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Abstract

The main results of this thesis are the following:

(i) Let F be an arbitrary field, and f(z) a polynomial in one variable over F of
degree > 1. Given a polynomial g(r) # 0 over F and an integer m > 1 we give
necessary and sufficient conditions for the existence of a polynomial z(z) € F|z]such
that z(z)™ = g(z) (mod f(x)). We show how our results can be specialized to R,
C and to finite fields. Since cur proofs are constructive it is possible to translate
them into an effective algorithm when F is a computable field (e.g. a finite field or
an algebraic number field).

(ii) Let L = Q[a] be a cyclic number field of prime degree g, and let a be a
nonzero rational rumber. We give an algorithm which takes as input a and the
minimal polynomial of a over Q. and determines if a is the norm of an element of
L. The algorithm runs in time polynomial in the size of the input, assuming the
use of an oracle in order to obtain a complete factorization of a and a complete
factorization of the discriminant di(a) of a. A generalization of the algorithm to
cyclic number fields of squarefree degree is also presented. As an application, we

give an algorithm to test if a cyclic algebra A = (F, 0,a) over Q is a division algebra.

iii
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Chapter 1 -

Introduction

This thesis is about computational methods in number theory that rely heavily apon

localization.

Why a thesis in computational number theory? In order to answer this question,
we will spend some words to illustrate what are the two major trends in this area

today.

On the one hand researchers in number theory are interested in practical algo-
rithms that they can run on their computers in order to test some hypothesis or just
for the sake of mathematiczi cuniosity. Hence they need good algorithms. where
good means practical. We think that in this context the following sentence, pro-
nounced by H.P.F. Swinnerton-Dyer at his lecture at the Brighton Conference [19]

in 1965, is still pertinent (although the figures may have changed in thirty years).

A calculation that takes 10°% operations is trivial. and is worth doing even
if its results will probably be uscless. A calculation that takes 10° opera-
tions is substantial, but not unreasonable. It is worth doing in pursuil of
any serious idea, bul not just in the hope that semething may turn up;
moreover, the method of calculation should now be reasonably efficient,

whereas for a smaller problem one chooses the simplest possible method
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in order to minimize the effort of writing a program. Finally a calcula-
tion that takes 10'? opcrations is close to the limit of what is physically
possible; it can only be justified by a major scientific advance such as

landing @ man on the moon.

The trend of research that puts its emphasis on practical algorithms is well
represented by the book of M. Pohst and H. Zassenhaus [78] and by the recent book
of H. Cohen {23]. In fact, the algorithms described in [78] ‘yield good to excellent
results for number fields of small degree and not too large discriminant’ [78, Preface],
and the algorithms described in 23] have been implemented in the package PARI
[11], developed in France by Prof. H. Cohen and his collaborators.

Another trend of research considers algorithms in algebraic number theory for
their own sake rather than with any view toward applications. This trend is well
represented by H.\W. Lenstra’s survey paper [58]. Here an algorithm is considered
better than another if ‘for sach positive real number .V it is at least N times as fast
for all but finitely many values of the input data’, in other words if its asymptotic
complexity is better. However. in the same paper [58] Lenstra points out that an
algorithm which is good according to his definition might not be good for practical
purposes.

In some areas of computer science an algorithm is considered just an object of
mathematical research, rather than a tool to use. This point of view may produce
algorithms that are asymptotically polynomial in time and space, but that cannot
be tested even on very small examples because of the large constants involved in the
function that describes their temporal behavior.

On the contrary, the objective of our research has been the design of algorithms
which are at the same time asymptotically good, i.e. whose running time is polyno-
mial in the size of the input. and practical, i.e. really work.

The algorithms described here have been implemented using the number theory
package PARI [11]. Our tests show that they yield good results, as far as it concerns
the execution time, with inputs of very large size. Needless to say, part of the merit
goes to the high efficiency of the package PARI.
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Before discussing our contribution to the research. we would like to spend some

words about the local to global method in number theory.

1.1 From Local to Global

The concept of localization is common. often with different meanings. in the natural
sciences.

We will take for granted the fact that generally it is quite easy to tackle a
problem locally, whereas it is more difficult if not impossible to tackle the same
problemn globally. We have many examples of this behavior in mathematics, c.g. in
the theory of optimization, where finding a local minimum of a function is generally
easier than finding a global minimum.

If we restrict our attention to algebra and number theory, we have a classical

extreme example: consider the equation
"+y"+:"=0 (n >2) (1.1)

It is well known that. for a given n, the problem of determining the solvability of
(1.1) in the integers is extremely difficult. On the other hand, the solvability of (1.1)
modulo a given prime p (a local problem), can be determined, if not easily, at least
in a finite number of steps.

Fortunately in many cases it is possible to gather together the local solutions of
a given problem, in order to deduce some properties of the original solution, which
we call for this reason the ‘global’ solution - in some cases we are able to obtain
complete informations about the global solution.

We will call this process the local to global method. It is easily seen that, from
a problem solving point of view, we have just rediscovered the idea of ‘divide and
conquer’ familiar to researchers in design and analysis of algorithms.

In this section we will illustrate some successful examples of the application of
the local to global method in number theory, in order to give a concrete motivation

to our approach to the subject.
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The archetype in the universe of our discourse is certainly the Chinese Remain-
der Theorem, which has been known for at least fifteen centuries - according to
D.E. Knuth [49, p. 271}, a special case of this theorem was stated by the Chinese
mathematician Sun Tsu, between 280 and 473 A.D.

The Chinese Remainder Theorem is one of the nicest examples of constructive
mathematics, since its proof is really an algorithm.

In its most classical formulation this theorem states that, given r integers
m;,...,m, relatively prime, and r arbitrary integers [;,....I, it is always possi-
ble to find an integer m such that m = ; (mod m,) for : = 1,...,r. The integer
m is uniquely defined modulo the product m, ---m,.

Let us consider the class of mathematical problems whose solution is an integer.
Very often it is easier to obtain a solution of a given protlem in this class modulo
a prime p, rather than modulo an arbitrary integer m,. The reason lies in the fact
that the residue classes of the integers modulo p form a field. and so ‘division is
possible’. The transition from a solution modulo p to a solution modulo p”, where
n is a positive integer, is in some cases made possible by Newton’s method.

Given a simple root a; of a polynomial equation modulo p, Newton’s method
allows one to ‘lift’ it to a root a; of the same polynomial equation modulo p?, and
then again lift a, to a root a; modulo p*, and so on ... forever! Moreover a; = a, 4,

(mod p'), for 1 = 1,2,....

The nice thing about Newton’s method is that at each step we are only required
to work modulo p, that is in the finite field F, of p elements. This process of
ameliorating an initial solution is called p-adic lifting, or p-adic refinement.

It is natural at this point to introduce the following notion. For a fixed prime
p. consider the sequence of rings {Z/p'Z}.=0,1,.. together with the natural mappings
Ni:Z/p'Z — Z/p''Z, which are clearly surjective. Form all the possible infinite
sequences @ = (ao, a1,4z,...), with a; € Z/p'Z (1 = 0.1,...) and a;.; = N{(a;) (i=
1,2,...). Since each W, is surjective, given an element a; € Z/p'Z we can always
find an element a,4\ € Z/p'*'Z such that a; = N (a;41), and so such sequences

exist. Define the two operations of addition and multiplication on these sequences
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componentwise. Then these sequences form a ring. called the projective imit of
the rings Z/p'Z and denoted by lim(Z/p'Z). It is usual to write Z, for the ring
lim(Z/p'Z) and call it the ring of p-adic integers.

It is clear that Newton's method, when applicable, produces a solution of the
original polynomial equation in lim(Z/p'Z).

Note that some authors (24, Definition 14.49. p. 153] use Newton's method
to define the ring of p-adic integers, although we think that it is more natural to
proceed the other way around.

Newton’s method and the Chinese Remainder Theorem are two ubiquitous in-
gredients of computational number theory. Together. they have been successfully
applied to solve computationally the most disparate ptoblems in number theory (see
[60] and [96] for an overview of their applications). See (28] for an example of their
application for finding the exact rational solution of a regular system Ar = b of

linear equations with integral coefficients.

Given the ring lim(Z/p'Z), which turns out to be an integral domain, we can
form its field of quotients, denoted by Q, and called the field of p-adic numbers, by
adjoining the rational number 1/p. Q, is a local field, that is a locally compact non
discrete topological field, and in this sense it shares many properties of the field R
of reals and of the field C of complex numbers, which are local fields as well.

However, Q, is totally disconnected, while R and C are connected. Moreover,
Z, is embedded in Q, as a compact, open subring, while no such subrings exist for
Ror C.

Although Q, is an infinite and uncountable extension of Q, it is conceptually
easy to handle, since a p-adic number is simply a p-adic integer divided by a suitable
power of p.

The introduction of the p-adic numbers [44] opened new and unexplored horizons
to mathematical research, and allowed number theorists to solve elegantly some
problems which had been opeu for long time.

An early and striking result in this ditection is the Theorem of Hasse-Minkowski

about the zeroes of quadratic forms. It states that a quadratic form with rational
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coefficients admits a nontrivial zero over the rationals if and only if it admits a
nontrivial zero over Q,, for all the primes p, and over R. A variant of this theorem
asserts that two quadratic forms with rational coefficients are equivalent over the

rationals if and only if they are equivalent over Q,, for all the primes p, and over R.

The ideas discussed above can be generalized to other rings. The rings of most
interest to number theorists are the Dedekind Domains: the class of Dedekind Do-
mains is quite large, since it includes amongst others the Principal Ideal Domains.
We recall here that a Dedekind Domain is a ring which is Noetherian, integrally
closed, and where each prime ideal is maximal. Dedekind Domains arise naturally
in number theory as the ring of integers of algebraic number fields. The unique
factorization of integers into the product of primes is replaced in Dedekind Domains

by the unique factorization of ideals into the product of prime ideals.
In this thesis we will deal with rings of integers of algebraic number fields and
also with the following instances of Dedekind Domains, which by chance happen to

be Principal Ideal Domains as well:
e The ring F|z] of polynomials in one variable over a field F:

o The localization of the ring of integers of an algebraic number field at a prime
ideal;

o The ring of integers of a field complete with respect to a nonarchimedean

valuation.

For the class of Dedekind Domains there is a corresponding version of the Chinese
Remainder Theorem and of Hensel's Lemma - now, of course, the role of the prime
integers is played by the prime ideals. Again, given a Dedekind Domain O, it is
possible to define the ring of the P-adic integers, where P is a prime ideal of O, as
the projective limit im(O/P!0O), and then define the field of P-adic numbers as its
field of quotients.

In the next section we describe the main results that we obtain in this thesis.
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1.2 Our contribution

In this thesis we present algorithmic solutions to some problems in computational
number theory. Our algorithms. or their proofs of correctness, rely heavily upon the

local to global principle discussed above.

In Chapter 3 we consider the following problem:

Power rcots of polynomials.

Let F be an arbitrary field, m an integer greater than one, f(x) a poly-
nomtal in one variable over F of degree > 1, and g(xr) # 0 a polynomial
over F. Find necessary and sufficient conditions for the eristence of a
polynomial z(x) € F|z] such that z(z)™ = g(z) (mod f(z)). If z(z)

exists, find it.

This problem originated from a paper of J.B. Miller [69], where the author gives
some sufficient conditions for the existence of a polynomial z(z) € F|[z] such that
z(z)™ = g(z) (mod f(z)), when F is the field R of real numbers or the field C of
complex numbers. Miller explicitly states in [69] that the conditions given are not
necessary.

Using standard tools (Newton’s method and the Chinese Remainder Theorem)
we extend Miller’s results by giving both necessary and sufficient conditions for the
existence of an m** root in F[z]/(f(z)), when F is any field, not necessarily C or R.
While the methods used by Miller in [69] are analytical, ours are purely algebraic.
In particular, we show how our theoretical results can be specialized to the field R of
real numbers, the field C of complex numbers, and to finite fields. Moreover, since
our proofs are constructive, our method can be directly translated into a computer

program when F is any computable field (e.g. an algebraic number field or a finite
field).

In Chapter 4 we consider the following problem:

Norm group membership 1.

Let L = Q[a] be a cyclic number field of prime degree q, given by the
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minimal polynomial m,(z) of a over Q, and let a be a nonzero rational

number. Decide if a is the norm of some element of L.

In Chapters 4 and 5 we give an algorithm to solve this problem. Under the assump-
tion that we have a complete factorization of a and a complete factorization of the
discriminant d;(a) of a, our algorithm runs in time polynomial in the size of the
input.

The theoretic.’ olution to the norm membership problem stated above lies in
a very elegant result in number theory, known as Hasse’s Norm Theorem, from H.
Hasse who formulated it in 1926. This theorem states that, given a cyclic extension
K[k of global fields, a nonzero element of k is 2 norm of an element of K if and only
if it is a local norm everywhere, that is at all the possible completions, including the
archimedean ones. In our case k= Q, and K = L.

In Chapter 4 we prove that the set of finite primes that must be taken into
consideration in order to apply the Hasse Norm Theorem to our problem is actually
finite, and that the infinite primes play a role only in the case of quadratic fields.

In order to translate the Hasse Norm Theorem into an efficient algorithm, we

need a polynomial time algorithm to solve the following subproblem:

Decomposition of a rational prime.
Determine if a ralional prime p is inert, splits or else ramifiesin L. If p
ramifies, then find an element # € L whose minimal polynomial m,(z)

ts Eisenstein at p.

