, say P. Such a set, called V(P), is a subset of V that can be recovered by
looking at the variables involved in each constraint. That is, V(P) 5
ø ^def,con9&[C con9.


As for classical constraint solving, also SCSPs as defined above can be
graphically represented via labeled hypergraphs where nodes are variables,
hyperarcs are constraints, and each hyperarc label is the definition of the
corresponding constraint (which can be seen as a set of pairs ^tuple, value&). The
variables of interest can then be marked in the graph.


Note that the above definition is parametric with respect to the constraint
system CS and thus with respect to the semiring S. In the following, we will
present several instantiations of such a framework, and we will show them to
coincide with known and also new constraint satisfaction systems.


In the SCSP framework, the values specified for the tuples of each constraint
are used to compute corresponding values for the tuples of values of the
variables in con, according to the semiring operations: the multiplicative opera-
tion is used to combine the values of the tuples of each constraint to get the
value of a tuple for all the variables, and the additive operation is used to obtain
the value of the tuples of the variables in the type of the problem. More
precisely, we can define the operations of combination (R) and projection (s)
over constraints. Analogous operations have been originally defined for fuzzy
relations in Zadeh [1965], and have then been used for fuzzy CSPs in Dubois et
al. [1993]. Our definition is however more general since we do not consider a
specific c-semiring (like that we will define for fuzzy CSPs later) but a general
one.


Definition 3.4 (tuple projection). Given a constraint system CS 5 ^S, D, V&
where V is totally ordered via ordering a, consider any k-tuple4 t 5 ^t1, . . . , tk&


4 Given any integer k, a k-tuple is just a tuple of length k. Also, given a set S, an S-tuple is a tuple
with as many elements as the size of S.
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of values of D and two sets W 5 {w1, . . . , wk} and W9 5 {w91, . . . , w9m} such
that W9 # W # V and wi a wj if i # j and w9i a w9j if i # j. Then the
projection of t from W to W9, written t 2W9


W , is defined as the tuple t9 5
^t91, . . . , t9m& with t9i 5 t j if w9i 5 wj.


Definition 3.5 (combination). Given a constraint system CS 5 ^S, D, V&,
where S 5 ^ A, 1, 3, 0, 1&, and two constraints c1 5 ^def1, con1& and c2 5
^def2, con2& over CS, their combination, written c1 R c2, is the constraint c 5
^def, con& with


con 5 con1 ø con2


and


def~t! 5 def1~t 2con1


con ! 3 def2~t 2con2


con ! .


Since 3 is both commutative and associative, also R is so. Thus, this operation
can be easily extended to more than two arguments, say C 5 {c1, . . . , cn}, by
performing c1 R c2 R . . . R cn, which we will sometimes denote by (R C).


Definition 3.6 ( projection). Given a constraint system CS 5 ^S, D, V&,
where S 5 ^ A, 1, 3, 0, 1&, a constraint c 5 ^def, con& over CS, and a set I of
variables (I # V), the projection of c over I, written c sI, is the constraint
^def9, con9& over CS with


con9 5 I ù con


and


def9~t9! 5 O
{t ut2Iùcon


con
5t9}


def~t! .


PROPOSITION 3.7. Given a constraint c 5 ^def, con& over a constraint system CS
and a set I of variables (I # V), we have that c sI 5 c sIùcon.


PROOF. Follows trivially from Definition 3.6. e


A useful property of the projection operation is the following:


THEOREM 3.8. Given a constraint c over a constraint system CS, we have that c
sS1


sS2
5 c sS2


if S2 # S1.


PROOF. To prove the theorem, we have to show that the two constraints c1 5
c sS1


sS2
and c2 5 c sS2


coincide, that is, they have the same con and the
same def. Assume c 5 ^def, con&, c1 5 ^def1, con1&, and c2 5 ^def2, con2&.
Now, con1 5 S2 ù (S1 ù con). Since S2 # S1, we have that con1 5 S2 ù con.
Also, con2 5 S2 ù con; thus, con1 5 con2. Consider now def1. By Definition
3.6, we have that def1(t1) 5 {t9 ut92S2


S15t1} {t ut2S1
con5t9} def(t), which, by


associativity of 1, is the same as {t ut2S2
con5t1} def(t), which coincides with


def2(t1) by Definition 3.6. e


We will now prove a property which can be seen as a generalization of the
distributivity property in predicate logic, which we recall is x.( p ` q) 5 ( x.p)
` q if x not free in q (where p and q are two predicates). The extension we prove
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for our framework is given by the fact that R can be seen as a generalized ` and
s as a variant5 of . This property will be useful later in Section 5.


THEOREM 3.9. Given two constraints c1 5 ^def1, con1& and c2 5 ^def2, con2&
over a constraint system CS, we have that (c1 R c2) s(con1øcon2)2x 5 c1 scon12x R


c2 if x ù con2 5 À.


PROOF. Let us set c 5 (c1 R c2) s(con1øcon2)2x 5 ^def, con& and c9 5 c1
scon12x R c2 5 ^def9, con9& . We will first prove that con 5 con9: con 5
(con1 ø con2) 2 x and con9 5 (con1 2 x) ø con2, which is the same as con
if x ù con2 5 À, as we assumed. Now we prove that def 5 def9. By definition,
def(t) 5 ({t9 ut92con1øcon22x5t}con1øcon2 (def1(t9 2con1


con1øcon2) 3 def2(t9 2con2


con1øcon2)). Now,
def2(t9 2con2


con1øcon2) is independent from the summation, since x is not in-
volved in c2. Thus, it can be taken out. Also, t9 2con2


con1øcon2 can be substituted by
t 2con2


con1øcon2, since t9 and t must coincide on the variables different from x.
Thus, we have: (({t9ut92con1øcon22x5t}con1øcon2 def1(t9 2con1


con1øcon2)) 3 def2(t 2con2


con1øcon22x). Now,
the summation is done over those tuples t9 that involve all the variables and coincide
with t on the variables different from x. By observing that the elements of the
summation are given by def1(t9 2con1


con1øcon2), and thus they only contain variables in
con1, we can conclude that the result of the summation does not change if it is done
over the tuples involving only the variables in con1 and still coinciding with t over the
variables in con1 that are different from x. Thus, we get:


S O{t1ut12con12x
con1 5t2con12x


con1øcon22x} def1~t1!D 3 def2~t 2con2


con1øcon22x! .


It is easy to see that this formula is exactly the definition of def9. e


Using the operations of combination and projection, we can now define the
notion of solution of an SCSP. In the following, we will consider a fixed
constraint system CS 5 ^S, D, V&, where S 5 ^ A, 1, 3, 0, 1&.


Definition 3.10 (solution). Given a constraint problem P 5 ^C, con& over a
constraint system CS, the solution of P is a constraint defined as Sol(P) 5 (R
C) scon.


In words, the solution of an SCSP is the constraint induced on the variables in
con by the whole problem. Such a constraint provides, for each tuple of values of
D for the variables in con, a corresponding value of A. Sometimes, it is enough
to know just the best value associated with such tuples. In our framework, this is
still a constraint (over an empty set of variables), and will be called the best level
of consistency of the whole problem, where the meaning of “best” depends on
the ordering #S defined by the additive operation.


Definition 3.11 (best level of consistency). Given an SCSP problem P 5 ^C,
con&, we define blevel(P) [ S such that ^blevel(P), À& 5 (R C) sÀ. Moreover,
we say that P is consistent if 0 ,S blevel(P), and that P is a-consistent if
blevel(P) 5 a.


5 Note however that the operator corresponding to x is given by sW2{ x}
W .
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Informally, the best level of consistency gives us an idea of how much we can
satisfy the constraints of the given problem. Note that blevel(P) does not depend
on the choice of the distinguished variables, due to the associative property of
the additive operation. Thus, since a constraint problem is just a set of
constraints plus a set of distinguished variables, we can also apply function blevel
to a set of constraints only. More precisely, blevel(C) will mean blevel(^C, con&)
for any con.


Note that blevel(P) can also be obtained by first computing the solution and
then projecting such a constraint over the empty set of variables, as the following
proposition shows.


PROPOSITION 3.12. Given an SCSP problem P, we have that Sol(P) sÀ 5
^blevel(P), À&.


PROOF. Sol(P) sÀ coincides with ((R C) scon) sÀ by definition of
Sol(P). This coincides with (R C) sÀ by Theorem 3.8, thus it is the same as
^blevel(P), À& by Definition 3.11. e


Another interesting notion of solution, more abstract than the one defined
above, but sufficient for many purposes, is the one that does not consider those
tuples whose associated value is worse (with respect to #S) than that of other
tuples.


Definition 3.13 (abstract solution). Given an SCSP problem P 5 ^C, con&,
consider Sol(P) 5 ^def, con&. Then the abstract solution of P is the set
ASol(P) 5 {^t, v& u def(t) 5 v and there is no t9 such that v #S def(t9)}.


Note that, when the #S ordering is a total order (i.e., when, for any a and b,
a 1 b is either a or b), then the abstract solution contains only those tuples
whose associated value coincides with blevel(P). In general, instead, an incompa-
rable set of tuples is obtained, and thus blevel(P) is just an upper bound of the
values associated with the tuples.


By using the ordering #S over the semiring, we can also define a correspond-
ing ordering on constraints with the same type.


Definition 3.14 (constraint ordering). Consider two constraints c1, c2 over
CS, and assume that con1 5 con2 and ucon1u 5 k. Then c1 vS c2 if and only if,
for all k-tuples t of values from D, def1(t) #S def2(t).


Notice that, if c1 vS c2 and c2 vS c1, then c1 5 c2.


THEOREM 3.15 (vS IS A PARTIAL ORDER). The relation vS over the set of
constraints over CS is a partial order.


PROOF. By definition, such a relation is antisymmetric. Also, it is easy to see
that it is reflexive and transitive. e


The notion of constraint ordering, and the fact that the solution is a constraint,
can also be useful to define an ordering on problems.


Definition 3.16 ( problem ordering and equivalence). Consider two SCSP prob-
lems P1 5 ^C1, con& and P2 5 ^C2, con& over CS. Then P1 vP P2 if Sol(P1)
vS Sol(P2). If P1 vP P2 and P2 vP P1, then they have the same solution. Thus,
we say that P1 and P2 are equivalent and we write P1 [ P2.
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THEOREM 3.17 (vP IS A PREORDER AND [ IS AN EQUIVALENCE). The relation
vP over the set of constraint problems over CS is a preorder. Moreover, [ is an
equivalence relation.


PROOF. It is trivial to see that vP is reflexive and transitive, due to the
definition of constraint ordering vS. Thus, vP is a preorder. From this, it derives
that [ is reflexive and transitive as well. Moreover, it is trivially symmetric. e


The ordering vP can also be used for ordering sets of constraints, since a set of
constraint is just a problem where con contains all the variables.


It is interesting now to note that, as in the classical CSP case, also the SCSP
framework is monotone. That is, if some constraints are added, the solution of
the new problem precedes that of the old one in the ordering vS. In other words,
the new problem precedes the old one with respect to the preorder vP.


THEOREM 3.18 (MONOTONICITY). Consider two SCSP problems P1 5 ^C1, con&
and P2 5 ^C1 ø C2, con& over CS. Then P2 vP P1 and blevel(P2) #S blevel(P1).


PROOF. P2 vP P1 follows from the intensivity of 3 and the monotonicity of
1. The same holds also for blevel(P2) #S blevel(P1), since both Sol and
blevel(P) are obtained by projecting over a subset of the variables (which is
always empty in the case of blevel(P)). e


When one is interested in the abstract solution rather than in the solution of
an SCSP, then the above notion of monotonicity is lost. In fact, it is possible that
by adding some constraints the best level of consistency gets worse, while the set
of tuples in the abstract solution grows. See, for example, Figure 1, where there
is a problem P1 with one constraint and both variables as type, and a problem P2
with the same constraint plus another one, and the two leftmost variables as type.
Assume also that 3 is min and that 1 is max. As we will see later, this amounts
to considering the fuzzy constraint satisfaction framework, called FCSP. Now, it
is easy to see that blevel(P1) 5 3 and blevel(P2) 5 2. The abstract solution of P1
contains the tuples ^a, a& and ^b, a&, while that of P2 contains also ^a, b& and ^b,
b&. Thus, adding one constraint in this case makes the best level of consistency
worse while enlarging the set of tuples in the abstract solution.


However, another notion of monotonicity holds, but only when the best level is
not changed by the addition of some constraints and the order #S is total.


THEOREM 3.19 (SUBSET-MONOTONICITY VS. ASOL). Consider two SCSP prob-
lems P1 5 ^C1, con& and P2 5 ^C1 ø C2, con& over CS, and assume that #S is total
and that blevel(P1) 5 blevel(P2). Then Asol(P2) # Asol(P1).


FIG. 1. Two SCSPs.
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PROOF. If #S is total, then the abstract solution is a set of tuples with
associated value exactly the best level. Take a tuple t in ASol(P2). This means
that the value associated with t in P2 is blevel(P2). Then, by Theorem 3.18, the
value associated with t in P1, say v, is such that blevel(P2) #S v. By assumption,
blevel(P1) 5 blevel(P2). If v Þ blevel(P2), then this assumption is violated.
Thus, it must be v 5 blevel(P2) 5 blevel(P1). Thus, t is also in Asol(P1).
Therefore, Asol(P2) # Asol(P1). e


4. Local Consistency


Computing any one of the previously defined notions (the best level of consis-
tency, the solution, and the abstract solution) is an NP-hard problem. Thus, it
can be convenient in many cases to approximate such notions. In classical CSPs,
this is done using the so-called local consistency techniques.6 The main idea is to
choose some subproblems in which to eliminate local inconsistency, and then
iterate such elimination in all the chosen subproblems until stability. The most
widely known local consistency algorithms are arc-consistency [Mackworth 1977],
where subproblems contain just one constraint, and path-consistency [Montanari
1974], where subproblems are triangles (i.e., they are complete binary graphs
over three variables). The concept of k-consistency [Freuder 1978], where
subproblems contain all constraints among subsets of k chosen variables, gener-
alizes them both. However, all subproblems are of the same size (which is k). In
general, one may imagine several algorithms where instead the considered
subparts of the SCSP have different sizes. This generalization of the k-consis-
tency algorithms has been described in Montanari and Rossi [1991] for classical
CSPs. Here we follow the same approach as in Montanari and Rossi [1991], but
we extend the definitions and results presented there to the SCSP framework,
and we show that all the properties still hold, provided that certain properties of
the semiring are satisfied.


Applying a local consistency algorithm to a constraint problem means explici-
tating some implicit constraints, thus possibly discovering inconsistency at a local
level. In classical CSPs, this is crucial, since local inconsistency implies global
inconsistency. We will now show that such a property holds also for SCSPs.


DEFINITION 4.1 (LOCAL INCONSISTENCY). Consider an SCSP problem P 5 ^C,
con&. Then we say that P is locally inconsistent if there exists C9 # C such that
blevel(C9) 5 0.


THEOREM 4.2 (NECESSITY OF LOCAL CONSISTENCY). Consider an SCSP prob-
lem P which is locally inconsistent. Then it is not consistent.


PROOF. We have to prove that blevel(P) 5 0. We know that P is locally
inconsistent. That is, there exists C9 # C such that blevel(C9) 5 0. By Theorem
3.18, we have that blevel(P) #S blevel(C9); thus, blevel(P) #S 0. Since 0 is the
minimum in the ordering #S, then we immediately have that blevel(P) must be 0
as well. e


In the SCSP framework, we can be even more precise, and relate the best level
of consistency of the whole problem (or, equivalently, of the set of all its


6 See, for example, Freuder [1978; 1988], Kumar [1992], and Montanari and Rossi [1991].
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constraints) to that of its subproblems, even though such level is not 0. In fact, it
is possible to prove that if a problem is a-consistent, then all its subproblems are
b-consistent, where a #S b.


THEOREM 4.3. (LOCAL AND GLOBAL A-CONSISTENCY). Consider a set of con-
straints C over CS, and any subset C9 of C. If C is a-consistent, then C9 is
b-consistent, with a #S b.


PROOF. The proof is similar to the previous one. If C is a-consistent, it
means, by definition, that blevel(C) 5 a. Now, if we take any subset C9 of C, by
Theorem 3.18 we have that blevel(C) #S blevel(C9). Thus, a #S blevel(C9). e


In order to define the subproblems to be considered by a local consistency
algorithm, we use the notion of local consistency rule. The application of such a
rule consists of solving one of the chosen subproblems. To model this, we need
the additional notion of typed location. Informally, a typed location is just a
location l (as in ordinary store-based programming languages) which has a set of
variables con as type, and thus can only be assigned a constraint c 5 ^def, con&
with the same type. In the following, we assume to have a location for every set
of variables, and thus we identify a location with its type. Note that at any stage
of the computation the store will contain a constraint problem with only a finite
number of constraints, and thus the relevant locations will always be finitely
many.


Definition 4.4 (typed location). A typed location l is a set of variables.


Definition 4.5 (value of a location). Given a CSP P 5 ^C, con&, the value
[l]P of the location l in P is defined as the constraint ^def, l& [ C if it exists, as
^1, l& otherwise. Given n locations l1, . . . , ln, the value [{l1, . . . , ln}]P of this
set of locations in P is defined instead as the set of constraints {[ l1]P, . . . ,
[ln]P}.


Definition 4.6 (assignment). An assignment is a pair l :5 c where c 5 ^def,
l&. Given a CSP P 5 ^C, con&, the result of the assignment l :5 c is the problem
[l :5 c](P) defined as:


@l :5 c#~P! 5 ^$^def9 , con9& [ C u con9 Þ l% ø c, con& .