We consider the problem ‘Decomposition of a rational prime’ in Chapter 5. We
develop two algorithms to solve the problem, depending whether an integral basis
for L is known, or not. We recall here that there is an algorithm due to M. Pohst
and H. Zassenhaus [77] that finds an integral basis of an algebraic number field in
polynomial time, assuming the use of oracles for factoring integers and factoring
polynomial over finite fields. In practice, the algorithm of Pohst and Zassenhaus is

‘good’ for fields of small degree and discriminant of moderate size.
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The first algorithm takes as input p and an integral basis T for L, and it solves
the problem stated above in time polynomial in the size of the input.

The second algorithm takes as input p and the minimal polynomial m,(r) of a
and it solves the problem stated above again in time polynomial in the siz: of the
input.

Needless to say it, the first algorithm is conceptually much easier than the second

one.

In Chapter 6 we extend the algorithm given in Chapter 4 to cyclic number fields

of squarefree degree, that is we give an algorithm to solve the following problem:

Norm group membership II.
Let E = Q[v] be a cyclic number field of squarefrec degree n, given by the
minimal polynomial m,.(z) of v over Q, and let a be @ nonzero rational

number. Decide if a is the norm of some element of E.

We prove that it is enough to consider the same problem over all the minimal
subfields of E, which turn out to be cyclic of prime degree, and we show how to
compute these.

If we assume that we are allowed to call an oracle in order to obtain a complete
factorization of a and a complete factorization of the discriminant d;(v) of v, then
we can prove that the extended algorithm runs again in time polynomial in the size

of the input.

In Chapter 7 we give an application of the algorithms developed in Chapters 4
and 5 to a computational problem on finite dimensional associative algel ras over
the rationals. _

Before stating the problem let us recall some definitions from the theory of finite
dimensional associative algebras.

Let A be a finite dimensional associative algebra over a field F. An element
a € Ais called a divisor of zero if there is a nonzero element b € A such that ab = 0;
an algebra without nonzero divisors of zero is called a division algebra. An algebra A

is said to be simple if it does not possess any nontrivial two sided ideal, and central
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if its center is equal to the base field. An algebra A of dimension n over a field F is
said to be cyclic if it is central simple over F, and it has a cyclic subfield of degree
vn over F. There is a standard way of presenting a cyclic algebra [76, p. 277) as a
triple (M, 0,a), where M is the cyclic subfield of degree \/n over F, o is a generator
of the Galois group of M/F, and a is a nonzero element of F.

L. Rényai in a series of papers (80, 81, 83, 46. 84, 85] considered the problem of
deciding if a finite dimensional central simple algebra over an arbitrary number field
has zero divisors. Ronyai assumes that the algebra is given by a set of structure
constants, and he attacks the problem using sophisticate! tools from noncommuta-
tive number theory (i.e. the theory of maximal orders in noncommutative domains).
Ronyai’s algorithm is very powerful. since it computes the indez of the algebra (for
the definition of ‘index’ see Chapter 7), thus allowing one to get a lot of information
about the structure of the algebra. Rényai 's algorithm runs in time polynomial in
the size of the input, assuming the use of oracles for factorization.

Note that, giving an algebra by a set of structure constants, or what is the
same by its regular representaiion, is no doubt a very inefficient way. Often, other
presentations and /or representations of an algebra are preferred. either because they
arise as the catural choice, or because they are much more compact. For example,
in order to give the group algebra over a field F of a group G, it is enough to specify
a description of F and a presentation of G.

Now. by the theorem of Albert-Hasse-Brauer-Noether [76, p. 359, if F is a
number field then the class of cyclic algebras over F coincides with the class of
central simple algebras over F. In particular, every central simple algebra A over Q
is cyclic, and hence 4 admits a very compact presentation as a triple (M, 0, a).

To our knowledge. the problem of deciding algorithmically if a cyclic algebra
A = (M,0,a) over the rationals has zero divisors has not been considered so far.
This will be the last problem considered in this thesis, that we state as

Test for divisors of zero.
Let A = (M.o.a) be a cyclic algebra over the rationals. Assume that the

field M is given by the minimal polynomial m.(r) of a primitive element
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c for M/Q. the automorphism o is given as a polynomial i(x) over Q.
such tha! (¢} = o(c), and a is @ nonzero rational number. Decide if

A = (M.o,a) is a division algebra.

In Chapter 7 we present our algorithmic solution to this problem. We prove that,
if we assume that we are allowed to call an oracle in order to obtain a complete
factorization of a and a complete factorization of the discriminant djs{c) of ¢, then
the algorithm runs in time polynomial in the size of the input.

A theorem of A.A. Albert allows us to reduce this problem to the problem of
deciding if the rational number a is a norm from any minimal subfield of Af. Since
all the minimal subfields of Af are cyclic of prime degree. we can then exploit the
algorithms developed in Chapters 4 and 5.

In Chapter 8 we will consider the following problem:

Decomposition of a rational prime II.

Let L = Q[a] be a cyclic number field of odd prime degree g, given by
the minimal polynomial m,(z) of a over Q. Decide if a rational prime p
ramifies in L. If p ramifies, then find an element * € L whosc minimal

polynomial m.(z) is Eisenstein at p.

We show that, if we do not require to know if a non ramified prime p splits or it is
inert, then it is possible to devise a very simple algorithm to solve the problem.
The algorithm takes as input p and the minimal polynomial m,(r) of a. Ex-
periments show that the running time of this algorithm is slightly better than the
running time of the algorithm described in Chapter 5, although the minimal poly-

nomial m.(z) of the element # fourd by the algorithm might have a larger size.




Chapter 2

Basic Definitions and Preliminary Results

In this chapter we recall some basic definitions from algebraic number theory and
class field theory, and we state without proof some basic resuits needed in the proof

of our theorems.

2.1 Basic Notation

If B is a subgroup of a group A, (A : B) will denote the index of B in A. When m
is a positive integer, A™ will denote the subgroup of .4 generated by the m* powers
of the elements of A.

The symbol deg f(z) will denote the degree of the polynomial f(r).

If k is a subfieid of a field K, [K : k] will denote the degree of the field extension
K/k, and K= = K\{0} will denote the multiplicative group of XK.

As usual Q will denote the field of rational numbers, R the field of real numbers,
C the field of complex numbers, Z the ring of integers and N the natural integers.
When m is a prime power, the symbol F,, will denote the finite field of m elements.

When K is a normal separable extension of a field & the symbol Gal(K/k) will
denote the Galois group of K over k.

When a is an algebraic number, the minimal polynomial of a over Q will be
denoted simply by m,(r).



Chapter 2. Basic Definitions and Preliminary Results 13

Let A be an algebraic number field. of degree n over Q. The symbol Oy will
denote the ring of integers of K, that is the algebraic closure of Z in K. The symbol
dx will denote the discriminant of K. If 3 € K. then the symbol dy(3) will denote
the discriminant of the n-tuple (1,3..... -1,

Let us assume now that Oy is a Dedekind Domain. with quotient field k. Recall
that a Dedekind Domain is a ring which is Noetherian. integrally closed. and such
that every nonzero prime ideal is maximal.

Given a finite extension K of k. then the integral closure of O, in K is a Dedekind
Domain as well, denoted by Oy..

If Q is a prime ideal of Ox. then P = QN k is a prime ideal of k., and we say
that Q lies above P or that Q divides P.

The field O,/P is naturally embedded in the field Ok /Q. The degree [Ox/Q :
O,./P] is called the inertial degree of Q over P and is denoted by f(Q|P). The
exact power of @ dividing POy is called the ramification index of Q over P and is
denoted by e(Q|P).

When K is a Galois extension of k, and P is a prime ideal of Oy, then the Galois
group Gal(K'/k) permutes transitively the prime ideals of O lyving above P. From
this it follows that all the prime ideals above P have the same ramification index,
denoted by e¢(P), and the same inertial degree. denoted by f(P). If we denote by
g(P) the number of prime ideals lying above P then the equality e(P)f(P)g(P) =
[K : k] holds.

2.2 Some Preliminaries on Valuations

In this section we recall the definition of valuation of a field and of completion of a
field with respect to a given valuation. For a very elegant account of the theory of
valuations we refer the reader to [7].

A function z — |z| from a field A" to the reals is called a valuation if

(i). |z] 2 0 for all z € K, and |z| = 0 if and only if r = 0:
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(). =]yl = |zy}:
(ii). |z +y| < =] + lyl.

If in addition the valuation satisfies the stronger inequality:
lz + y| < max(|z|. |yl)

then we say that the valuation is non-archimedean, otherwise the valuation is called
orchimedean. For a non-archimedean valuation the set {r € K| |z| < 1} is a ring,
called the valuation ringof K.

A valuation endows the field K with the structure of a metric space, by defining
the distance d between two points as follows:

d(z.y) = |r — ¥l ryek

Two valuations are said to be equivalent if they induce the same topology on K.
We define a prime of K to be a set of equivalent valuations of A'.

When K is an algebraic number field we disting uish between the finite primes of
K and the infinite primes of K. depending on the non-archimedean or archimedean
nature of the corresponding valuations.

The finite primes are in one to one correspond.-. - with the prime ideals of O,
the ring of integers of A'. We will use the same symbol to denote a finite prime of
K and the corresponding prime ideal of Oy..

The infinite primes are in one to one correspondence with the embeddings o of K
into C, the field of complex numbers. Namely, a real infinite prime is an embedding
o : K — R. and a non-real (complex) infinite prime is a pair of complex conjugate
embeddings 0.7 of K into C, with 0 # 7.

Let P be a finite prime of K. If 3 € K and 8 # 0, we will denote by 1-p(3) the
order of 3 at P, that is, the power of P in the factorization of the fractional ideal
B8O. We define vp(0) to be oo.

All the equivalent valuations of K belonging to the finite prime P are of the form

B — e*D
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where 0 < ¢ < 1 is a fixed constant. We call any of them a P-adic valuation of the
field.

Remark. When K = Q and p is a rational prime. by abuse of language we will
write p for the prime corresponding to the ideal pZ. If b€ Q and b # 0. then v, (b)
will denote the order of b at p. that is, the power of the ideal pZ in the factorization
of the fractional ideal bZ. We define v,(0) to be oo.

In the set of equivalent valuations determined by a prime of K. we select a

canonical one as follows.

The normalized valuation of K with respect to a finite prime P is defined to be
the function

3 s N(P) D)
where M (P) denotes the absolute norm of P. that is the number of elements in the
quotient ring Ok /P.
The normalized valuation of K with respect to a real infinite prime o is defined
to be the function

a— |o(a)]

whete |o(a)| denotes the ordinarv absolute value of the real number a(a).

The normalized valuation of K with respect to a non-real infinite prime o is

defined to be the function

a s |o(a)?

where |o(a)| denotes the modulus of the complex number o(a).

Since a valuation endows A" with the structure of a metric space, given a prime D
of K we can form the completion K'p of A with respect to the normalized valuation
determined by D.

When ¢ is an infinite prime, then i, can be given the structure of a field.
isomorphic either to R or to C.

When P is a finite prime, then A'» can be given the structure of a field, called
the field of P-adic numbers. In this case. the set {x € Kp | vp(z) > 0} is a subring
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of Kp, denoted by Op and called the ring of P-adic integers. The group of units of
Op will be denoted by Up.

Moreover, when p is a rational prime, the symbol Q, will dcnote the field of
p-adic numbers, Z, the ring of p-adic integers, and U, the group of units of Z,.

Let K/k be an extension of algebraic number fields. If Q is a finite prime of K
and P is the unique prime of k lying below Q. then kp can be embedded algebraically
and topologically in Kg. To simplify matters, we identify k» with its embedding in
Ko.

The following theorem shows that the property of an extension of number fields

of being Galois is preserved by the completions at the finite primes.

Theorem 2.1 Let K be a finite Galois ertension of an algebraic number field k.
Let P be a finite prime of k and Q be a prime of K lying above P. Then Ko /kyp is
also Galois, and the Galois groups Gal(Kg/kp) and Gal(K' /K Nkp) are isomorphic.

Proof. See [76. p. 347. Corollary c¢]. O

2.3 Localization of a Dedekind Domain

In this section we recall the concept of localization of a ring, and we state some
theorems for future reference.

Although localization can be defined for general rings, and even for non integral
domains (see [8, p. 36]), here we will restrict our attention to Dedekind Domains.

Let O be a Dedekind Domain with quotient field k. We say that a subset S
of O is a multiplicative set if it contains the unity of O and it is closed under
maultiplication.

The set S~1O of quotients r/s with r € O and s € § is a subring of k called
the localization of O at S. The ring O is naturally embedded in $~10O by the map
r—zfl.

When P is a prime ideal of O. it easy to check that the set S = O\P is a
multiplicative subset of O. In this case, by abuse of language, we call S7'O the
localization of O at P.
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Although it is quite common to denote the localization of © at a prime ideal
P by the symbol Op, to avoid confusion we will retain this symbol for the ring of
integers of the field of P-adic numbers. where P is an ideal of an algebraic number
field.

When § = O\P, the ring S~'O is local, i.e. it has a unique maximal ideal.
namely P $—1O.

In addition, S~'O is a principal ideal domain. and so every ideal must be a power
of its unique maximal ideal.

A local principal id=al domain is called a discrete valuation ring. The valuation
ring of a non archimedean valuation of a field X is a typical example of a discrete
valuation ring. The valuation ring of the field of P-adic numbers is simply the ring
of P-adic integers.

We state the following theorems concerning discrete valuation rings for future

reference.

Theorem 2.2 Let S be a multiplicative set in a ring O. and let B be the integral
closure of O in a field extension K of the field of quotients k of O. Then, the integral
closure of S~'O in K is given by S™'B.

Proof. See |52, Proposition 8, p. 8]. O

Theorem 2.3 The integral closure of a ring © in a finite ertension K of its quotient

field k is equal to the intersection of all the valuation rings of K containing O.

Proof. See [53, Proposition 3.6, p. 351]. D

This last theorem assumes a particularly neat form when R = S~'0, with § =
O\P as above. in this case, if we denote by Q;,...,Q, the prime ideals of B above
P, and by T; the multiplicative set B\Q,, then the valuation rings above S~'O are
just the rings T,7'B.

In particular. when there is only one prime ideal Q of B above P, the integral
closure of S~'Q in K is just T~!B. with T = B\Q, and so it is a discrete valuation

ring as well. In this case. we have
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Theorem 2.4 Let O be a Dedekind Domain, with quotient field k. Let B be the
integral closure of O in a finite separable extension K of k. Let P be a prime
ideal of O, and assume that there is only one prime ideal Q of B lying above P.
Let S denote the mulliplicative set O\P. Let n € Q S~ 'B\(Q S 'B)?, and let
B € S7'B be a primitive element for ST'B/Q S7'B over ST'O/P S'O. Then
5-10[3,%z)=S"'B

Proof. See [52. Proposition 23, p. 26] O

2.4 The Chinese Remainder Theorem

Although it is possible to find many different versions of the Chinese Remainder

Theorem in the literature. we will need only the following basic version.

Theorem 2.5 Let R be a commutative ring with unity. and I,. ... T, ideals such
that I; + I, = R for all1 # j. Given elements x,,...,z, € R, there isanz € R
such that r = r; (mod I;) for all 1.

Proof. See [53, p. 94]. O

We will use the Chinese Remainder Theorem in Chapter 3. where R will be the

ring F|[z] of polynomials in one indeterminate over a field F.

Since F(r] is a Principal Ideal Domain, in this ring the Chinese Remainder

Theorem admits a very simple formulation:

Theorem 2.6 Let F be a field, and fi(z),..., f.(r) pairwise coprime polynomials
over F. Given polynomials gi(z),...,g.(x) over F, it is possible to find a polynomial
f(z) € Flz] such that f(z) = g.(z) (mod f.(x)) for all i.

The construction of the polynomial f(z) is implicit in the proof of the theorem.
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2.5 Hensel’s Lemma

Hensel’s Lemma is a method, due to the German mathematician Hensel, for lifting
approximate factorizations of polynomials over valuation rings. According to B.
Mazur [64] this method was already implicit in the work of Kummer. The name
‘Lemma’ must not mislead: Hensel’s Lemma is capable of many generalizations. In
fact, quoting J.W.S. Cassels [19, p. 83] ‘in the literature there is a variety of results
that go under this name’.

Hensel’s Lemma has its roots in Newton’s method for finding the roots of a poly-
nomial equation by successive refinements of an initial approximate solution. It takes
an approximate factorization in a valuation ring and produces a new approximate
factorization, with is better with respect to the given valuation.

Although some authors [97] consider Hensel’s Lemma a special case of Newton’s
method, it is nowadays quite common to consider Newton’s method as a corollary
of Hensel’s Lemma. This will be our approach in this section, following J. von zur
Gathen [38).

Let K denote a field complete with respect to a nonarchimedean valuation, Oy
its ring of integers, and P its maximal ideal. In addition, let K denote the residue
class field of I, that is O /P. We have a canonical homomorphism

Ox - Ox/P=R
which extends to the polynomial ring Oy [z] as follows:
g(z) =Y ez — Y @z' =g(z)
1=0

i=0

where ¢ denotes the residue class mod P of an element ¢ € Oy,

Theorem 2.7 (Hensel’s Lemma) Let K be a field complete with respect to a
nonarchimedean valuation, and let O be its ring of integers. Let f(x) be a primative

polynomial in Ox|z] which factors in the residue class field K of K as

f(z) = G(z)H(z)
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where G(z) and H(z) are nonzero relatively prime polynomials in K[x]. Then

f(z) = g(z)h(z)

where g(z),h(z) € K[z] and degg(z) = deg G(z), and G(z) and H(x) are the
images of g(z) and h(zx), respectively, in K|z].

Proof. See [14, pp. 275-276]. D

We mention only a few consequences of Hensel’'s Lemma.

Corollary 2.1 (Newton’s method) With the same notation as above, suppose
that f(x) has a root in K [z] with multiplicity one. Then f(z) has a root in Ok with

multiplicity one.
Proof. See [47, p. 83]. O

Corollary 2.2 Let f(z) be a primitive polynomial in Oy [x] which is irreducible in
K[z]. If K is complete, then f(z) is a power of an irreducible polynomial in K|z].

Proof. See [65, Lemma 3, p. 95]. O

2.6 Some Results from Local Class Field Theory

In this section and in the next one we recall some results from local and global class
field theory, needed later on in this thesis. For a brief summary of class field theory
we refer the reader to [37].

The objective of local class field theory is to describe all the abelian extensions
of a local field.

A local field is defined to be a locally compact, nondiscrete topological field. It
is known that a local field is either a finite extension of the field Q,, for some prime
p of Q (including the infinite prime), or the field of formal power series over a finite

field. In this thesis we will be concerned only with the first case.
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The main theorem of local class field theory establishes a one to one correspon-
dence between the abelian extensions of a local field A" and the open subgroups of
finite index in K*.

More precisely, for a fixed local field [, to each abelian extension L of A" there
corresponds uniquely the norm subgroup Ny 4 (L") of K'*, and conversely, any open

subgroup of finite index in K™ is the norm subgroup of some abelian extension L of

K.

Moreover, for a given abelian extension L of K, theie is a canonical isomorphism
{ O3 GaI(L/I\') — I\"/.’\"'L/K(L')

called the main isomorphism of local class field theory.

After these remarks we can state the results from local class field theory that we

will use in the next chapters.

The first theorem tells us that the norm map behaves in the expected way with

respect to the operation of composition of fields.

Theorem 2.8 Let L,....,L, be abelian extensions of a local field K. Let L =
Ly---L, be their composite. Then Ny ;p(L™) = Nz, - N yx(L7).

Proof. See [86, Lemma 15. p. 168]. O

The next theorem characterizes completely the norm group of the unramified

extensions of Q,.

Theorem 2.9 Let Lp be an unramified extension of Q, of degree f over Q,. Let
B=p"ueQ;, withue U, meZ. Then 3 € Nipq,(Lp) if and only if f {m. In

particular every unit of Q, is the norm of a unit in Lp.

Proof. See [5, Theorem 19, p. 141} and [47, p. 153]. O

The last result from local class field theory that we need is known as the funda-
mental equality of local class field theory. It is valid for any local field, and hence in
particular for any p-adic field.
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Theorem 2.10 Let L/K be a cyclic extension of local fields, with ramification index
e. Let Uy (resp. Ug) denote the group of units of L (resp. K). Then (Ug :
Nik(UL)) = e and (K* : Nyp(L7)) = [L: K].

Proof. See [52, Corollary, p. 221] and [52, Theorem 3, p. 219]. O

2.7 Some Results from Global Class Field Theory

Global class field theory describes all the abelian extensicis of a global field. A
global field is either an algebraic number field, that is a finite extension of the field
Q of rationals, or a field of algebraic functions in one variable over a finite field. In
this thesis we will be concerned only with the first case.

In global class field theory the role of the multiplicative group of the field K*
is played by the idele class group Cy, defined as follows. Let My denote the set
of inequivalent valuations of i'. The idele group Jx of a field A is the restricted
topological product of the multiplicative groups A’] with respect to the units U, of
K,: by this we mean the subgroup of the direct product

I &:
vEM K
consisting of elements all but a finite number of whose components lie in U,.
From a topological point of view Ji- is made into a locally compact group by

decreeing that each group

IIx: II v

vES  vEM\S
is an open subgroup of Ji, where S ranges over all the finite subsets My . Given an
idele a of J; we define its norm N x(a) to be the idele of Jx whose v-component
is
I-II Nio/w.(aw)
The group L* is embedded in J; as a discrete subgroup called the group of principal
ideles, and the quotient group

Co=J,/L"
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with the quotient topology, is called the idele class group. It is possible to extend

the norm map to the idele class group.

The main theorem of global class field theory states that given a finite extension
L/K of a global field K, the norm subgroup Np;x(CL) of Cx uniquely determines
the field L, and conversely, any open subgroup N of finite index in Cj is the norm
subgroup N x(CL) for some finite abelian extension L of K. We call L/ K the class
field to N.

After these preliminaries. we state the results from global class field theory that

we will use in the next chapters.

The most striking result, around which our thesis winds, is certainly the following

celebrated theorem of H. Hasse:

Theorem 2.11 (Hasse Norm Theorem) Let L/K be a cyclic extension of global
fields. An element a € K~* is a norm from L* if and only if a is a local norm at

every prime (including the infinite primes) of K.

Proof. See [47, Theorem 4.5, p. 156). O

We note here that the Hasse Norm Theorem is strictly limited to cyclic extensions
(see {19, p. 360} for counterexamples). In other words, for a noncyclic extension L
of a global field K it may happen that an element which is a local norm everywhere

1s not a global norm, although the converse is always true.

The next theorem tells us that in the application of the Hasse Norm Theorem

we can leave out a particular prime.

Theorem 2.12 [fL/K is an abelian extension of global fields and a € K* 1s a local
norm at all the primes of K with the possible exception of one particular prime, then

a is a local norm at that prime as well.

Proof. See [47, p. 190]. O
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2.8 Encoding Data

In order to discuss the time complexity of our algorithms we have to define how the
size of an object, and therefore the size of the input, is measured.

We define the size of a sequence of nonnegative integer as the number of bits
needed to represent the sequence in binary.

Negative integers are represented by adding a sign bit to their binary represen-
tation.

A rational number c is encoded as a sequence r.s with r and s coprime integers
such that r/s = c.

When n is a positive integer, the elements of the ring Z/nZ are encoded as
nonnegative integers smaller than n. This implies that the size of any element of
Z/nZ is bounded by log(n + 2).

A compound object (polynomial, vector, matrix) is encoded in the dense rep-
resentation, by giving the sequence of all its coefficients. Then the size of the
compound object is just the sum of the sizes of its simple constituents.

In particular, the degree of a polynomial is bounded by the size of the sequence
of its coefficients. This implies that, when a is an algebraic number then the degree

[Qla] : Q) is bounded by the size of the minimal polynomial m,(z) of a over Q.




Chapter 3

Power roots of polynomials over arbitrary
fields

Let F be an arbitrary field, of characteristic char(F). f(r) a polynomial in one
variable over F of degree > 1, g(z) a nonzero polynomial over F and m > 1 an
integer.

In [69] J.B. Miller gives some sufficient conditions for the existence of a polyno-
mia! »(x) € F|z] such that z(.)™ = g(x) (mod f(r)). when F is R or C. Miller
explicitly states in his paper that the conditions given are not necessary.

In this chapter we extend Miller’s results by giving necessary and sufficient con-
ditions for the existence of an m* root in F[z]/(f(z)), when F is any field, not
necessarily C or R. While the methods used by Miller in [69] are analytical, ours
are pu}ely algebraic, for they rely on the power of the combination Hensel’s Lemma
- Chinese Remainder Theorem.

Moreover, since all the proofs given here are constructive, it is possible to trans-
late them into an effective algorithm when F is a computable field (e.g. an algebraic
number field or a finite ficld). The results of this chapter have been published in [1].

When cher{F) [ m, we can summarize our results in the following theorem:

Theorem 3.1 Let F be a field, and m > 1 a positive integer, char(F) f m if
char(F) > 0. Let g(z), f(x) be polynomials over F, wi*h g(r) # 0 and deg f(z) > 1.
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In F[z] the congruence

z(z)" =g(z) (mod f(z)) (3.1)

admits a solution if and only if for every irreducible factor p(z) of f(z):
if I > 0 denotes the highest ezponent to which p(z) divides g(z) and k > 1 denotes
the highest ezponent to which p(z) divides f(z), then either

(i). k<1, or
(ii). m |l and y(z)™ = g(z)/p(z)! (mod p(x)) is solvable for y(z).

When char(F) | m the conditions for the solvability of the congruences z;(z)™ =
g(z) (mod p;(z)*) are more involved - we will consider this case in Section 3.1.2.
What we show essentially in this chapter is that we can reduce the problem of
solving (3.1) to the problem of solving simpler equations, of the form z(z)™ = g(z)
(mod p(z)), with p(z) irreducible over F. But, as we will show in Section 3.1,
solving these simpler congruences is equivalent to extracting m' roots in some

algebraic extension of F.

We will prove Theorem 3.1 in Section 3.1. In Sections 3.2, 3.3 and 3.4 we will
show how to specialize Theorem 3.1 to C, R and to finite fields.

3.1 The method

When n and y are arbitrary integers and m is a positive integer greater than one,

it is well known how to solve the congruence
™=y (mod n)

using the combination Hensel's Lemma -~ Chinese Remainder Theorem (see [71, pp.
79-90) for a nice exposition of the technique). Our aim here is the extend this
method to the ring F[z] of polynomials in one variable over a field F, in order to

solve the congruence (3.1).
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Let us assume without loss of generality that f(r) is monic. since if ()™ = g(r)
(mod f(z)) holds, then z(z)™ = g(r) (mod cf(z)) holds for any ¢ € F. Our
method can be summarized as follows:

(i). Factor f(z) into monic irreducibles obtaining f(z) = pi(2)* ... pa(2)* where

the p;(z) are distinct irreducibles and each &, > 1:

(ii). Solve each of the congruences z;(r)" = g(x) (mod p(r)) for z(r), i €
{1,...,n};

(iii). Lift the solutions obtained in the previous step from F[r]/(p.(7))
to Flz}/(pi(z)™):

(iv). Combine the solutions of the previous step using the Chinese Remainder The-

orem to obtain a solution of the original congruence.