Thus, an assignment l :5 c is seen as a function from constraint problems to
constraint problems, which modifies a given problem by changing just one
constraint, the one with type l. The change consists in replacing such a constraint
with c. If there is no constraint of type l, then constraint c is added to the given
problem.


Definition 4.7 (local consistency rule). Given an SCSP P 5 ^C, con&, a local
consistency rule r for P is defined as r 5 l 4 L, where L is a set of locations, l
is a location, and l [y L.


Applying r to P means assigning to location l the constraint obtained by solving
the subproblem of P containing the constraints specified by the locations in L ø
{l}.


Definition 4.8 (rule application). Given a local consistency rule r 5 l 4 L
and a constraint problem P, the result of applying r to P is
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@l4 L#~P! 5 @l :5 Sol~^@L ø $l%#P, l&!#~P! .


Since a rule application is defined as a function from problems to problems, the
application of a sequence S of rules to a problem is easily provided by function
composition. Thus, we have that [r1; S](P) 5 [S]([r1](P)).


Notice for example that [l 4 À](P) 5 P.


THEOREM 4.9 (EQUIVALENCE FOR RULES). Given an SCSP P and a rule r for
P, we have that P [ [r](P) if 3 is idempotent.


PROOF. Assume that P 5 ^C, con&, and let r 5 l 4 L. Then we have P9 5
[l 4 L](P) 5 [l :5 Sol(^[L ø {l}]P, l&)](P) 5 ^{^def9, con9& [ C u con9 Þ
l} ø Sol(^[L ø {l}]P, l&), con&. Let now C(r) 5 [L ø {l}]P, and C9 5 C 2
C(r). Then P contains the constraints in the set C9 ø C(r), while P9 contains
the constraints in C9 ø (C(r) 2 c) ø ((R C(r)) s l), where c 5 ^def, l& 5
[l]P. In fact, by definition of solution, Sol(^[L ø {l}]P, l&) can be written as (R
C(r)) s l. Since the set C9 is present in both P and P9, we will not consider it,
and we will instead prove that the constraint cpre 5 R C(r) coincides with cpost 5
(R(C(r) 2 {c})) R ((R C(r)) s l). In fact, if this is so, then P [ P9.


First of all, it is easy to see that cpre and cpost have the same type ø(L ø {l}).
Let us now consider the definitions of such two constraints. Let us set ci 5 [l i]P


5 ^defi, l i& for all l i [ L, and assume L 5 {l1, . . . , ln}. Thus, C(r) 5 {c,
c1, . . . , cn}. We have that, taken any tuple t of length uø(L ø {l}) u, defpre(t)
5 def(t 2 l) 3 () i defi(t 2 l i


)), while defpost(t) 5 () i defi(t 2 l i
)) 3


t9 ut92 l5t2 l
(def(t9 2 l) 3 () i defi(t9 2 l i


))). Now, since the sum is done over
all t9 such that t9 2 l 5 t 2 l, we have that def(t9 2 l) 5 def(t 2 l). Thus, def(t9
2 l) can be taken out from the sum since it appears the same in each factor.
Thus, we have defpost(t) 5 () i defi(t 2 l i


)) 3 def(t 2 l) 3 t9 ut92 l5t2 l
() i


defi(t9 2 l i
)). Consider now t9 ut92 l5t2 l


() i defi(t9 2 l i
)): one of the t9 such that


t9 2 l 5 t 2 l must be equal to t. Thus, the sum can be written also as () i defi(t
2 l i


) 1 t9 ut92 l5t2 l,t9Þt () i defi(t9 2 l i
)). Thus, we have defpost(t) 5 () i defi(t


2 l i
)) 3 def(t 2 l) 3 () i defi(t 2 l i


) 1 t9 ut92 l5t2 l,t9Þt () i defi(t9 2 l i
))).


Let us now consider any two elements a and b of the semiring. Then it is easy
to see that a 3 (a 1 b) 5 a. In fact, by intensivity of 3 (see Theorem 2.5), we
have that a 3 c #S a for any c. Thus, if we choose c 5 a 1 b, a 3 (a 1 b) #S


a. On the other hand, since a 1 b is the lub of a and b, we have that a 1 b $S


a. Thus, by monotonicity of 3, we have a 3 (a 1 b) $S a 3 a. Now, since we
assume that 3 is idempotent, we have that a 3 a 5 a, thus a 3 (a 1 b) $S a.
Therefore, a 3 (a 1 b) 5 a. This result can be used in our formula for defpost


(t), by setting a 5 () i defi(t 2 l i
)) and b 5 t9 ut9 2 l5t2 l,t9Þt () i defi(t9 2 l i


)).
In fact, by replacing a 3 (a 1 b) with a, we get defpost(t) 5 () i defi(t 2 l i


)) 3
def(t 2 l), which coincides with defpre(t). e


Definition 4.10 (stable problem). Given an SCSP problem P and a set R of
local consistency rules for P, P is said to be stable with respect to R if, for each
r [ R, [r](P) 5 P.


A local consistency algorithm consists of the application of several rules to the
same problem, until stability of the problem with respect to all the rules. At each


216 S. BISTARELLI ET AL.







step of the algorithm, only one rule is applied. Thus, the rules will be applied in
a certain order, which we call a strategy.


Definition 4.11 (strategy). Given a set R of local consistency rules for an
SCSP, a strategy for R is an infinite sequence S [ R`. A strategy S is fair if each
rule of R occurs in S infinitely often.


Definition 4.12 (local consistency algorithm). Given an SCSP problem P, a set
R of local consistency rules for P, and a fair strategy S for R, a local consistency
algorithm applies to P the rules in R in the order given by S. Thus, if the strategy
is S 5 s1s2s3


. . . , the resulting problem is


P9 5 @s1; s2; s3; · · ·#~P!


The algorithm stops when the current SCSP is stable with respect to R.


Note that this formulation of local consistency algorithms extends the usual
one for k-consistency algorithms [Freuder 1978], which can be seen as local
consistency algorithms where all rules in R are of the form l 4 L, where L 5
{l1, . . . , ln} and uø i51, . . . ,nliu 5 ul u 5 k 2 1. That is, exactly k 2 1 variables
are involved in the locations7 in L.


When a local consistency algorithm terminates,8 the result is a new problem
which has the graph structure of the initial one plus possibly new arcs represent-
ing newly introduced constraints (we recall that constraints posing no restrictions
on the involved variables are usually not represented in the graph structure), but
where the definition of some of the constraints has been changed. More
precisely, assume R 5 {r1, . . . , rn}, and ri 5 l i 4 Li for all i 5 1, . . . , n.
Then the algorithm uses, among others, n typed locations l i of type coni. Assume
also that each of such typed locations has value defi when the algorithm
terminates. Consider also the set of constraints C(R) which have type coni. That
is, C(R) 5 {^def, con& such that con 5 coni for some i between 1 and n}.
Informally, these are the constraints that may have been modified (via the typed
location mechanism) by the algorithm. Then, if the initial SCSP is P 5 ^C, con&,
the resulting SCSP is P9 5 local-cons(P, R, S) 5 ^C9, con&, where C9 5 C 2
C(R) ø (ø i51, . . . ,n ^defi, coni&).


In classical CSPs, any local consistency algorithm enjoys some important
properties. We now will study these same properties in the SCSP framework, and
point out the corresponding properties of the semiring operations which are
sufficient for them to hold. The desired properties are as follows:


(1) any local consistency algorithm returns a problem which is equivalent to the
given one;


(2) any local consistency algorithm terminates in a finite number of steps;
(3) the strategy, if fair, used in a local consistency algorithm does not influence


the resulting problem.


THEOREM 4.13 (EQUIVALENCE). Consider an SCSP P and the problem P9 5
local-cons(P, R, S). Then P [ P9 if the multiplicative operation of the semiring (3)
is idempotent.


7 We recall that locations are just sets of variables.
8 We will consider the termination issue later.
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PROOF. By Definition 4.12, a local consistency algorithm is just a sequence of
applications of local consistency rules. Since, by Theorem 4.9, we know that each
rule application returns an equivalent problem, by induction we can conclude
that the problem obtained at the end of a local consistency algorithm is
equivalent to the given one. e


THEOREM 4.14 (TERMINATION). Consider any SCSP P 5 ^C, con& over the
constraint system CS 5 ^S, D, V& and the set AD 5 ø^def, con&[C R(def ), where
R(def ) 5 {a u t with def(t) 5 a}. Then the application of a local consistency
algorithm to P terminates in a finite number of steps if AD is contained in a set I
which is finite and such that 1 and 3 are I-closed.


PROOF. Each step of a local consistency algorithm may change the definition
of one constraint by assigning a different value to some of its tuples. Such value
is strictly worse (in terms of #S) since 3 is intensive. Moreover, it can be a value
which is not in AD but in I 2 AD . If the state of the computation consists of the
definitions of all constraints, then at each step we get a strictly worse state (in
terms of vS). The sequence of such computation states, until stability, has finite
length, since by assumption I is finite and thus the value associated with each
tuple of each constraint may be changed at most uI u times. e


An interesting special case of the above theorem occurs when the chosen
semiring has a finite domain A. In fact, in that case the hypotheses of the
theorem hold with I 5 A.


COROLLARY 4.15. Consider any SCSP problem P over the constraint system
CS 5 ^S, D, V&, where S 5 ^ A, 1, 3, 0, 1&, and A is finite. Then the application of
a local consistency algorithm to P terminates in a finite number of steps.


We will now prove that, if 3 is idempotent, no matter which strategy is used
during a local consistency algorithm, the result is always the same problem.


THEOREM 4.16 (ORDER-INDEPENDENCE). Consider an SCSP problem P and
two different applications of the same local consistency algorithm to P, producing
respectively the SCSPs P9 5 local-cons(P, R, S) and P0 5 local-cons(P, R, S9). Then
P9 5 P0 if the multiplicative operation of the semiring (3) is idempotent.


PROOF. Each step of the local consistency algorithm, which applies one of the
local consistency rules in R, say r, has been defined as the application of a
function [r] that takes an SCSP problem P and returns another problem P9 5
[r](P), and that may change the definition of the constraint connecting the
variables in l (if the applied rule is r 5 l 4 L). Thus, the whole algorithm may
be seen as the repetitive application of the functions [r], for all r [ R, until no
more change can be done. If we can prove that each [r] is a closure operator
[Davey and Priestly 1990], then classical results on chaotic iteration [Cousot
1977] allow us to conclude that the problem resulting from the whole algorithm
does not depend on the order in which such functions are applied. Closure
operators are just functions, which are idempotent, monotone, and intensive. We
will now prove that each [r] enjoys such properties. We remind that [r] just
combines a constraint with the combination of other constraints.


If 3 is idempotent, then [r] is idempotent as well, that is, [r]([r](P)) 5 [r](P)
for any P. In fact, combining the same constraint more than once does not
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change the problem by idempotency of 3. Also, the monotonicity of 3 (see
Theorem 2.4) implies that of [r], that is, P v P9 implies [r](P) v [r](P9). Note
that, although v has been defined only between constraints, here we use it
among constraint problems, meaning that such a relationship holds among each
pair of corresponding constraints in P and P9. Finally, the intensivity of 3
implies that [r] is intensive as well, that is, [r](P) v P. In fact, P and [r](P) just
differ in one constraint, which, in [r](P), is just the corresponding constraint of
P combined with some other constraints. e


Note that the above theorems require that 3 is idempotent for a local
consistency algorithm to be meaningful. However, there is no requirement over
the nature of #S. More precisely, #S can be partial. This means that the
semiring operations 1 and 3 can be different from max and min respectively
(see note at the end of Section 2).


Note also that, by definition of rule application, constraint definitions are
changed by a local consistency algorithm in a very specific way. In fact, even in
the general case in which the ordering #S is partial, the new values assigned to
tuples are always smaller than or equal to the old ones in the partial order. In
other words, local consistency algorithms do not “jump” in the partially ordered
structure from one value to another one which is unrelated to the first one. More
precisely, the following theorem holds.


THEOREM 4.17 (LOCAL CONSISTENCY AND PARTIAL ORDERS). Given an SCSP
problem P, consider any value v assigned to a tuple in a constraint of such problem.
Also, given any set R of local consistency rules and strategy S, consider P9 5
local-cons(P, R, S), and the value v9 assigned to the same tuple of the same
constraint in P9. Then we have that v9 #S v.


PROOF. By definition of rule application (see Definition 4.8), the formula
defining the new value associated to a tuple of a constraint can be assimilated to
(v 3 a) 1 (v 3 b), where v is the old value for that tuple and a and b are
combinations of values for tuples of other constraints in the graph of the rule.
Now, we have (v 3 a) 1 (v 3 b) 5 v 1 (a 3 b) by distributivity of 1 over 3
(see Theorem 2.10). Also, (v 3 c) #S v for any c by intensivity of 3 (see
Theorem 2.5), thus v 1 (a 3 b) #S v. e


One could imagine other generalizations with the same desired properties as
the ones proved above (i.e., termination, equivalence, and order-independence).
For example, one could design an algorithm that avoids (or compensates) the
effect of cumulation coming from a nonidempotent 3. Or also, one could
generalize the equivalence property, by allowing the algorithm to return a
non-equivalent problem (but however being in a certain relationship with the
original problem). Finally, the order-independence property states that any order
is fine, as far as the resulting problem is concerned. Another desirable property,
related to this, could be the existence of an ordering which makes the algorithm
belong to a specific complexity class.


5. Dynamic Programming


Dynamic programming [Bellman 1997; Bellman and Dreyfus 1962] can be used
to solve a problem by solving some subproblems of it and then combining their
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solutions to obtain the solution of the whole problem (see, e.g., Gnesi et al.
[1981] for its use in graphs and Montanari and Rossi [1986] for its adoption in
classical CSPs). In the SCSP framework, a suitably instantiated version of
dynamic programming can be fruitfully used as well: at each step, a subset of
constraints is chosen and solved, and its solution (which, we recall, is a
constraint) replaces the whole subset of constraints.


Before defining the algorithm, we need to describe in a tree-like way the SCSP
to be solved, so that the algorithm can then follow the tree structure in a
bottom-up way.


Definition 5.1 ( parsing tree). Given an SCSP P 5 ^C, con&, a parsing tree of
P is a sequence of local consistency rules S 5 r1; . . . ; rn, where ri 5 (l i 4 Li).
Let


—L 5 {l i, i 5 1, . . . , n} ø ø i51, . . . ,n Li (i.e., L is the set of all locations
occurring in all rules in S);


—l i a l iff l [ Li (i.e., rule ri “generates” location l );
—l i a v iff v [y l i and v [ l9 with l9 [ Li (i.e., rule ri “generates” variable v);
—for any x location or variable, prec( x) 5 {l ul a x}.


Then we require that


—(tree-like) for any x variable or location, if x 5 ln or x [ ln, then prec( x) 5 À,
else prec( x) is a singleton;


—(cover) con 5 ln, and ^def, con9& [ C implies con9 [ L;
—(bottom-up parsing) l i a l j implies j , i.


In words, the above definition provides a sequence of rules that cover the
whole problem and are connected among them as a tree. Moreover, the sequence
gives a bottom-up visit of the tree. It is now easy to define a dynamic
programming algorithm where, at each step, one rule is processed, according to
the given sequence.


Definition 5.2 (dynamic programming algorithm). Given an SCSP P, con-
sider a parsing tree S 5 r1; . . . ; rn of P. Then compute [S](P).


We will now prove that the value of location ln when the algorithm terminates
coincides with the solution of the given problem P.


THEOREM 5.3 (SOLUTION). Given an SCSP P 5 ^C, l& and a parsing tree S for
P, we have that Sol(P) 5 [l][S](P).


PROOF. We will prove the statement of the theorem by induction on the
length of the parsing tree. For the base case, consider a parsing tree with just one
rule, that is, l 4 L. It is easy to see that [ l][r](P) is the solution of P. In fact,
applying this rule means exactly solving the whole problem. Assume now that the
statement holds for all parsings with n 2 1 rules, and consider a parsing S1 with
n rules r1, . . . , rn, where ri 5 l i 4 Li for all i 5 1, . . . , n. Consider now the
first rule of this parsing, that is, r1 5 l1 4 L1, and take another rule ri such that
l1 5 l i or l1 [ Li, and there is no other rule rj with j , i and such that l1 5 l j


or l1 [ Lj. That is, ri is the first rule after r1 which has l1 either in its left-hand
side or in its right-hand side. Note that such rule must exist by definition of
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parsing tree. In fact, either l1 5 ln, and in this case l1 must appear at least in the
left hand side on rn, or l1 Þ ln, in which case it must be generated by one rule
(ri). We will consider now the two separate cases: that l1 5 l i and that l1 [ Li.


Assume that l1 [ Li. Consider then the sequence S2 5 r2, . . . , ri21, r1,
ri, . . . , rn. It is easy to see that this is still a parsing for the given problem.
Moreover, the constraint of type ln resulting after applying the rules in S2
coincides with that obtained after applying the rules in S1. In fact, since l1 can be
generated by just one rule (by definition of parsing), all rules in {r2, . . . , ri21}
cannot change the definition of l1 and thus applying r1 before or after them
cannot change the resulting constraint. Consider now another sequence S3 of
n 2 1 rules r2, . . . , ri21, r9i, ri11, . . . , rn, where r9i 5 l i 4 Li ø L1. It is easy
to see that this sequence of rules is again a parsing tree for P, thus by induction
hypothesis the constraint with type ln after the application of S2 is the solution of
the problem. Now we have to show that such a constraint coincides with that
obtained at location ln after applying sequence S2 (which we already know to
coincide with that obtained at location ln after sequence S1). What makes S2 and
S3 differ is the fact that rule r1 of S2 has been “merged” with rule ri to give rule
r9i in S3. More precisely, the application of rule r9i combines all constraints
specified by L1 ø Li, while the application of first rule r1 and then rule ri


combines first the constraint specified by L1 and then combines the resulting
constraint with those constraints specified by Li. We will show that these two
methods yield the same final constraint.