Step (iv) does not present any technical difficulty, since it relies on the well known
isomorphism {53, page 95):

Flz])/(f(z)) = Fiz)/(p(2)*) x ... x Flr]/(pa(z)*")

When p(z) is 2 monic irreducible polynomial F[z]/(p(x)) = F(a) where a is any
root of p(z): the actual isomorphism is given by k(z) + (p(z)) — k(a). It follows
that Step (ii), that is the extraction of an m'* root of g{r) modulo p(z), is equivalent
to the extraction of an m** root of g(a) in F(a).

Therefore, most of the rest of this section will be devoted to explaining how Step
(iii), i.e. the lifting process, can be accomplished.

Fundamental to the entire process is the concept of the p(r)-adic expansion of
a polynomial f(z) [53. page 189]. Giver f(z),p(r) € F[z],with deg p(x) > 1, there
exist unique polynomials

go(z),g1(7),...,9(x) € Fiz]

such that deg g.(z) < degp(x) and

f(x) = golz) + qi(2)p(x) + g2(2)plx)* + ... + gulz)plz)f
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The polynomials g,(z) can be computed recursively as follows:
® go(z) := f(z) mod p(z)
¢ gin1(z) := (f(2) — Tino 9(2)P(2)*)/p(2)"*' mod p(z).
The lifting method is based on the following instance of Hensel's Lemma.

Lemma 3.1 Let p(z) be an irreducible element of Fx]. Let G(y) be e poly-
nomial with coefficients in F|r]. Assume that there is an element fo(r) €
Flz), with degfo(z) < degp(z), such that G(fo(z)) = 0 (mod p(z))
and G'(fo(z)) # 0 (mod p(r)). Given any positive integer k there is a
unique polynomial fi_,(z) € F[r] of degrec less than degp(z)* such that
G(fi-1(z)) =0 (mod p(2)*) and fi_.(x) = fo(x) (mod p(z)).

Proof. Our proof is freely adapted from the proof of Hensel's Lemma given
in [50, page 16]. e show how to comstruct a sequence of polynomials
filz),... fe-1(z) € Flz) such that for all n € {1.... .k -1}

(i). G(fa(z)) =0 (mod p(z)"*})
(ii). fa(2) = fa-r(z) (mod p(r)")
(ii). deg f.(r) < degp(r)"*!

We prove that the sequence (f.{z)) exists and is unique by induction on n. If f,(z)

satisfies (ii) and (iii) then it must be of the form
fo(z) + by(x)p(x)
with deg by (r) < deg p(r). When w< expand G(fi(r)) we obtain
G(f1(r)) = G(folx) + bi(2)p(7)) = G(fo(x)) + G (fo(z))bs(2)p(2) + w(x)

where w(r) is a polynomial divisible by p(r)?. Since p(r) | G(fo(z)) by assumption.
we can write

G(fo(1)) = ao(z)p!z) (mod p(r)?)
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where deg ao(r) < (jleg plr). Soaa in order to get G(fi(r)) =0 (mod p(r)?) we must

have
aolr)p(z) + G'(folx))by(x)p(r) =0 (mod p(2)?)
that is
ag(r) + G'(fo(x))bi(x) =0 (mod p(r))

The last congruence has a unique solution (mod p(r)) for by(r) since by hypothesis

G'(fo(z)) #0 (mod p(r)). Then

fi(x) = folx) + by(x)p(r)

is the unique polynomial satisfving (i). (i) and (iii) with n = 1.

Next. assume that
filx). fofx).- ... faor(x)
are known. and we want to find f.(r). By (ii) and (iii) we need
fulz) = facalx) + ba(r)p(x)”

with degb,(r) < degp(r). We expand G(fn(r)) obtaining

G(.fn('r))

i

G(fu-i(x) + ba(x)p(2)")
GC(fror(2)) + G (faar (r)bo(x)p(x)"  (mod p(r)"*")

i

Since
G(fnar(z)) =0 (mod p(x)")
by the inductive hypothesis. we obtain

G(fu-r(r)) = any(2)plx)"  (mod p(x)™*")

and the condition

G(fu(r))=0 (mod plz)"*")
becomes

aui(2)p(r)" + G (fucr(z)ba(z)plz)* =0 (mod p(z)"*)
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that is
an-1(2) + G'(fo-1(2))ba(z) =0 (mod p(r))

Since
Jfa-1(x) = fo(r) (mod p(r))
it follows that

G'(fu-1(x)) = G'(fo(2)) 0 (mod p(z))

and so the previcus congruence has a unique solution (mod p(z)) for b,(z). Then
Jalx) = for(x) + bo(x)p(2)"

is the unique polvnomial satisfzing (i). (ii) and (iii). O

Qur objective is to solve the congruence:
y(r)™ = g(r) (mod p(z)") (3.2)

where p(r) is a monic irreducible factor of f(x).
Let yo(r) be a solution of y(z)™ = g(x) (mod p(z)): clearly if such an element
yo(x) does not exist then (3.2) cannot admit any solution.
If
myo(z)" ' £0 (mod p(r))
we can use the construction given in Lemma 3.1 with G(y) := y(z)™ — g{z) to obtain
a sequence of polynomials
y1(x).y2(x). . ..
such that
ylz)™ = g(z) (mod p(z)™*?)
A solution of (3.2) is then given by yi_,(z), and this solution is unique, modulo

p(r)*.
If
myo(z)" ' =0 (mod p(r))

the lifting argument can not be applied. although (3.2) may still have a solution.
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Let us assume therefore that
myo(r)™" 1= 0 (mod p(r))

Since Flz]/(p(z)) is a field this may happen only in two cases: if yo(r) = 0
(mod p(zx)) or if char(F) | m. We discuss the first case in Section 3.1.1 and

the second case in Section 3.1.2.

Remark. Let s, denote the number of solutions of the congruence
s(x)™ = g(x)  (mod p,(r)")

It is easy to see that the number of solution of (3.1) is given by [I7,s,. In the
case when gcd(f(r).g(z)) = 1 and char(F) Jm, Lemma 3.1 shows that the lifting

process is unique and so s, is also the number of m*® roots of g(r) (mod p.(r)).

3.1.1 Lifting of zero

It is easy to see that the zero polynomial is a solution of y(x)™ = g(r) (mod p(r))

if and only if p(r) | g(z). The following lemma deals with this case.

Lemma 3.2 Assume that p(r) | g(z). Let l be the highest ezponent to which p(r)
divides g(z). If k <1 the zero polynomial is a solution of (3.2). If k >l then (3.2)

admits a solution if and only if m |l and

y(z)™ = g(x)/p(z)) (mod p(x)*") (3.3)

admits a solution. In this case if §(r) denotes a solution of (3.3) then

9(z)p(x)/™ is a solution of (3.2).

Proof. If k < 1 the zero polynomial is obviously a solution of (3.2). so we will suppose
that k& > L.

Assume that
§(z)™ = g(z)/p(r)" (mod p(r)*~)
This is equivalent to
Px)* | g(z)"pls) - giz)
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Thus, if m |l we can write the last relation as
p(z)* | (=) p(x)m™™ — g(x)

and so §lz)p(z)"'™ is a solution of (3.2).
On the other hand, suppose that & > ! and (3.2) admits a solution. Let the
p(z)-adic expansion of g(z) be

ar(z)p(z) + az(z)p(z)'*! + ...
with a;(z) # 0. Let
g(z) = bi(z)p(z)" + ...

be a solution of (3.2). with b,(x) # 0. Then the p(r)-adic expansion of F(z)™ is
(by(x)™ mod p(x))p(x)™ +...
Since by(z) # 0 and degb;(z) < deg p(r) it follows that
bi(r) £0 (mod p(r))
and therefore
bi(z)™ #£0 (mod p(r))

since p(r) is prime.
Now
¥(r)" = g(z) (mod p(z)")

if and only if

(bi(z)™ mod p(x))p(x)™ +...

and

a(r)p(z) +...

coincide up to the term in p(z)*~'. Since a;(z) # 0 and by(z)™ mod p(z) # 0 it

follows that I = rm and so m | [ as asserted. O
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Corollary 3.1 Under the assumptions of the previous lemma, if char(F) [ m and
k > 1 then (3.2) admits a solution if and only if m | I and y(£)™ = g(r)/p(s)

(mod p(z)) admits a solution.

Proof. The Corollary follows immediately from Lemma 3.2 since the right hand side
of (3.3) is not divisible by p(z). O

Note that if p{(z) | g(z) and at the same time char(F) | m. we can use Lemma
3.2 to reduce this case to the case p(z) [ g(z) and char(F) | m. which is handled in

the next section.

3.1.2 The exponent m is a multiple of char(F)

In this section we will assume that p(r) ) g(r). When ¢ = char(F) > 0 the map

a — a’ is always an endomorphism of F. It follows that if
a{r)=as+ayv + ...+ a,r"
is a polynomial over F then
a(z)! =ad+al2?+ ... +a%zx™
We will use this fact frequently in this section.

Lemma 3.3 Let g = char(F), ¢ # 0. Assume that m = ¢' for some positive integer
t, and m > k. If (3.2) admits a solution. then every solution of y(z)™ = g(z)
(mod p(z)) is a solution of (3.2).

Proof. Let us assume that (3.2) admits a solution y,(r). Let yo(r) be a solution of
y(z)™ = g(z) (mod p(r)). Then

(yo(z) = yai(z))™ = yo(z)™ — yo{z)" =0 (mod p(z))

Since p(z) is prime and k¥ < m it follows that

p(a)* | (yo(z) = ya(z))™
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and therefore

yo(z)™ = p(z)™ (mod p(z)¥)
that is
yo(z)™ = g(z) (mod p(z))

0

Remark. Therefore, when m = ¢' and m > k, to test if (3.2) is solvable, it is
enough to find eny solution of y(z)™ = g(x) (mod p(r)) and check if it satisfies
(3.2). Clearly if y(z)™ = g(z) (mod p(z)) does not admit any solution then (3.2)

does not admit any solution.

Lemma 3.4 Let ¢ = char(F), ¢ # 0. Assume that m = ¢* for some positive integer
t.
If m | k then (3.2) admits a solution if and only if g(z) (mod p(z)*) is a

A

polynomial in x™ and all its coefficients have an m'* root in F'.

If m fklet w:=|k/m]. let s := k modm, let z(x) := g(zx) mod p(z)™" and
r(z) := (g(z) - =(z))/(p(z)™¥) mod p(z)*. Then (3.2) admits a solution if and

h

only if z(z) is a polynomial in z™. all its coefficients have an m'* root in F and

Hz)™ =r(z) (mod p(r)*) admits a solution.

Proof. Let
go(z) + g (z)p(z)™ + ...

be the p(r)™-adic expansion of g(r).

If y(z) is an m** root of g(r) modulo p(x)* and
yo(z) + yi(z)p(z) + ...
is its p(z)-adic expansion then
y(x)" = yo(z)™ + y(x)"p(z)™ + ...

and this expression must coincide with the p(z)™-adic expansion of y{z)™.
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Let us assume first that m | k. It can be seen that in this case (3.2) is satisfied

if and only if

Yo(2)™ + Y (2)"P(2)™ + .. + Yaymor(2)" ()R
90(2) + GU(Z)P(T)™ + - .. + ey (£)p(x)"E/m-1)

Therefore gi(z) must be the m** power of y,(z). for i = 0,....k/m — 1. But then
g(z) mod p(z)* is the m** power of a polynomial y(z). i.e. it must be a polynomial
in z™ and each of its coefficients must have an m*® root in F - it is easy at this
point to find the actual polynomial y(z).

Assume next that m [ k. The argument used above telis us that

g.(z) = g ()™

fori=0,...,|k/m] - 1. and

9:(x) = yi(z)"  (mod p(r})*)

for i = [k/m], as asserted. “lince s < m, the last congruence can be handled using

Lemma 3.3. DO

Note that Lemma 3.3 and Lemma 3.4 are valid for any field of characteristic
g>0.

Remark. When ¢ | m but m is not a power of g, write m as ¢'r, with ¢ Jr. Write
(3.2) as (y(z)*)" = g(z) (mod p(z)*).

Set z(z) := y* and solve :(z)" = g(z) (mod p(z)*) for 2(z). Finally solve
y(z)* = z(z) (mod p(z)*) for y(r) to obtain a solution of (3.2).

3.2 The complex case

In C[r] an irreducible polynomial p(z) can have only degree 1, and therefore we can
take p(r) = z — a, with a € C. We recall here that C[r]/(z ~ a) = C under the
isomorphism

9(z) + (z - a) — gla)
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If p(z) f g(z), the congruence y(z)™ = g(zr) (mod p(z)) always admits a
(nonzero) solution, since C = C|z]/p(z) is algebraically closed, and this solution
can he lifted to a solution modulo p(z)*, since m does not divide the characteristic
of C.

Ifg(z) =0 (mod p(z)) then (3.2) admits a solution if and only if the conditions
imposed by Lemma 3.2 are satisfied. We summarize our results in the following

theorem:

Theorem 3.2 In Cjz] the congruence (3.1) admits a solution if and only if for
every common root a of f(z) and g(x) either the multiplicity of a in g(z) is greater

than or equal to the multiplicity of a in f(x) or else m divides the multiplicity of a

in g(z).

3.3 The real case

In R|z] an irreducible polynomial p(z) can have only degree 1 or 2. Assume first
that p(z) [fg(r).

lf deg p(z) = 1, then we can take p(r) = r—a. with a € R; then R[z]/(p(z)) = R
under the isomorphism

g(z) + (p(z)) — g(a)

Then y(z)™ = g(z) (mod p(z)) admits a solution unless g(a) < 0 and m is even.
Moreover this solution can always be lifted to a solution modulo p(z)*.
If deg p(z) = 2, then Rir]/(p(z)) = C. In this case y(z)™ = g(r) (mod p(r))
admits a nonzero solution and this solution can be lifted to a solution modulo p(z)*.
Assume next that p(z) | g(z). If deg p(z) is 1 or 2 then (3.2) admits a solution if
and only if the conditions imposed by Lemma 3.2 are satisfied. We summarize our

results in the following theorem:

Theorem 3.3 In Rz} the congruence (3.1) admits a solution if and only if the
Jollowing holds for every (real or compler) root a of f(x): ifl denotes the multiplicity
of a in g(x) and k the multiplicity of a in f(r), then either
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(i). k<1, or

(ii). m |1, and whenever a is real either (9/p')(@) > 0 or else m is odd.

3.4 Finite fields

When K is a finite field there is an easy criterion to decide if an element a has an

m** root in it, namely let
e = (IK]—1)
ged(m. |K| - 1)

and test if a° is equal to 1 or not: in the first case a has exactly ged(m,|K| - 1)

roots in the field, in the second case it has no roots. We summarize our results in

the following theorem:

Theorem 3.4 Let F be a finite field of characteristic q. Write m as ¢'r with
q / r. In Flz] the congruence (3.1) admits a solution if and only if the fol-
lowing holds for every irreducible factor p(z) of f(x): if d := degp(z), ¢ =
(|F|¢ = 1)/ ged(r.|F|* = 1), l is equal to the highest exponent o which p(r) dividcs
g(z) and k is equal o the highest exponent to which p(r) divides f(r). then either

(i). k<l or

(ii}). m |1 and (g(z)/p(z)')* =1 (mod p(z)).

3.5 Arithmetic complexity

In this section we will discuss briefly the arithmetic complexity of our algorithm,
i.e. we will be concerned only with the number of arithmetic operations (sometimes
called ‘field operations’) carried out.

‘e will postpone the discussion of the two problems of factoring f(x) over F
and finding m*™ roots in F{r]/(p.(r)) to the next section. A standard reference for

the problems discussed in this section is [4].
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Let M(n) denote the number of arithmetic steps needed to multiply two poly-
nomials of degree n. Note that M(n) is related by a multiplicative constant to the
cost D(n) of dividing (with remainder) a polynomial of degree at most 2n by a
polynomial of degree n.

The choice of the multiplication algorithm depends to a great extent on the
degree of the polynomials being multiplied. When the degree » is small we can use
the classical schoolboy algorithm which requires @(n?) arithmetic steps.

When the degree n has moderate size we can use a simple algorithm due to
A. Karatsuba and Y. Ofman [48]. that requires only O(n!3®) arithmetic steps [4,
Section 8.3, p. 286]. According to experiments conducted by R.J. Fateman [33],
this method is convenient only for polynomials of degree larger than 40.

Finally, when the degree n is very large we can use the multiplication algorithm
based on the Fast Fourier Transform [4. Section 7.4. p. 269], which requires only
O(nlog n) arithmetic steps. However. according to experiments conducted by R.T.
Moenck [70], this method is convenient only for polynomials of degree larger than
300.

Let us keep up for the rest of this section with the notation introduced in Sec-
tion 3.1.

It is clear that, in the lifting process. the quantity G'(yo(z)) = myo(z)™~? and its
inverse modulo p(r) must be computed only once. Now, we can compute yo(z)™?
modulo p(z) using the binary powering algorithm. Since each intermediate result
is again a polynomial of degree at most degp(z), it follows that we can compute
yo(z)™~! modulo p(r) in O(M(deg p(z))log m) arithmetic operations. The mul-
tiplication by m requires only O(degp(r)) multiplications, and hence its cost is
dominated by the cost of the previous step.

The computation of the multiplicative inverse of G'(yo(z)) modulo p(z) is
carried out using the extended euclidean algorithm, and this can be done in
O(M(deg p(r))logdeg p(r)) arithmetic operations [4, Theorem 8.19, p. 308].
Let Inv(r) denote the unique polynomial of degree less than degp(z) such that
Inv(r) G'(go(z)) =1 (mod plz)).
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At the j** step ( = 1,....k — 1) of the lifting process we compute

yy(2) = =Ine(z) (3,1 ()" = g(x)) + y,-1(2) mod p(r)**

The result is a polynomial of degree at most (j + 1)deg p(r).

In order to compute y,(r) we compute first y,_,(x)™ mod p(r)’*! using the bi-
nary powering algorithm. This requires O(M((j + 1) deg p(r)) log m) arithmetic op-
erations. It is clear that the multiplication by —Int(r) and the addition of y,_,(x)
are dominated by this cost.

Finally we have to consider the cost of step {(iv)) of Section 3.1, i.e. combining

the local solutions using the Chinese Remainder Theorem. Let us assume that
kydegpi(z) ... < kppu(z) =d

Let r,(z) denote, in this section. a solution of the congruence y(r)™ = ¢g(r) (mod
pi(z)¥). Then, it is possible to compute the unique polynomial z(r) of degree less
than deg f(r) such that

z(z) = r(r) (mod py(z)),....2(x) = ro{z) (mod pn(r))

in O(M(nd)log n) arithmetic steps [4, Theorem 8.13. p. 298].

3.6 Concluding remarks

From what has been said so far. it is clear that in order to solve efficiently the

equation (3.1) we need
(i). a good algorithm to factor polynomials over F’; and
(ii). a good algorithm to extract m* roots in some finite extension Fla] of F.

Let us point out, first, that it is not obvious that these tasks can be accomplished
in a finite number of steps. when F is an arbitrary constructible field. In other words,
before talking about the complexity of an algorithm. oue should be sure that the
algorithm terminates.
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It is clear that when F is a finite field, the two tasks mentioned above can be
accomplished in a finite number of steps.

For the case of the rationals, F. von Schubert showed in 1793 how to find all the
factors of degree n of a given p.olynomial in a finite number of steps; the method was
rediscovered about 90 years later by L. Kronecker (see [49, p. 431] for an historical
perspective). Note that the running time of von Schubert’s algorithm is exponential
in the size of the polynomial to be factored. Moreover. the extraction of an m*™
100t of a rational number a = r/s (with ged(r.s) = 1) over Q is trivial if we know
a complete factorization of r and s. otherwise it can be carried out by applying the
Newton-Raphson method to the polynomials ™ — r and r™ — s.

In the next sections we will discuss briefly what is known about the complexity

of the problems (i) and (ii}) when F is an algebraic number field or » finite field.

3.6.1 Factorization of polynomials over algebraic number
fields

H. Zassenhaus [99] was the first to propose the use of Hensel's Lemma for factor-
ing a polynomial with rational coefficients. His method requires factoring the given
polynomial modulo some pn . - p and then lifting. if possible, the known factoriza-
tion from Z/pZ to Z. Unfortunately. no polynomial time algorithm is known for
factoring a polynomial over a finite field.

In 1982 A K. Lenstra. H.W. Lenstra and L. Lovasz [54] proved that it is possible
to factor a polynomial with rational coefficients in polynomial time. and they gave
an algorithm to perform the task. Now, by Gauss Lemma we can always assume that
the polynomial f(x) to be factored has integral coefficients and is primitive, that
is f(z) = X ga,r' with a, € Z and ged(ap,....a,) = 1 The running time of the
algorithm. measured in bi: operations is O(n'* + n®(log | f(z)|)?), where n denotes
the degree of f(r). and |f(zr)| denotes the ordinary Euclidean length of f(z). that
is n n 1/2
130 = (3at)

1=0 i=Q
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In [57] A.K. Lenstra extended this algorithm (o handle polynomials over algebraic
number fields. The idea. common to [54] and [57]. is to regard the sought for
irreducible factor as an element of a certain integral lattice., and then prove that
it is actually the smallest element of this lattice. This enables us to compute this
factor by using the basis reduction algorithm for lattices developed by the author
in [54). Let a be a root of a monic irreducible polynomial F(y) € Z[y]. Let f(r)
be a monic polynomial of degree n in Q[a][r] to be factored. and let d be a rational
integer such that f(z) € (1/d)2]a}{z]). Write

1 deg F~1
flr)= EZ( Z a,,a’)r'
=0 =0

Define fmax to be the height of f. that is fma = max|a,,|. and |F| to be the
Euclidean length of F. Then. it is shown [537, Theorem 4.5] that Lenstra’s algorithm

computes the irreducible factorization of f(r) in

O(n®{deg F)® + n*(deg F)®log(deg F |F|) + n*(deg F)*log(d famas))
operations on integers of binary length

O(n’(deg F)* + n*(deg F*)log(deg F |F|) + n*(deg F)*log(d fmas))

Hence the running time is polynomial in the size of the input.

Another method for factoring polynomials over algebraic number fields (see [78,
pp. 346-347] and [23, pp. 142-144]) was developed by B. Trager {89] by improving an
idea that was proposed by Kronecker in 1882. Let Q|a] be as above. and let g, denote
the deg F distinct embeddings of Qla) into C. For a polynomial f(r) € Qjaj|r].
let 0;(f(z)) be the polynomial cbtained by applying o, to the coefficients of f(r).
Define the norm of f(r) to be

deg F

N(f(e) = 1 et f(=))

=1
Then N(f(z)) is invariant under all the o, and hence by Galois theory it belongs
to Q[r]. Let us assume fitst that N'(f(r)) is squarefree. If N(f(z)) = [],G(r)is a
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complete factorization into irreducibles over Q, then f(z) = [], ged(f(z).G.(2)) 1s
a complete factorization into irreducibles over Q[a]{z]. If N(f(z)) is not squarefree
then there are at most (ndeg F)? integers k such that N(f(x — ka)) is not square-
free, and hence we can modify f(r) suitably in order to obtain a polynomial with
squarefree norm. A.L. Chistov and D.Y. Grigoriev [20] proved that the reduction
to factoring polynomials over Q is polyvnomial time. and hence. by the result of
Lenstra, Lenstra and Lovasz the overal algorithm runs in time polynomial in the
size of the input. Unfortunately, the norm of a polynomial of degree n computed
over an extension field of Q of degree deg F is a polynomial of degree ndeg F. and
this is a serious drawback of the algorithm.

Our experience in experiments conducted with PARI and Maple suggests that
none of the algorithms implemented in these packages for factoring polynomials
over finite nontrivial extensions of Q can be used to solve real problems. In fact,
the running time may be extremely large even when factoting a cvelic polynomial
of degree 5 over its splitting field.

It is clear that the same factorization algorithms can be used to extract the m**
roots of an element a € Q[a]. by factoring the polynomial 2™ — a over Q|a] and
looking for 1i : 2ar factors. However. we have a strong feeling that the problem of

extracting m** roots in Q[a] should be computationally and conceptually easier than
the factorization problem.

The problem of extracting an m'* root 3 of an element a € Q[a], has been
investigated by J. Blomer [13]. His main result is the following {13. Theorem 18, p.
675): There is a probabilistic Monte Carlo algorithm with error probability less than
2-¢ that decides vhether there erists a number 3 € Qla] such that 3™ = a. The
running time of the algorithm is polynomial in t, log m and the input size of a. If
the algorithm returns that there erists a number 3 with this property, the coefficients
of 3 are computed.

Recently. G. Ge [40. Theorem 1.1, p. 422} removed the randomness. from Blomer’s
algorithm using diophantine approximation techniques.

In the next section we propose a very simple algorithm to extract an m** root 3
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of an element a € Q[a]. which works well when for some integer b the element b.3 can

be expressed as a linear combination of 1.a..... a""1 with small integer coeflicients.

3.6.2 A simple algorithm for extracting m™ roots in Q,a]

Let a € Q[a] as above. and let m,(r) be the minimal polynomial of a over Q. say
of degree n. If 3 is an m' root of a then the other m* roots of a are given by
w3 (J=0.1,.... m — 1, where « is a primitive m** root of unity.

Let 3 € C be an approximation of 3. say with precision ¢. obtained for example
using Newton's method (as it is done in PARI). Let a € C be an approximation of
a. using the same precision e.

If 3 € Q[a] then it is possible to write

dg a;
3—T+—l;a+...+ b

a™! (3.4)
witha, €Z (1 =0.1..... n - 1) and b € Z. Now. we can rewrite (3.4) as
~b34+by+ba+...+bya" =0
In particular. if we replace 3 with 3 and a with @, then we expect the expression
~b3+bo+bia+...+ by 146" (3.5)

to be close to zero. where the closeness depends on the precision € chosen. Hence, for
a fixed 3 and & in (3.5). the integers 6. by, ....b,., determine a Z-linear dependence

relation among the elements of the set
§={-3,1.a,....a""}

Such a dependence relation can be discovered. if the precision ¢ is adequate. using
the following method. described in [23. p. 99]. Let us assume for simplicity that the

elements of S are all reals, and hence rationals. Consider the quadratic form
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where d is a fixed constant. This form defines a scalar product on R™. If d is large,

then a short vector of Z™ for this form forces
|—c3+c+ad+...+cu 0™}

to be small, as well as the integers cq.. . .. cn-1. Such a short vector is found using
the Lenstra-Lenstra-Lovasz algorithm. If the cons.ant d and the precision ¢ are

chosen with caution. then we have

c=b.cg=by. ... . €pg = by

H. Cohen [23. p. 99] suggests to take the constant d between ¢! and e 2, and

€ < a " if we expect the terms b, to be of the order of a (in pariicular Cohen

suggests the choice ¢ = a~1-°"),

The method described above has been implemented in PARI and tested on a
SPARCSTATION 10.