In this proof, for ease of readability, we will write l instead of [l]P. On one side
(rule r9i) we have the constraint (R(Li ø L1 ø {l i})) s l i


, and on the other side
(rule r1 and then ri) we have the constraint (R((Li 2 {l1}) ø {l i} ø {(R(L1
ø {l1})) s l1


})) s l i
. Thus, we have to prove that:


~ ^ ~Li ø L1 ø $l i%!! s l i
5


~ ^ ~~Li 2 $l1%! ø $l i% ø $~ ^ L1 ø $l1%! s l1
%!! s l i


.


We will start from the left-hand side of the formula and try to reach the
right-hand side. We have:


(R(Li ø L1 ø {l i})) s l i
5


{by separating (Li ø {l i}) 2 {l1} and L1 ø {l1} which are disjoint}


((R((Li ø {l i}) 2 {l1}))R(R(L1 ø {l1}))) s l i
5


{by Theorem 3.8, and letting Vi 5 ø(Li ø {l i}), that is the set of all variables
involved in rule ri}


((R((Li ø {l i}) 2 {l1}))R(R(L1 ø {l1}))) sVi
s l i


5


{by Theorem 3.9, since the variables not in Vi are not involved in Li ø {l i} 2
{l1}}


((R((Li ø {l i}) 2 {l1}))R(R(L1 ø {l1}) sVi
)) s l i


5


{by Proposition 3.7, since Vi ù V1 5 l1, where V1 5 (ø L1) ø l1}


((R((Li ø {l i}) 2 {l1}))R(R(L1 ø {l1})) s l1
) s l i
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which coincides with the right hand side of the formula.


Let us now consider the second case, in which l1 5 l i. Then consider the
sequence S2 5 r2, . . . , ri21, r1, ri, . . . , rn. With a reasoning similar to above, it
is easy to see that S2 is still a parsing tree for P and that the constraint of type ln


obtained via S2 is the same as the one obtained via S1, since by assumption
location l1 does not appear in rules r2, . . . , ri21. Consider now S3 5 r2, . . . ,
ri21, r9i, ri11, . . . , rn where r9i 5 l1 4 Li ø L1. Again, S3 is a parsing tree for
P. Moreover, it has n 2 1 rules, thus the constraint of type ln after the
application of S3 coincides with the solution of P. Now we will show that this is
the same as that obtained after the application of S2. More precisely, we have to
show that


~ ^ ~L1 ø Li ø $l1%!! s l1
5 ~ ^ ~Li ø ~ ^ ~L1 ø $l1%!! s l1


! s l1
.


This can be easily proved by using a reasoning similar to that of the first
case. e


Note that this dynamic programming algorithm can be applied to any instance
of the SCSP framework, even when 3 is not idempotent (and thus the local
consistency algorithms cannot safely be applied).


Obviously any SCSP has a parsing tree9 but not all classes of SCSPs have
convenient parsing trees for each SCSP of the class (see Martelli and Montanari
[1972], where it is shown that the class of rectangular lattices does not have such
a property). Here for convenience we mean that the size of each rule is smaller
than some bound N, which is fixed and the same for the whole class of
considered SCSPs. In such a case, each step of the algorithm solves an SCSP with
bounded size. Thus the complexity of this step may be exponential in the size of
such a SCSP, but constant with respect to the size of the overall problem.
Therefore, the complexity of the algorithm is linear in the number of rules of the
parsing tree, which is linear in the number of variables of the problem. Thus, the
overall algorithm is linear in the number of variables of the problem. When
applied to standard CSPs, this algorithm reduces to the perfect relaxation
algorithm of Montanari and Rossi [1986; 1991].


Definition 5.4 (N-bounded parsing tree). Given an SCSP P 5 ^C, con& and
an integer N, consider a parsing tree S 5 {l1 4 L1; . . . ; ln 4 Ln} for P. Then
S is N-bounded for P if


(1) for all i 5 1, . . . , n, ul i ø ø l[Li
l u # N (i.e., the number of variables of a


rule is bounded by N);
(2) for all i 5 1, . . . , n, there is a variable v such that l i a v (i.e., each rule


generates at least a variable);
(3) VP 5 ø ^def,con9&[C con9 5 ø l[L l (i.e., all the variables occurring in the


rules are present in the constraint problem P).


9 Just take the parsing tree with just one rule.
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THEOREM 5.5 (LINEAR ALGORITHM FOR CLASSES WITH CONVENIENT PARSING).
Given an integer N, consider the class of all SCSPs that have an N-bounded parsing
tree. Consider now any SCSP P of this class, and let n be the number of its variables.
Then in the worst case P can be solved in time O(n).


PROOF. Just apply the dynamic programming algorithm that follows an
N-bounded parsing tree for P, which exists by assumption. Each step of the
algorithm applies one of the rules. This is in the worst case O( uD uN 3 2N),
where D is the domain of each variable and N is an upper bound to the number
of variables of the rules. In fact, the number of tuples of values for the variables
of the rule is exponential in the number of variables, which by assumption is
bounded by N, and for each tuple one has to check a number of constraints equal
to the number of locations, which again can be exponential in the number of
variables of the rule. Thus, the worst-case time complexity of a rule application is
constant, since both N and D are fixed. There are as many steps as rules in the
parsing tree. Since each rule by assumption generates at least one variable, the
number of rules is bounded by the number of variables n of the whole problem.
Thus, in the worst case, the number of steps of the algorithm is O(n). e


Conditions (2) and (3) in Definition 5.4 are not restrictive for Theorem 5.5. In
fact, if we have a parsing for some problem that satisfies condition 1 but where
some rule, say r 5 l 4 L, does not eliminate any variable, then it is always
possible to obtain another parsing for the same problem that still satisfies
condition (1) but where each rule eliminates at least a variable: just eliminate
rule r and replace every occurrence of l in the other rules with L, and do
similarly for all rules which do not eliminate variables. If instead there are rules
containing variables that do not appear in the problem, then one can always
obtain another parsing where such variables are not there: just remove all
locations involving such “ghost” variables. By doing this, we still have the cover
property of the parsing, since a location involving one or more ghost variables
cannot correspond to any constraint of the given problem.


Theorem 5.5 states that in some cases there is an algorithm which is O(n).
One could wonder whether n is a good measure of the size of the given SCSP,
and consider instead the number m of its constraints as more significative. In
fact, in general the number of constraints may be much larger than the number
of variables (e.g., in binary CSPs, m is O(n2)). However, for the classes of SCSPs
that have an N-bounded parsing tree, it is possible to show that m is O(n). In
fact, consider an N-bounded parsing tree for a problem P of the class. Then,
each rule may have at most N variables, thus it will contain at most 2N locations,
and there are at most n rules. Thus the total number of locations in the parsing is
n 3 2N. Also, since a parsing tree for P covers P, the number of locations is
either the same or greater than the number of constraints in P. Thus m # (n 3
2N). Therefore, we have that m is O(n).


In order to find a parsing tree for a given SCSP, one could adapt the studies on
the secondary problem in dynamic programming (see, e.g., Bertelè and Brioschi
[1972]). However, in some cases the problem is generated in a way that the
parsing tree is already explicit, as in the case of constraint logic programming
(CLP) languages [Jaffar and Lassez 1987]. In fact, during the execution of a CLP
program, the use of the clauses of the program builds a constraint problem with
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a parsing tree where each node of the tree directly corresponds to one of the
used clauses.


A characterization of what dynamic programming is and when it can be
applied that is similar to the one given in this section can be found in Shenoy
[1991; 1994]. There, valuation-based systems are defined as systems based on
variables, valuations, and two operations, called combination and marginalization.
These two operations are very related, respectively, to our notions of combina-
tion and projection. In valuation-based systems, three axioms are required for the
correct application of a dynamic programming algorithm. These three axioms are
indeed satisfied by our framework as well. In fact, they correspond, respectively,
to (1) commutativity and associativity of R (see comment after Definition 3.5),
(2) Theorem 3.8, and (3) Theorem 3.9. Note that the proof of Theorem 5.3 relies
just on these three properties. In fact, our dynamic programming algorithm,
defined in Definition 5.2, can be seen as an extension of the fusion algorithm
defined in Shenoy [1991; 1994], where the extension consists of the fact that
more than one variable at a time can be eliminated. In fact, in our algorithm all
variables in the right-hand side of a rule are considered at a time.


Moreover, a related algorithm which solves a constraint problem with a
tree-like shape in a bottom-up way, as in Definition 5.2, has been described in
Dechter et al. [1990] for optimization problems and in Dechter and Dechter
[1988] for belief maintenance. In those papers, the idea is to consider either the
constraint graph, if it is acyclic, or the dual graph of a constraint problem (where
nodes are constraints and arcs are associated with variables shared among
constraints), and to use techniques like cycle-cutset [Dechter and Pearl 1988a] or
tree-clustering [Dechter and Pearl 1988b] to provide such a dual graph with a
tree-like shape. However, in Dechter et al. [1990] constraints are combined via
the usual and operator, and the value associated to each tuple is computed in a
completely independent way, via a given utility function. Thus, apart from the
tree-structure, our approach and that in Dechter et al. [1990] are very different,
since we also generalize the way constraints are combined, via a general notion
of combination and projection of which and and or are just instances.


Our notion of parsing tree is more general than that of hinge-trees presented in
Gyssens et al. [1994]. In fact, we do not assume anything about the structure of
each node of the tree, which may be a generic graph. On the contrary, in Gyssens
et al. [1994], they consider only nodes which cannot be further decomposed into
hinge-trees.


6. Instances of the Framework


We will now show how several known, and also new, frameworks for constraint
solving may be seen as instances of the SCSP framework. More precisely, each of
such frameworks corresponds to the choice of a specific constraint system (and
thus of a semiring). This means that we can immediately know whether one can
inherit the properties of the general framework by just looking at the properties
of the operations of the chosen semiring, and by referring to the theorems in the
previous sections. This is interesting for known constraint solving schemes,
because it puts them into a single unifying framework and it justifies in a formal
way many informally taken choices, but it is especially significant for new
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schemes, for which one does not need to prove all the properties that it has (or
not) from scratch.


Note that for the purposes of this paper, where we consider only finite domain
constraint solving, the constraint systems of different instances differ only in the
choice of the semiring. Therefore, in the following we will only specify the
semiring that has to be chosen to obtain a particular instance of the SCSP
framework.


6.1. CLASSICAL CSPS. A classical CSP problem [Montanari 1974; Mackworth
1992] is just a set of variables and constraints, where each constraint specifies the
tuples that are allowed for the involved variables. Assuming the presence of a
subset of distinguished variables, the solution of a CSP consists of a set of tuples
which represent the assignments of the distinguished variables which can be
extended to total assignments (for all the values) while satisfying all the
constraints.


Since constraints in CSPs are crisp, that is, they either allow a tuple or not, we
can model them via a semiring domain with only two values, say 1 and 0: allowed
tuples will have associated the value 1, and not allowed ones the value 0.
Moreover, in CSPs, constraint combination is achieved via a join operation
among allowed tuple sets. This can be modeled here by assuming the multiplica-
tive operation to be the logical and (and interpreting 1 as true and 0 as false).
Finally, to model the projection over some of the variables (e.g., the distin-
guished ones), as the k-tuples (assuming we project over k variables) for which
there exists a consistent extension to an n-tuple, it is enough to assume the
additive operation to be the logical or. Therefore, a CSP is just an SCSP where
the semiring is


SCSP 5 ^$0, 1% , ~ , ` , 0, 1& .


THEOREM 6.1.1. SCSP 5 ^{0, 1}, ~, `, 0, 1& is a c-semiring.


PROOF. It is easy to see that it is a semiring. Thus, we will only prove the
additional properties that are needed in a c-semiring:


—the additive operation must be idempotent; it is trivially true since the additive
operation is ~, and a ~ a 5 a for any a [ {0, 1};


—the multiplicative operation must be commutative; trivially from the definition
of `;


—1 is the absorbing element of the additive operation, that is 1 ~ a 5 1, which
is trivially true. e


The ordering #S here reduces to 0 #S 1.


Example. Consider the CSP P in Figure 2(a), where the distinguished vari-
ables are marked and the constraints are arcs labeled by the allowed tuples. The
solution of such a CSP is the singleton set containing tuple ^a, a& (which means
x 5 a and y 5 a). This CSP can be seen as an SCSP P9 over the semiring SCSP


in Figure 2(b). It can then be shown, by using the semiring operations, that the
solution of P and that of P9 coincide (modulo the semiring domain value). To
compute the solution of P9, we have to assign a value to each tuple for the
distinguished variables. This is done by first considering all 3-tuples and assigning
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a value to them, and then by projecting (via the ~ operation) such values over
the distinguished variables. To assign a value to a 3-tuple, one has to combine
(via the ` operation) the values of all the subtuples corresponding to subsets of
variables which are connected by some constraint. In Figure 3, for each 3-tuple
we have written the values of its subtuples: subtuples are pointed out by
underlining them, and subtuples of one element only are not indicated, since they
all have value 1. Then the value for the tuple itself can be seen to the right as a
combination of the subtuple values (again, for simplicity of the picture one-value
subtuples are not considered since they always have value 1), and the value for
each 2-tuple which is a projection of some 3-tuples onto the variables x and y can
be seen to the left, as a combination of the values of the two tuples which have
the same projection over x and y. It is easy to see that a 3-tuple gets the value 1
only when it satisfies all the constraints (due to the definition of `), and that a
2-tuple gets a value 1 when there exists a possible extension to a 3-tuple whose
value is 1 (due to the definition of ~). From Figure 3, one can see that the only
group of tuples that gets value 1 is the first one, thus the solution of the CSP is
the projection of this group of tuples onto x and y, that is, x 5 a and y 5 a.


It is easy to see, also from the example above, that the chosen c-semiring
allows us to faithfully represent any given CSP. That is, taken the given CSP P
and the SCSP problem P9 obtained by applying a suitable transformation to P,
the solutions of P and P9 are the same modulo, a similar transformation.


Let us now consider the application of a local consistency algorithm to CSPs.
As predicted, we will show that all the classical properties hold. First, ` is
idempotent. Thus, by Theorem 4.13, the problem returned by a local consistency
algorithm is equivalent to the given one, and from Theorem 4.16, the used
strategy does not matter. Also, since the domain of the semiring is finite, by
Corollary 4.15 any local consistency algorithm terminates in a finite number of
steps.


Note that in this instance the dynamic programming algorithm described in
Section 5 coincides with the perfect relaxation algorithm proposed in Montanari
and Rossi [1986].


It is possible to check that an alternative way to represent CSPs in the SCSP
framework is by using the following c-semiring: ^`({a}), ø , ù , À, {a}&, where
`(S) is the powerset of a set S, and a is any value.


6.2. FUZZY CSPS. Fuzzy CSPs (FCSPs) [Rosenfeld et al. 1976; Dubois et al.
1993; Ruttkay 1994] extend the notion of classical CSPs by allowing non-crisp
constraints, that is, constraints which associate a preference level with each tuple
of values. Such level is always between 0 and 1, where 1 represents the best value


FIG. 2. A CSP and the corresponding SCSP (SCSP).
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(i.e., the tuple is allowed) and 0 the worst one (i.e., the tuple is not allowed). The
solution of a fuzzy CSP is then defined as the set of tuples of values (for all the
variables) which have the maximal value. The way they associate a value with an
n-tuple is by minimizing the values of all its subtuples. The reason for such a
max-min framework relies on the attempt to maximize the value of the least
preferred tuple.


Fuzzy CSPs are already a very significant extension of CSPs. In fact, they are
able to model partial constraint satisfaction [Freuder and Wallace 1992], so to
get a solution even when the problem is overconstrained, and also prioritized
constraints, that is, constraints with different levels of importance [Borning et al.
1989].


It is easy to see that fuzzy CSPs can be modeled in our framework by choosing
the semiring


SFCSP 5 ^$ x ux [ @0, 1#% , max, min, 0, 1& .


THEOREM 6.2.1. SFCSP is a c-semiring.


PROOF. It is easy to see that it is a semiring. Thus, we will only prove the
additional properties that are needed in a c-semiring:


—the additive operation must be idempotent; this is trivially true since the
additive operation is max, and max(a, a) 5 a for any a;


—the multiplicative operation must be commutative; trivially from the definition
of min;


—1 is the absorbing element of the additive operation, that is max(1, a) 5 1,
which is true since 0 # a # 1. e


The ordering #S here reduces to the # ordering on reals. It is also easy to see
that any FCSP P can be rewritten as an SCSP P9 over the semiring SFCSP such
that sol(P) 5 sol(P9) (modulo a suitable transformation between the problems
and the solutions).


Fuzzy CSPs are much closer to our framework than classical CSPs, since they
already introduce the notion of preference levels. This means that they have to
generalize the notions of constraint combination and projection as well, so as to


FIG. 3. Combination and projection in classical CSPs.
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get the appropriate definition of solution. However, we are obviously much more
general in that we do not make any assumption on the semiring operations.


Let us now consider the properties that hold in the FCSP framework. The
multiplicative operation (i.e., min) is idempotent. Thus, local consistency algo-
rithms on FCSPs do not change the solution of the given problem (by Theorem
4.13), and do not care about the strategy (by Theorem 4.16). Moreover, min is
AD-closed for any finite subset AD of [0, 1]. Thus, by Theorem 4.14, any local
consistency algorithm on FCSPs terminates.


Thus, FCSPs, although providing a significant extension to classical CSPs, can
exploit the same kind of algorithms. Their complexity will of course be different
due to the presence of more than two levels of preference. However, it can be
proved that if the actually used levels of preference are p, then the complexity of
a local consistency algorithm is just O( p) times greater than that of the
corresponding algorithm over CSPs (as discussed also above and in Dubois et al.
[1993].