We used the PARI procedure roots to [ind an approximation of a, and the stan-
<ard exponentiation operator to find an approximation of 3. The procedure lindep2
was used to find a Z-linear dependence among the elements of the set S. The pro-
cedure lindep? is controlled by a parameter prec which determines the constant d
specified above.

As an example of our computations, consider Q[a] where a satisfies the irre-

ducible polynomial
plr)=z" +1°-122° — 7r* + 28:> + 142 — 9z + 1

The 4'* power of
f(r) = 34 + 12r 4+ 555

modulo p(r) is

g(r) = 2687965064x° + 9192876208xr° + 3355426880r*
—1964618456r° — 10686231184r* + 15800701376r + 94021741105



Chapter 3. Power roots of polynomials over arbitrary fields 45

Using the default precision of 28 digits. and the maximum value allowed for the
parameter prec, a 4" root of g(a) over Q[a] was fout.d in 660 millise-~onds.
For a comparison. the factorization of the polynomial r* — g(a) over the ficld

Qla] took 192 seconds, resulting in

' - g(a) = (2 — f(a))(z + f(a))(+® - t{a))
where

t(z) = 1156z° + 816z + 37740 + 144s° + 13320x + 308025

For a more interesting class of examples, let C, be the n** cyclotomic field. that
is the field ob.tained by adjoining to Q a primitive n'* root of the unity.

Using the method described above we found all the n** roots of the unity in C,,,
for n = 3,...,20. The n'* cyclotomic polynomial was obtained using the standard
PARI function cyclo(n). We used the standard precision of 28 digits for finding the
complex roots of C;, and the complex roots of the polynomial ™ — 1. The parameter
prec that controls the procedure lindep?2 was set equal to 15.

In Table 3.1 and Table 3.2 we list for each cyclotomic field C, the execution time
in milliseconds and the symbolic roots of the unity found, expressed as a polynomial
in z, where r is a primitive n** root of the unity.

Remark. Without loss of generality we can assume that § is a set of integers, by
multiplying the elements of S by the least common multiple of their denominators.
In this case it is possible to use a different approach for finding small integral relations
among the elements of S, due to J. Hastad et al [43], which is based on ideas from
the Lattice Basis Reduction algorithm. Hastad’s algorithm accepts as input a vector
£ =(z,,...,z,) of integers and computes a basis for the (n — 1)-dimensional lattice
of integer relations for £. The algorithm requires at most O(n>log ||Z!]) arithmetic

steps using O(n + log ||7|])-bit integers.

3.6.3 Factorization of polynomials over finite fields

When F = F, is a finite field, the situation is quite different. Although so far

no deterministic polynomial time algorithm for factoring polynomials over finite
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fields is known, in practice we have very efficient probabilistic algorithms to perform
this task. These algorithms 'se randomization in the course of the computation.
Two classic algorithms are due to E.R. Berlekamp [12] and to E.G. Cantor and H.
Zassenhaus {18]. Both these algorithms are typical examples of polynomial time Las
Vegas algorithms. Depending on the random string received as part of the input,
a Las Vegas algorithm either outputs a correct result or reports failure, where the
probability of failure is < 1/2. By runnirg the algorithm ¢ times, the probability
of failure reduces to < 27!. As opposed to a Monte Carlo algorithm, a Las Vegas
algorithm never outputs erroneous results (the term ‘Las Vegas’ to designate this
type of algorithm was introduced by L. Babai in {9]). The algorithm of Cantor
and Zassenhaus takes about O(n® + n?(log n)(log p)®) expected steps to factor a
polynomial f(zx) of degree n over F',, where p is a prime number.

A new deterministic algorithm for factoring polynomials over finite prime fields
has been recently introduced by H. Niederreiter [72]. The algorithm has been sub-
sequently extended to arbitrary finite fields [73]. These algorithms are of great
practical value for fields of small characteristics. However. according to H. Niederre-
iter [74, p. 267] ‘the Holy Grail of polynomial factorization over finite fields, namely
a deterministic polynomial time algorithm for solving this problem, is still out of

reach’.

3.6.4 Finding m'" roots in finite fields

Suppose that F' = F, is the finite field with ¢ elements. As we remarked in the
discussion preceding Theorem 3.4, it is easy to decide if an element ¢ € F, is an
m' root in F,. However. no polynomial time deterministic algorithm is known
for finding an m'" root in a finite field, unless we assume the Extended Riemann
Hypothesis (see for example [3] and [45]).

On the other hand there are very efficient probabilistic algorithms [79] for finding
the roots of polymomial equations over finite fields: clearly, the m** roots of an

element a € F, are simply the solutions in F; of the polynomial equation z™~a = 0.
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Without loss of generality we can assume for the rest of this section that m is
prime, since the extraction of a root of arbitrary order can be always accomplished
through a sequence of extractions of roots of prime order. Moreover let us assume

that a(9=1/™ = 1_for otherwise there are no solutions in F,.

A general method for extracting m** root in F, goes back essentially to Gauss
[39, Sections 67-68]. A nice description of the algorithm can be found in [68, Section
5.3, pp. 261-264]. Rather than presenting the algorithm here. we limit ourselves
to state the main results concerning its complexity. With the assumption that m is

prime, it is proved in [68, Proposition 1.10, p. 264] that

o If m }J g— 1 then the vnique m™ root of a can be computed in O(log q)

operations in F,.

e If m | g — 1 then we can compute all the m* roots of a in F; in O(m" log q)
operations in F,;, assuming that we know an element y of F; of order m",

where m" is the highest power of m dividing ¢ — 1.

In order to apply Gauss' algorithm we need an efficient way to produce an element

y of F; of the required order m". One way to achieve this requires one to know an

m* nonresidue g in F;. In fact, if we let s = (¢ — 1)/m" then the equation that g

satisfies, namely

g™ £
becomes
g #1 (3.7)
If we let y = g* then
g A (3.8)

Since y™ = 1 it follows that y belongs to the unique subgroup of F; of order 7a”. On
the other hand, by (3.8) y does not belong to the unique subgroup of F; of order

m"1, and therefore its order is exactly m’.
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Finding m* nonresidues in F;. Equation (3.7) tells us that g does not belong

to the unique subgroup of F; of order

sm"':——qcl
m

Hence. there are
qg-—1

q— — Sm——

h h

elements in F; which are m'* nonresidues in F;. Therefore an m'* nonresidue g can
be found by random sampling in F; in
g-—1
¢-1-42

expected trials.

The problem of finding deterministically an m*#

nonresidue in F; has only been
solved conditionally on the assumvotion of the Extended Riemann Hypothesis. Let
us state the main results.

In [10] E. Bach proved, extending a previous result of N.C. Ankeny [6], that if
we assume the Extended Riemanr Hypothesis then the least m** nonresidue mod
p, with p and m primes and p=1 (mod m), is bounded by clog? p, where ¢ is an
effectively computable constant independent of p and m.

In [45] M.A. Huang extended Bach’s result to finite fields of p° elements, where o
stands for the order of p mod m, with p and m primes as above. He proved that, if
we assume the Extended Riemann Hypothesis then there is an absolute effectively

* non residue in F,. that can be

computable constant ¢ such that there exists an m’
written as ag+ @ w+...+a.—;u®"" with the absolute values of a, bounded above by
cm?log® pm and F,[w] = F,.., with u: being a root of the m** cyclotomic polynomial
over F,.

To our knowledge. so far the best deterministic algorithms for finding nonresidues
in finite fields, is due to J. Buchmann and V. Shoup [17]. They give an algorithm
to find m'* nonresidues in F;», which works with any positive integer n. Assuming
again the Extended Riemann Hypothesis, the authors prove that the algorithm runs

in polynomial time for a fixed n and p — oo.
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Finding primitive roots in F,. It is clear that the element y required by Gauss’
algorithm can be found easily if we know a primitive element for F;.

Since there are exactly ¢(q — 1) primitive elements in F;. and. for all > 3 we
have ¢(n)/n > c(loglogn)~?!, for some positive constnt ¢ (see [68, Exercise 1, p.
266]), it follows that a primitive element can be found by random sampling, in an
expected number of O(loglog g) trials.

In [88] V. Shoup investigated the existence of a deterministic polynomial time
search procedure for primitive elements in an arbitrary finite field. In particular, he
proved that the problem of constructing a primitive polynomial over F, (p prime)
of degree n can be reduced in deterministic time (np)®(!) to the problem of testing
primitivity. This result is particularly useful when p is small. e.g. p = 2. In the
same paper Shoup proved that. if we assume the Extended Riemann Hypothesis,
then the least primitive root mod p is O(r*(log r + 1)*(log p)?). where r stands for

the number of distinct prime divisors of p — 1, and so r = O(log p).

Finding m* roots in finite fields of prime -rder. If we restrict our finite
field to have a prime number p of elements, then it is possible to give some sharper
results.

In [94] H.C. Williams gave an ad hoc algorithm for solving the equation
™ =a (mod p) (3.9)

assuming that p and m are primes, with p = 1 (mod m), and that o~1V/™ = |
(mod p), that is the congruence 3.9 is solvable. If we define a step to be an
arithmetic operation modulo p or an arithmetic operation on m-bit integers, then
the algorithm runs in O(m?®log p) steps, assuming that an integer b has been found
such that (b™ — a)*~"V/™ £ 0,1 (mod p).
In [95] K.S. Williams and K. Hardy present a refinement of this algorithm which
finds a solution in O(m?*) + O(m?log p) steps, assuming again that the required
integer b has been already determined. This algorithm. suitably modified, can be

used to compute m* roots in the finite field of p" elements. when m divides p* — 1.
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field time ms. symbolic roots

Cs 60 -r—1,z,1

Cq 70 ~T X, 1.-1

Cs 370 23 -2 - —-zr-11.1

Ce 140 -+ 1l,z,~z.r-1,1.-1

C- 1,240 '3 -t -t -3 -2 -1,1,1

Cs 550 -2 r? -3 . —x.23.1. -1

Cs 1,660 —r*—r. 2t S -2, %, -3 - 1.1

Cio 730 —rr} -2 + 1 - 1.-2% + 22 - 2z +
1,z.-2%. 22, -2, 13,1, -1

Cn 8.510 8. 05, 22, 2% r" x4 23 r8, ¥ 2B T 2%
-t 322 r—-1.2.1

Ci2 820 . -z, -2+ .5, -r% 1% - 1,~1% +
1,22, -2% 7%.1. -1

Cis 16.140 23,710 21 22 24 2% r7 2% 28 2%, 21 -
10 29 _ 28 _ T 28 _ 35 _ g4 _ 23 _
22—z -1,z,1

Cis 2,500 -2 1% -3t -2 4 2t - B 4 2 ~
z + lr.-z,2° — ¥ 4+ 23 — 22 + z -
1.—x%, 2% -24, 23,1, -1

Cis 6.710 N AR L ey L L L L L L
1.28, -2+ 28— 14 232241, 2, 27~ LS4 2%
P+r-17 -’48zt -z +1,22 27~
3.1

Table 3.1: Roots of cyclotomic polynomials from Cs to Cys
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field time ms. symbolic roots

Cie 5.810 N AT AR L L R L L AR )
¥, -’ r,~r3 1% 1. -1

Ci7 55,190 7, xrt0 xS r'2 13 22 M 3
213, 78 78 29 p6 gl _ 15 M4 13 12
PN 109 8_ T 6.5 4_ 3_
2=~ 1,r.1

Cis 3.490 -3 + 1, 3, 2% — 2%, —r.-z% 1%,
-4 -3, 13 - 1. -1 + %, z.rt -
r,-r} -+ r.121.-1

Cio 93,730 '3 28 27 %, 21,18, 2 xt,
210, 2 216 g3 M 45 02 47 T g6
P15 pM 1312 g0 10 _ 9
-2 —-t -2t - - -r-1.1,1

Cxo 8,470 —r* 28 —2® + 2 — 1% + 1,72 —1%, 1% -
4+ 22 - 12" - -5+ -
r.—28 28 -5 - -T2t -2 4+
r,r.l,~1

Table 3.2: Roots of cyclotomic polynomials from Cie to Cyo
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Chapter 4

Norm equations over cyclic number fields

of prime degree

H. W. Lenstra. in . survey paper on algorithms in algebraic number theory [58]

wrote:

Among the many other algorithmic questions in algebraic number theory
that merit attention we mention (... ), problems from class field theory

such as the calculation of Artin symbols, (...)

In this chapter we consider the following problem. which belongs naturally to class

field theory:

Let L = Qla] be a cyclic ertension of the rationals of prime degree g,

and let a € Q*. Does the equation
‘VLIQ(A) =a (4.1)
admit any solution A in LY

Note that we are not asking how to find a solution A, but simply determining whether
a solution exists. Without loss of generality we can assume that a € O, the ring of
algebraic integers of L.

If we assume that a € Z. the rational integers, and we ask for solutions of (4.1) in

the algebrai~ integers, then we can use an algorithm. due to U. Fincke and M. Pohst
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[78, p. 336], based on methods borrowed from the geometry of numbers. which
works for any finite extension of Q (the problem of determining algebraic integers
of given norm arises in class number and class group computations). However. even
if (4.1) is not solvable in the algebraic integers, it may still be solvable in Q|a].

In this chapter we give an algorithm to determine if (4.1) is solvable, based
on methods from class field theory. The input to our algorithm consists of a and
the minimal polynomial m,(z) of a over Q. We show that, if we assume that we
are allowed to call an oracle in order to obtain a complete factorization of a and
a complete factorization of di(a). the discriminant of the ¢-tuple (1,a,...,a"')},
then the algorithm runs in time polynomial in the size of the input.

Otherwise stated, in our complexity analysis we are assuming that we are allowed
to call an oracle for factoring integers. However we think that this is not a limitation
of our algorithm, since we call the oracle only twicc, to factor a and to factor dr.(a).