An implementation of arc-consistency, suitably adapted to be used over fuzzy
CSPs, is given in Schiex [1992]. However, no formal properties of its behavior are
proved there. Thus, our result can be seen as a formal justification of Schiex
[1992].


6.3. PROBABILISTIC CSPS. Probabilistic CSPs (Prob-CSPs) [Fargier and Lang
1993] have been introduced to model those situations where each constraint c
has a certain probability p(c), independent from the probability of the other
constraints, to be part of the given real problem.10 This allows one to reason also
about problems that are only partially known. The probability levels on con-
straints gives then, to each instantiation of all the variables, a probability that it is
a solution of the real problem. This is done by first associating with each subset
of constraints the probability that it is in the real problem (by multiplying the
probabilities of the involved constraints), and then by summing up all the
probabilities of the subsets of constraints where the considered instantiation is a
solution. Alternatively, the probability associated with an n-tuple t can also be
seen as the probability that all constraints that t violates are indeed in the real
problem. This is just the product of all 1 2 p(c) for all c violated by t. Finally,
the aim is to get those instantiations with the maximum probability.


The relationship between Prob-CSPs and SCSPs is complicated by the fact that
Prob-CSPs contain crisp constraints with probability levels, while SCSPs contain
noncrisp constraints. That is, we associate values with tuples, and not to
constraints. However, it is still possible to model Prob-CSPs, by using a transfor-
mation which is similar to that proposed in Dubois et al. [1993] to model
prioritized constraints via soft constraints in the FCSP framework. More pre-
cisely, we assign probabilities to tuples instead of constraints. Consider any
constraint c with probability p(c), and let t be any tuple of values for the
variables involved in c. Then p(t) 5 1 if t is allowed by c, otherwise p(t) 5 1 2
p(c). The reasons for such a choice are as follows: if a tuple is allowed by c and
c is in the real problem, then t is allowed in the real problem; this happens with
probability p(c); if instead c is not in the real problem, then t is still allowed in


10 Actually, the probability is not of the constraint, but of the situation which corresponds to the
constraint: saying that c has probability p means that the situation corresponding to c has probability
p of occurring in the real-life problem.
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the real problem, and this happens with probability 1 2 p(c). Thus, t is allowed
in the real problem with probability p(c) 1 1 2 p(c) 5 1. Consider instead a
tuple t which is not allowed by c. Then it will be allowed in the real problem only
if c is not present; this happens with probability 1 2 p(c).


To give the appropriate value to an n-tuple t, given the values of all the
smaller k-tuples, with k # n and which are subtuples of t (one for each
constraint), we just perform the product of the values of such subtuples. By the
way values have been assigned to tuples in constraints, this coincides with the
product of all 1 2 p(c) for all c violated by t. In fact, if a subtuple violates c,
then by construction its value is 1 2 p(c); if instead a subtuple satisfies c, then
its value is 1. Since 1 is the unit element of 3, we have that 1 3 a 5 a for each
a. Thus, we get )(1 2 p(c)) for all c that t violates.


As a result, the semiring corresponding to the Prob-CSP framework is


Sprob 5 ^$ x ux [ @0, 1#% , max, 3, 0, 1& .


THEOREM 6.3.1. Sprob is a c-semiring.


PROOF. It is a semiring. To be also a c-semiring, we need the following:


—the additive operation must be idempotent; this is trivially true since the
additive operation is max, and max(a, a) 5 a for any a;


—the multiplicative operation must be commutative; trivially from the definition
of 3;


—1 is the absorbing element of the additive operation, that is max(1, a) 5 1,
which is true since 0 # a # 1. e


The associated ordering #S here reduces to # over reals.
It is easy to see that any Prob-CSP P can be rewritten as an SCSP (Sprob) P9


such that sol(P) 5 sol(P9) (modulo a suitable transformation between the
problems and the solutions). Note that the fact that P9 is a-consistent means that
in P there exists an n-tuple which has probability a to be a solution of the real
problem.


The multiplicative operation of Sprob (i.e., 3) is not idempotent. Thus, the
result of Theorem 4.13 cannot be applied to Prob-CSPs. That is, by applying a
local consistency algorithm one is not guaranteed to obtain an equivalent
problem. Theorem 4.16 cannot be applied as well. Thus, the strategy used by a
local consistency algorithm may matter. Also, 3 is not closed on any finite
superset of any subset of [0, 1]. Thus the result of Theorem 4.14 cannot be
applied to Prob-CSPs. That is, we cannot be sure that a local consistency
algorithm terminates.


As a result of these observations, local consistency algorithms may make no
sense in the Prob-CSP framework. Thus, we are not sure that their application
has the desired properties (termination, equivalence, and order-independence).
However, the fact that we are dealing with a c-semiring implies that, at least, we
can apply Theorem 4.3: if a Prob-CSP problem has a tuple with probability a to
be a solution of the real problem, then any subproblem has a tuple with
probability at least a to be a solution of a subproblem of the real problem. This
can be fruitfully used when searching for the best solution. In fact, if one employs
a branch-and-bound search algorithm, and in one branch we find a partial
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instantiation with probability smaller than a, then we can be sure that such a
branch will never bring to a global instantiation with probability a. Thus, if a
global instantiation with such a probability has already been found, we can cut
this branch. Similar (and possibly better) versions of branch-and-bound for
non-standard CSPs may be found in Freuder and Wallace [1992] and Schiex et al.
[1995].


6.4. WEIGHTED CSPS. Whereas fuzzy CSPs associate a level of preference
with each tuple in each constraint, in weighted CSPs (WCSPs) tuples come with
an associated cost. This allows one to model optimization problems where the goal is
to minimize the total cost (time, space, number of resources, . . .) of the proposed
solution. Therefore, in WCSPs the cost function is defined by summing up the costs
of all constraints (intended as the cost of the chosen tuple for each constraint). Thus,
the goal is to find the n-tuples (where n is the number of all the variables) which
minimize the total sum of the costs of their subtuples (one for each constraint).


Another way to understand the difference between WCSPs and FCSPs is that
FCSPs have an egalitarianistic approach to optimization problems (i.e., they aim
at maximizing the overall level of consistency while balancing the levels of all
constraints), while WCSPs have an utilitarianistic approach (i.e., they aim at
getting the minimum cost globally, even though some constraints may be
neglected and thus present a big cost) [Moulin 1988]. We believe that both
approaches present advantages and drawbacks, and thus each of them may be
preferred to the other one, depending on the real-life situation to be modeled.


According to the informal description of WCSPs given above, the associated
semiring is


SWCSP 5 ^51U$ 1 `% , min, 1, 1`, 0& .


THEOREM 6.4.1. SWCSP is a c-semiring.


PROOF. It is easy to see that it is a semiring. To be a c-semiring, we need:


—the additive operation must be idempotent; this is trivially true since the
additive operation is min, and min(a, a) 5 a for any a;


—the multiplicative operation must be commutative; trivially from the definition
of 1;


—0 is the absorbing element of the additive operation, that is min(0, a) 5 0,
which is true since a $ 0. e


The associated ordering #S reduces here to $ over the reals. This means that
a value is preferred to another one if it is smaller.


The multiplicative operation of SWCSP (i.e., 1) is not idempotent. Thus, the
results of Section 4 on local consistency algorithms cannot be applies to WCSPs.
However, as in Prob-CSPs, the fact that we are dealing with a c-semiring implies
that, at least, we can apply Theorem 4.3: if a WCSP problem has a best solution
with cost a, then the best solution of any subproblem has a cost smaller than a.
This can be fruitfully used when searching for the best solution in a branch-and-
bound search algorithm.


Note that the same properties hold also for the semirings ^41U{1`}, min, 1,
1`, 0& and ^]1U{1`}, min, 1, 1`, 0& (which can be proved to be c-semirings).
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6.5. EGALITARIANISM AND UTILITARIANISM. As noted above, the FCSP and
the WCSP systems can be seen as two different approaches to give a meaning to
the notion of optimization. The two models correspond in fact to two definitions
of social welfare in utility theory [Moulin 1988]: egalitarianism, which maximizes
the minimal individual utility, and utilitarianism, which maximizes the sum of the
individual utilities. FCSPs are based on the egalitarian approach, while WCSPs
are based on utilitarianism.


In this section, we will show how our framework allows also for the combina-
tion of these two approaches. In fact, we will construct an instance of the SCSP
framework, where the two approaches coexist, and allow us to discriminate
among solutions which otherwise would result indistinguishable. More precisely,
we can first compute the solutions according to egalitarianism (i.e., using a
max-min computation as in FCSPs), and then discriminate more among them via
utilitarianism (i.e., using a max-sum computation as in WCSPs).