Our algerithm is based on Theorem 2.11, the celebrated Hasse Norm Theorem,

which in this context reads as follows:

A nonzero rational number a is a norm from L if and only if it is a local

norm at every prime of L. including the infinite primes.

We will show below that it is possible to list a finite set of primes, such that these
are the only finite primes that must be taken into comsideration in applying the
Hasse Norm Theorem.

Then, in Section 4.4 we will show that the infinite primes play a role only in the

quadratic case.

Finally, in Section 4.5 we present the complete algorithm and discuss its com-
plexity.

An important role in the following discussion is played by Lemma 2.1, which
guarantees us that the property of a global field extension of being Galois is preserved
by the completions at the finite primes.

Since L/Q is Galois, all the ideals lyving above a rational prime p must have

the same ramification index e(p) and the same inertial degree f(p). Therefore, the
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degree [Ly : Q,], which is equal to e(p)f(p). is independent of the prime ideal P
lymg above p. Let g(p) be the number of distinct prime ideals lying above p. From
the formula

e(»)f(p)o(p) = [L : Q]

and the primality of ¢ it follows that either e(p) = 1 or e(p) = q.
QOur first task is to recognize the decomposition type of a rational prime p in L.
In the next chapter we will develop two polynomial time algorithms to accomplish

this task, depending whether an integral basis for L is known or not.

4.1 The unramified case

In this section we deal with the case e(p) = 1, that is we assume that the prime p
is unramified in L.

The case when f(p) = 1, that is when p splits completely in L. is uninteresting,
since we have Lp = Q,. and so any a € Q; is the norm of itself in the trivial
extension of Q,.

Hence we will restrict our attention to the case f(p) = ¢, that is when p is inert
in L. Then Ly is a nontrivial unramified extension of Q, of degree g, so we can apply
Theorem 2.9 to obtain a complete characterization of the norm group of Lp/Q,.

In our case Theorem 2.9 tells us that, if we express a as p‘u, with t € Z and

u € Uy, then a € N, /q,(Lp) if and only if g|t.

4.2 The totally ramified case

For the totally ramified extensions of Q,. the problem of deciding whether an element

of Q; is a local norm is harder. We need a preliminary lemma

Lemma 4.1 Let u = T2, u,p' € U, with u, integers, 0 < u; < p and ug # 0. If
q # p is a prime. then u € U] if and only if uo is @ ¢"* power modulo p. The inder
(Up:U}) is equal to q if q| p— 1, and it is equal to 1 otherwise.
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Proof. Cleatly, if u is a ¢"* power in Q, then uo is a ¢'* power modulo p. Conversely,

let g(z) = 2% — u. Consider the equation

g(r)=0 (4.2)

in Q,. Assume that

#*=up (mod p)

where 2 £ 0 (mod p), since up Z0 (mod p). Now
9(#) =g #£0 (mod p)

and therefore, by Hensel’s lemma [47, Proposition 3.5. p. 83]. we can lift f to a
solution of the equation (4.2) in U.

If g /p—1 then every integer not divisible by p has a ¢"* root (mod p). Therefore
the argument given above shows that every element of ', has a ¢ root in U,. and
so (U, : U9) = 1.

If ¢ | p—1. choose an integer w which is not a ¢'* root (mod p). Since the group of
units of Z/pZ is cyclic, the first part of the lemma shows that the set {1,w,... w' '}

is a set of coset representatives for U in L, and therefore (U, : UJ) =¢. O

Next, using Theorem 2.10, the so called fundamental equality of class field theory
we are able to characterize the norm groups of the totally ramified extensions of Q,

of prime degree.

Theorem 4.1 Let Ly be a totally ramified cyclic ertension of Qp, of prime degree

g, where ¢ | p— 1. An element u € Uy, is a norm of a unit in Ly if and only if u s

a ¢ power in U,.
Proof. Let Up denote the group of units of Lp. It is easy to see that
A’L, /Q,(L'?) i L':

since for any r € U, we have

Niwqy(z) = 7
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By Lemma 4.1 the index (U, : U]) is equal to ¢. Then Theorem 2.10, with K = Ly,
k = Q, and e(p) = q = [Lp : Q,], gives us the desired equality

Ny (Up) = UF
a

Remark. The case p# gand ¢ /p—1, with Ly a totally ramified cyclic extension
of Q, of degree g can never happen. Indeed, we certainly have Ni,,q,(Ur) D U},
and Lemma 4.1 implies that L', = U?. This contradicts Theorem 2.10 (for a different
proof of this statement see [90]).

Remark. The remaining case p = ¢ can be ignored, without incurring the risk
of being incomplete. In fact, by Theorem 2.12 if a € Q" is a p-local norm for all
the primes p, with the possible ezception of one particular prime, then a must be a
local norm at that prime also. Thus. if a is not a local norm at the prime p = ¢,
then there is a prinic p’ # ¢ for which a is not a local norm. Hence we can avoid

consideration of the case p = q.

4.3 The finite primes: summarizing

Let p be a rational prime and P be a prime ideal of O lying above p. We want to
determine whether a € N, ,q,(L3).

If p splits completely in O then every ¢ € Q; is a norm, and so this case is not
interesting.

The case where p is inert is also easily dealt with, as it has been shown in Section
4.1.

It remains to consider the case where p divides d, the discriminant of L/Q, that
is when Ly is a totally ramified extension of Q, of degree g. We have seen that we
can ignore the case p = ¢, 5o suppose p # ¢. Assume that we know an element
uy € U, such that

pu1 € Nip/q,(L3) (4.3)
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If a = p'u with u € U,. then we can write

- (puy)‘u
uj
and so a € Ny, /q,(L3) if and only if
u . -
;E € Ni,iq,(L?) (4.4)

Now Theorem 4.1 tells us that (4.4) holds precisely when

u L4
m €l (4.5)

Thus we want to to construct an element u, € U, which satisfies (4.3). For this

purpose. take any x# € P\P2 Then vp(x) = 1. and
vp(Ny/q(x)) = vp(7) =1
Since [L : Q] = [L, : Q,] = q. and q is prime. therefore
NL,/q,(7) = Ny jqlx)
Hence can take

- ‘NLr/Qp( %)
P

U

Remark. In order to decide if (4.5) is satisfied we proceed as follows. We know
that u/uj € Q" and v,(u/u}) = O by construction. We write u/u} as j/k with
Jj.& € Z and ged(j. k) = 1. and then we compute m.n € Z such that mk 4+ np = 1.
Now jm € Z. and it can be shown (see [50. p. 12]) that

u )
"p(;‘}; -jm)>1

Lemma 4.1 then tells us that u/u} is a g-th power in U, if and only if jm is a ¢-th
residue raodulo p, and it is well known (see {75, Theorem 2.27, p. 64]) that this
holds if and only if

(jm)(p—l)Iscd(v.r-—l) =1 (mod p)
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that is, if and only if
(jm)*"9 =1 (mod p)

since ¢ | p— 1.

Remark. The following example shows that a ramified nrime p might not be a
norm at p, and hence the construction of the element u; given above is unavoid-
able. Consider the cyclic field L of degree 3 over Q generated by the roots of the
polynomial z3 — 2? — 82x + 311. The discriminant o: L is 132 - 192, Now

1309-13 = 11 (mod 19)

and hence by Theorem 4.1 the element 13 can not be a norm at 19. Since 13 is clearly
a norm at all the unramified primes. if it was a norm at 13 then by Theorem 2.12 it

would be a norm a 19 as well. which is a contradiction.

4.4 The case of infinite primes

Since L = Qla] is Galois over Q. then either L is totally real. that is all the possible
embec.iings of L in C are real, or L is totally complez. that is all the embeddings
are non-real (see [23. Def. 4.1.9]).

Since [L : Q] = q is a prime number. if ¢ # 2 then ¢ is odd, and hence L
must necessarily be totally real. If [L : Q] = 2, then L is complex precisely when
di(a) < 0.

Given any infinite prime oo, if L is totally real then L, = R, and if L is totally
complex then L, = C. The completion of Q at its umque infinite prime is R.

In the totally real case, any element of R is the norm of itself in the trivial
extension of R. In the totally complex case we have N¢/r(C) = R+, the nonnegative

reals. The latter case can only arise when ¢ = 2.

4.5 The complete algorithm

We now describe an algorithm to decide if a € Q* is a norm from L.
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Write @ as r/s. with r € Z. s € Z\{0}, and gcd(r.s) = 1. The considerations
in Section 4.3 show that the only finite primes that must be taken into account
are those which divide r, those which divide s, and those which divide the field

discriminant dy, and that we may ignore the prime q.

Let us assume first that an integral basis ' = {w..... w,} for L is known. Then
it is easy to construct the list of ramified primes, since these are exactly those primes

dividing the field discriminant dp, which can be computed using the formula
dp = det(Tryjq(w: w,))

In practice, if the integral basis has been obtained using the Pohst-Zassenhaus al-
gorithm, we do not need to construct the list of ramified primes. since this list is
returned by the algorithm. together with the integral basis.

In order to decide if a non-ramified prime p is inert we use the algorithm to be
described in Section 5.1.1, whose execution time is polynomial in the size of p and
in the size of . For the other subproblem, i.e. given a ramified prime p find an
element 7 € O whose norm has p-order 1, we will show in Section 5.1.2 that 7 can

be found in the set
{TTL/Q(.J) - qw ! w € F}
and so 7 can be found in polynomial time.

Let us assume next that an integral basis for L is not known. In Section 5.2 we
will develop an algorithm, called DECOMPOSE, that takes as input m,(r) and a
rational prime p and determines the decomposition type of pin L in time polynomial
in the size of the input. Moreover, if p is ramified, it returns an element 7 € O whose
norm has p-order 1.

Recall that d; | dp(a). and di(a) can be computed by the formnla
di(a) = (=1)""" 12Ny q(m (a)) (4.6)

where m/, (r) denotes the formal derivative of m,(r). Once a complete factorization

of dp(a) is known. we can use the algorithm DECOMPOSE to determine the prime
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divisors p of dr, and for each of them a corresponding element = whose norm has
p-order 1. The following result. due to B.M. Urazbaev [90] can be used to save some

work:

Theorem 4.2 The discriminant d;, of a cyclic extension L{Q of odd prime degree
q has the form:
dy=¢ J[#™

where the p; are distinct rational primes of the formng+1, anda = 0 ora = 2(qg—1).

Clearly, by Theorem 4.2, we can ignore those primes p dividing d;(a) for which
either pZ1 (mod q) or v,(dr(a)) <g-—1.

The complete algorithm NORM is shown in Figure 4.1. It takes as input a and
mo(z), and returns TRUE if a € Np,q(L*). FALSE otkerwise.

In analyzing the complexity of the algorithm NORM. we will ignore the cost of

factoring a and d;(a).

Using the encoding described in Section 2.8 we want to show that the algorithm
NORM runs in time polynomial in the size of the input. For this purpose it is
enough to bound the size and the number of the primes involved in the test.

Now, the size of each prime divisor of a is at most equal to size(a). Moreover,
since a rational integer n > 2 has at most 1 + log n factors, it follows that a has at
most 1 + size(a) prime divisors.

Using a bound due to Mahler [62. Corollary to Theorem 1, p. 261] we obtain
lde(a)l < ¢7(1 + laga| + ... + ao])¥72 (4.7)

Define H = max(|a,|),=0... 41 to be the height of m,(z).

The same argument used above shows that d;(a) has at most
qlog g +2(q — 1)log(1 + |ag_a| + ... + |ao])

factors, that is at most qlog g + 2(¢g — 1)log(gH) factors. The size of each factor is
bounded by gqlog g + 2(¢ — 1) log(gH). Asymptotically.

qlogq+2(q - 1)log(gH) = O(qlog g + qlog H)



Chapter 4. Norm equations over cyclic number fields of prime degree 61

The algorithm DECOMPOSE is called to determine the decomposition type of
each prime divisor of a and of each prime divisor of dy(a). hence it is called at most
O(log a + qlog ¢ + qlog H) times.

In the next chapter we will determine the execution time of the algorithm DE-
COMPOSE.

On the number of ramified primes. It is interesting to give an upper bound on
the number of ramified primes in L = Q[a). Since di | di(a). it follows that if p # ¢
is a positive prime divisors of d;. by Th -orem 4.2 we must have p < "‘\‘/m. and
therefore, by (4.7)

P< g/ D+ agl + ...+ ao])?

which in turn implies that

q
qg-—-1
q
q-—1

size(p) < log g + 2log(1 + |ag—1| + ... + |ac))

<

log q + 2 log(qH)

Now, di | dr(e) and so p?~! | dr(a) for each ramified prime p # q. Therefore
the product of all the ramified primes not equal to ¢ divides "Vdir(a). Hence the

number of ramified primes p # ¢ to take into consideration is bounded above by

log *3/di(a), that is by

q
g—1

log g+ 2 log(¢H)
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procedure NORM(a, m,(z)):
if ([L:Q] =2 and d (@) < 0 and a < 0) then
return FALSE
endif
construct the set RP of ramified primes;
express a as /s, with r.s € Z and ged(r.s) = 1;
let NP be the set of positive primes dividing r;
let DP be the set of positive primes dividing s;
for all the pin RPUNPUDP, withp # g do
let t = vy(a);
if pg RP then
if (p is inert and ¢ }t) then
return FALSE
endif
else
let ¥ € L be such that 1,(Np/q(7)) = 1;
tet u = af(Np,q(7)');
express u as j/k, with j.k € Z and ged(5.%k) = I;
compute m.n € Z such that mk + np = 1;
let z = (p-1)/qg;
if (jm)* #1 (mod p) then
return FALSE
endif
endif
endfor
return TRUE

Figure 4.1: The algorithm NORM.
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Chapter 5

Recognizing the decomposition type of a

rational prime

Let L be a cyclic number field of prime degree g over Q, and let O denote the ring

of integers of L. In this chapter we consider the following two problems

(i). Recognize the decomposition type of a rational prime p in L. with p not equal

to q;

(ii). If p is a ramified prime not equal to q. find an Eisenstein element = at p. that

is an element * € O whose minimal polynomial n.(r) is Eisenstein at p.