The resulting semiring is the following:


Sue 5 ^$^l, k& ul, k [ @0, 1#% , max, min, ^0, 0& , ^1, 1&&


where max and min are defined as follows:


—^l1, k1&max^l2, k2& 5 H^l1, max~k1, k2!&


^l1, k1&


if l1 5 l2


if l1 . l2


—^l1, k1&min^l2, k2& 5 H^l1, k1 1 k2&


^l2, k2&


if l1 5 l2


if l1 . l2


That is, the domain of the semiring contains pairs of values: the first element is
used to reason via the max-min approach, while the second one is used to further
discriminate via the max-sum approach. The operation min (which is the
multiplicative operation of the semiring, and thus is used to perform the
constraint combination) takes two elements of the semiring, say a 5 ^a1, a2& and
b 5 ^b1, b2&) and returns the one with the smallest first element if a1 Þ b1;
otherwise, it returns the pair that has the sum of the second elements as its
second element (i.e., ^a1, a2 1 b2&). The operation max performs a max on the
first elements if they are different (thus, returning the pair with the maximum
first element); otherwise (if a1 5 b1), it performs a max on the second elements
(thus, returning a pair which has such a max as second element, that is, ^a1,
max(a2, b2)&). More abstractly, we can say that, if the first elements of the pairs
differ, then the max-min operations behave like a normal max-min; otherwise,
they behave like max-sum. This can be interpreted as the fact that, if the first
elements coincide, it means that the max-min criterion cannot discriminate
enough, and thus the max-sum criterion is used.


One can show that Sue is a c-semiring. However, since it uses a combination of the
operations of the semirings SFCSP and SWCSP, and since the multiplicative operation
of SWCSP is not idempotent, also the multiplicative operation of Sue, that is, min, is
not idempotent. This means that we cannot guarantee that local consistency
algorithms can be used meaningfully in this instance of the framework.


Note that also the opposite choice (i.e., first perform a max-sum and then a
max-min) can be made, by using a similar c-semiring. However, due to the same
reasoning as above, again the multiplicative operation would not be idempotent,
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thus we cannot be sure that the local consistency techniques possess the
properties of Section 4.


6.6. SET-BASED CSPS. An interesting class of instances of the SCSP frame-
work which are based on set operations like union and intersection is the one
which uses the c-semiring


Sset 5 ^`~ A! , ø, ù, À, A& ,


where A is any set. It is easy to see that Sset is a c-semiring. Also, in this case the
order #Sset


reduces to set inclusion (in fact, a # b iff a ø b 5 b), and therefore
it is partial in general. Furthermore, 3 is ù in this case, and thus it is
idempotent. Therefore, the local consistency algorithms possess all the properties
stated in Section 4 and therefore can be applied. We recall that when a local
consistency algorithm is applied to an SCSP with a partially ordered semiring, its
application changes the constraints in a way that the new constraints are smaller
than the old ones in the ordering v.


A useful application of such SCSPs based on a set is when the variables of the
problem represent processes, the finite domain D is the set of possible states of
such processes, and A is the set of all time intervals over reals. In this case, a
value t associated to a pair of values ^d1, d2& for variables x and y can be
interpreted as the set of all time intervals in which process x can be in state d1
and process y in state d2. Therefore, a solution of any SCSP based on the
c-semiring Sset consists of a tuple of process states, together with (the set of) the
time intervals in which such system configuration can occur. This description of a
system can be helpful, for example, to discover if there are time intervals in
which a deadlock is possible.


7. N-Dimensional c-Semirings


Choosing an instance of the SCSP framework means specifying a particular
c-semiring. This, as discussed above, induces a partial order which can be
interpreted as a (partial) guideline for choosing the “best” among different
solutions. In many real-life situations, however, one guideline is not enough,
since, for example, it could be necessary to reason with more than one objective
in mind, and thus choose solutions which achieve a good compromise with
respect to all such goals.


Consider for example a network of computers, where one would like to both
minimize the total computing time (thus the cost) and also to maximize the work
of the least used computers. Then, in our framework, we would need to consider
two c-semirings, one for cost minimization (see Section 6.4 on weighted CSPs),
and another one for work maximization (see Section 6.2 on fuzzy CSPs). Then
one could work first with one of these c-semirings and then with the other one,
trying to combine the solutions which are the best for each of them. However, a
much simpler approach consists of combining the two c-semirings and only then
work with the resulting structure. The nice property is that such a structure is a
c-semiring itself; thus, all the techniques and properties of the SCSP framework
can be used for such a structure as well.
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More precisely, the way to combine several c-semirings and getting another
c-semiring just consists of vectorizing the domains and operations of the com-
bined c-semirings.


Definition 7.1 (composition of c-semirings). Given n c-semirings Si 5 ^ Ai,
1 i, 3 i, 0i, 1i&, for i 5 1, . . . , n, let us define the structure Comp(S1, . . . , Sn)
5 ^^ A1, . . . , An&, 1, 3, ^01, . . . , 0n&, ^11


. . . 1n&&. Given ^a1, . . . , an& and
^b1, . . . , bn& such that ai, bi [ Ai for i 5 1, . . . , n, ^a1, . . . , an& 1 ^b1, . . . ,
bn& 5 ^a1 11 b1, . . . , an 1n bn&, and ^a1, . . . , an& 3 ^b1, . . . , bn& 5 ^a1 31
b1, . . . , an 3n bn&.


We will now prove that by composing c-semirings we get another c-semiring.
This means that we all the properties of the framework defined in the previous
sections hold.


THEOREM 7.2 (A C-SEMIRING COMPOSITION IS A C-SEMIRING). Given n c-
semirings Si 5 ^ Ai, 1i, 3i, 0i, 1i&, for i 5 1, . . . , n, the structure Comp(S1, . . . , Sn)
is a c-semiring.


PROOF. It is easy to see that all the properties required for being a c-semiring
hold for Comp(S1, . . . , Sn), since they directly follow from the corresponding
properties of the component semirings Si. e


According to the definition of the ordering #S (in Section 2), such an ordering
for S 5 Comp(S1, . . . , Sn) is as follows. Given ^a1, . . . , an& and ^b1, . . . , bn&
such that ai, bi [ Ai for i 5 1, . . . , n, we have ^a1, . . . , an& #S ^b1, . . . , bn&
if and only if ^a1 11 b1, . . . , an 1n bn& 5 ^b1, . . . , bn&. Since the tuple
elements are completely independent, #S is in general a partial order, even if
each of the #Si


is a total order. This means (see Section 3) that the abstract
solution of a problem over such a semiring in general contains an incomparable
set of tuples, none of which has blevel(P) as its associated value. Therefore, if
one wants to reduce the number of “best” tuples (or to get just one), one has to
specify some priorities among the orderings of the component c-semirings.


Notice that, although the c-semiring discussed in Section 6.4 may seem a
composition of two c-semirings, as defined in Definition 7.1, this is not so, since
the behavior of each of the two operations on one of the two elements of each
pair (we recall that that semiring is a set of pairs) is not independent from the
behavior of the same operation on the other element of the pair. Thus it is not
possible to define two independent operations (i.e., 11 and 12, or 31 and 32), as
needed by Definition 7.1. For example, operation max returns the maximum of
the second elements of two pairs only when the first elements of the pairs are
equal.


8. Conclusion and Future Work


We have proposed a general framework for constraint solving where each tuple is
allowed by a constraint with a certain level of confidence (or degree, or cost,
etc.). This allows for a more realistic modelization of real-life problems, but
requires a new constraint solving engine which has to take such levels into
account. To do this, we used the notion of semiring, which provides both the
levels and the new constraint combination operations. We also considered the
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issue of local consistency in such an extended framework, and we provided
sufficient conditions which assure the local consistency algorithms to work in the
extended framework. Then, we considered dynamic programming-like algo-
rithms, and we proved that these algorithm can always be applied to SCSPs, and
have a linear time complexity when the given SCSPs can be provided with a
parsing tree of bounded size. Finally, we provided several instances of SCSPs
which show the generality and also the expressive power of the framework.


As it may be difficult to assign each tuple in each constraint with a value from
the semiring, but it may be instead easy to rate some solutions, we are currently
investigating the possibility of learning values for all the tuples from some
examples of solution ratings, via the use of classical gradient-descent learning
algorithms [Rossi and Sperduti 1996]. This would greatly enhance the practical
usefulness of SCSPs.


As classical constraint solving has been embedded into Constraint Logic
Programming (CLP) [Jaffar and Lassez 1987] systems, it is reasonable to think
that also our more general notion of constraint solving can be handled within a
logic language, thus giving rise to new instances of the CLP scheme. This would
not only give new meanings to constraint solving in CLP, but it would also allow
one to treat in a uniform way optimization problem solving within CLP, without
the need to resort to ad hoc methods as in Van Hentenryck [1989]. In fact, it
would be possible to generalize the semantics of CLP programs to consider the
chosen semiring and thus solve problems according to the semiring operations.
This could be done by associating with each ground atom an element of the
semiring and by using the two semiring operations to combine goals. These issues
have been studied already for the instance of WCSPs in Bistarelli [1994]. We
plan to do it in the general case as well.
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