In Section 5.1 we show that these problems admit a relatively simple solution
when an integral basis I' = {«,...,w,} for L over Q is known.

Since it is expensive to compute an integral basis, in Section 5.2 we devclop a
fast algorithm to solve the problems stated above when an integral basis for L over

Q is not known.

5.1 Integral basis known

Let T = {wy,...,w;} be an integral basis for L over Q. Now, the discriminant of

L/Q is given by the formula

dL = det(Trqu(..:, 'uJJ))
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and so the ramified primes are easily found, since these are exactly those primes
dividing the discriminant.

We recall once again that there is a very general algorithm for computing the
integral basis of a number field, due to M. Pohst and H. Zassenhaus (see [77], [23,
Chapter 6, Section 1, pp. 297-306]). The input of the Pohst-Zassenhaus algorithm
consists of the minimal polynomial over Q of a primitive element for the field; the
algorithm runs in time polynomial in the size of the input. assuming the use of oracles
for factoring integers and factoring polyncmials over finite fields. The algorithm of
Pohst and Zassenhaus has been improved by D.J. Ford in [34]. Recently A.L. Chistov
[21] was able to prove that computing maximal orders is polyvnomial time equivalent
to computing the largest square dividing a positive integer (see also [16, Thoerem
1, p. 40] and [58, Theorem 4.4]). Unfortunately, ro good algorithms are known for
the problem of finding the largest square factor of a given integer [58, Section 2.3,

p. 6] which seems to be as difficult as integer factorization.

Moreover, if an integral basis for L/Q is known. it is possible to solve the prob-
lems stated at the beginning of this chapter using a very general algorithm for
decomposing a rational prime in a number field. due to J. Buchmann and H.W.
Lenstra [15]. A nice description of the Buchmann-Lenstra algorithm can be found
in [23, Section 6.2.2, p. 309].

Rather than taking this route, we exploit the Galois structure of L to obtain a

very simple and much more efficient solution of our problem.

5.1.1 Recognizing the inert primes

Our first task is to recognize if the unramified rational prime p splits completely in
L or it is inert. Let O denote the ring of integers of L. It is clear that the F,-algebra
O/pO is a field if and only if pO is a maximal ideal (or, equivalently a prime ideal,
since O is a Dedekind domain) of O, that is if p does not split. Otherwise, from the
primality of ¢ and the fact that L/Q is Galois. it follows that O/pO decomposes
into the direct product of ¢ fields isomorphic to F,.



Chapter 5. Recognizing the decomposition type of a rational prime 65

The problem of decomposing a separable commutative algebra over a finite field
has been studied extensively (see [30. Section 2.4] and [23. p. 313]), and therc are
efficient algorithms to accomplish this task. In our case all we need is to recognize

if O/pO is a field. For this purpose we prove the following lemma:

Lemma 5.1 Let L be an algebraic number field and p be a rational prime. Let O
be the ring of integers of L. Let 0 : O/pO — O/pO be the (linear) map given by
w v+ 2P —x. Then O/pO is a field if and only if the dimenston of the kernel of ¢ ts
equal to 1.

Proof. We know that O/pQ is a finite separable algebra over F,. and more precisely
it is the direct product of fields, and ¢ is linear because F, has characteristic p.
Write O/pO as A, x --- x A,, where each A, is a fin’'te extension of the base field
F,. An element (a)....,a,) is in the kernel of ¢ if and only if each a, belongs to
F,. It follows that the dimension of ker(¢) is equal exactly to r, and this proves the

assertion. 0O

In order to apply Lemma 5.1 we need an efficient way to compute the kernel of
the linear map ¢. Let us assume that the elements {w,,....w,} of the integral basis

I' are given as
-1
10’

d

where d, z,, € Z, and the matrix (z;,) is in Hermite Normal Form (this is a common

wi =

(1<i<q)

assumption, e.g. in Cohen’s book [23], since it allows one to reduce drastically the
amount of computations required in many number theoretical algorithms).

Clearly the matrix A = (22} takes the original basis {l.a..... a’ '} for Lasa
vector space over Q into the new basis I' = {w,,....w}.

Let us compute first a set S of ¢° elements n,,; such that
q . .
w, m,:Zr;,,k Wk (1<1.5<gq) (5.1)
k=1
Clearly n,,s € Z (1 <1.3.k £ q); moteover. since

0®zQ=1
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it follows that S is a set of structure constants for L as an algebra over Q.

Generally, a set of structure constants for an algebra over a field can be computed
by solving a (eventually very large) system of linear equations, and it can be shown
that the number of arithmetic operations required is polynomial in the dimension
of the algebra (see [30] for an accurate analysis of algorithms dealing with finite
dimensional associative algebras).

In our case we proceed as follows: since the algebra is commutative, we need to
compute only ¢(q+ 1)/2 prrducts w; w,, namely those products with1 <1 < j <gq.
Let us express each produc «, w, as a polynomial in a with rational coefficients,
that is

g=-1

oWy = z g.,ka" (5.2)
k

=0
Now, we can easily recover the coeflicients 7, in (5.1) from the coefficients g, ¢ in

(5-2) by exploiting the fact that the matrix (%) is triangular.

Once we have computed S, the set
-g:{m=’lukm0dp I 1 Sl.].kﬁq}

gives us a set of structure constant for O/pO as an algebra over F,. In other words,

there is a basis &7. . . .. T, for O/pO as an algebra over F, such that
q e —— - .
“'—'::';:Zrlqk“—"k (1..<.3~qu)
k=1

In order to compute the matrix A which represents the linear transformation ¢
we determine the effect of @ on the basis elements of O/pO as follows.

For each i (1 <i < ¢) we compute T;” using the binary powering algorithm [23,
p- 8], which requires only O(log p) steps. Clearly we need to consider only the cost
of squaring at each step, since this cost dominates the overall complexity. Now, in
order to square an expression of the form ¢,y + ... + ¢,i; we use the knowledge
of the structure constants of the F,-algebra O/pO. It is easily seen that squaring
the above expression requires O(g*) operations in F,. Hence the computation of
7 requires O(q° log p) arithmetic operations in F,,. This has to be done for all the

basis elements. for a total of O(q*log p) arithmetic operations in F,.
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Next, if we write
q
B = F—
wp Tw = 2 , skl
k=1

then M = (b;) is the required matrix.

Finally, the computation of the kernel of ¢ or, what is the same. of M. requires

only O(¢®) arithmetic operations (see [23. pp. 56-38)) in the field F,.

Remark. The requirement for the integral basis I' to be in the Hermite Normal
Form allows one to compute easily the structure constants for L as an algebra over
Q. However, it might happen that the structure constants found in this naive way
have very large size, and therefore their computation could be very expensive. In
order to overcome this problem H.W. Lenstra suggests in {58] to use a basis T
which has been LLL reduced. In this case it is possible to prove [58. p. 11] that
Dk = |dL|O@ for all i,j, &k (1 <i,j.k < q), where dp, denotes the discriminant of
L, and so size(ni;x) = O(q(2 + log |dL])).

5.1.2 Finding Eisenstein Elements

Given a ramified prime p. the following lemma allows one to find an element x €

P\P2.

Lemma 5.2 Let L be a cyclic extension of Q of prime degree q. Let B be an integral
basis for L{Q. If p is a ramified rational prime not equal lo q, and P denotes the
unique prime ideal of ™ lying above p. then vp(Tr q(w) — quw) = 1 for some w € T.

Proof. Let o b. 1 e2nerator of Gal(L/Q). The uniqueness of P shows that o(P) = P
and O =2Z + P. Thus

o{0)—6e€P foralldecO

Hence for each 6 € O we must have

9
Triq(0)—q0 = (0'(6)—6) ¢ P

=1
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Now suppose that v € P\P?% Since Gal(L/Q) fixes P. we must have

9
Tryqly) =Y 0'(7) € PNZ =pZ C pO =P*

and so
Triq(v) - gy € P \P?

because gy € P\P2. Since the map
8 — Tryq(0) — ¢b
is Z-linear, it follows that
Trijqlw) — qw € P \P?

for somewel. O

Since P is the only prnime ideal lying above p and its inertial degree is 1. then

vp(Npq(3)) =vp(3)forall 3¢l
(see [14, p. 197]). Hence. by Lemma 5.2 it is sufficient to find an w € I such that
vp(Np(Tryqlw) —ge)) =1

Then
Triq(w) — g € P\P?

as desired.

Let us show now that thé search for an Eisenstein element can be done in time
polynomial in q. in the size of m,(z). and in the size of T'.

Let my(z) =1+ aga9 ' +...+ayxr + ap. witha, € Z (i=0,....¢—- 1), and
define the height of m,(r) to be H = max,-,,. 4(la;]).

Let us assume that we have computed in advance the traces of a,a?,. .,a%"},

using for example Newton's formulas [23. Proposition 4.3.3, p. 161}, and let

B = max(|Try/q(a’)]),=0...q-1
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Let us also assume that an algebraic number 3 is represented as

by-10° ' + ...+ ba+ by
d

3=

wlth d > 0, bq-l,....b].bo.d € Y/ and g(‘d(bq_; ..... b‘.bo.d) = 1. We call the
(g + 1)-tuple

(Bo—1- . . . by. bo. d)

the standard representation of 3. We define size(3) to be the sum of the sizes of the
components of its standard representation. For an algebraic nuwmber J represented

as above. define |3|max to be max(}b,1).z0.. -1

Then, the computation of I'ry/q(w) is done by just computing the trace of the
numerator of w, in its standard representation. This requires O(q) operations on
integers which are bounded in absolute value by max(B. |«'|lmax). The trace compu-
tation can be done in O(q (log max(B, |<imax))?) elementary operations. The result
is an integer [, bounded in absolute value by ¢Blw|mex. By kinearity, Try q(w) = I/d,
however we do not reduce this fraction.

The multiplication of w by ¢ requires O(g) multiplications of ¢ times in-
tegers which are bounded in absolute value by |wjnax. This can be done in
O(qlog(g) log(|«|msx)) elementary operations. Clearly {gw|max = ¢lw’|max-

The construction of § = Try q(w) — qu requires just one subtraction, which

can be performed in O(log max(q}w|max- ¢Blwmax)) €lementary operations, that is

in O(log ¢ + log B + log |w|max) elementary operations. The result is written as

5= a4t cat o
- d

where, eventually, ged(c;m1.....c1.co.d) # %1. Note that max(|c,|)=¢, ,-1 =
9B |max-
Finally. V;,q(8) is obtained (see {23. Proposition 4.3.4. p. 162]) by computing

the following resultant:

Ni(é) = d ' Res(ma(x).cou12%) + ... + 1 + )
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This can be done in
0(q3 log(qu“"!mnx) + (log(qBi“-'lmnx))z)

clementary operations, asing the modular resultant aigorithm of G.E. Collins [25).
We are Jeft with the problem of determining B, that is an upper bound on
the absolute values of the traces of a.a?..... a’"1. A quick way to proceed is the
following: let M, be the companion matrix of a. Clearly .M, has integral coefficients,
and, if we denote by |M|n. the maximum of the absolute values of the entries of

M, we have

I“IZ Im.x S q l“li-.l Im.x ,"IO :mn

U ATA
¢

1A

!

where H = | M, |max 15 the height of m,(r). Then we can take

B= q°’2H°"

The overall complexity is dominated by the resultant calculation, so we need
0(93 10&“1’"”’“' lwlmax) + (log(qq—‘Hq*‘ ‘*'imax))z)

elementary operations. Since we have to check in the worst case all the elements of

the basis I'. we require at most
O(g'1og(¢* ' H* ! wlmax) + q(log(g" H ™ || max))?)

elementary operations.

5.2 Integral basis unknown

In this section we develop a fast algorithm to find the decomposition type of a

rational prime p in L as well as to find an Eisenstein element at a ramified prime
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p. assuming that an integral basis for L over Q is not known (an algorithm for
computing the discriminant of a cyclic number field of prini.- degree. which uses
totally different ideas. is described in Chapter 8).

So. let us assume that L = Q[a]. where a is an algebraic integer given by its
minimal polynomial m,(z) over Q. Clearly m,(r) € Z[z].

In the following lemma we relate the decomposition of the minimal polynomial

m,(r) of a over Q, to the decomposition of pin L.

Lemma 5.3 Let L = Q[a)] be a eyclic numoer field of prime degree q. with a an
algebraic integer. and let p be a rational prime. If p is inert or totally ramified in L

then m,(x) is irreducible over Q,.

Proof. Let K = Q[3] be an arbitrary number fieid. It can be shown (see [17. Exercise
1.p. 92]) that f P, (1 =1..... r) are the prime ideals lying above a rational prime
p, with inertial degree f(P,|p) and ramification index ¢(P,|p). then m () splits mto

r factors in Q,. with respective degrees

e(P1lp)f(Prip).. ... e(Peip) f(P:Ip)

In our case we have r = 1 and so m,(z) is irreducible over Q,. O

The following corollary to Lemma 5.3 is an immediate consequence «f Corollary

2.2 of Hensel's Lemma (Theorem 2.7).

Corollary 5.1 Let L = Q|a] be a cyclic number field of prime degree q, with a an
1gebraic integer. and lel p be a rational prune. If p docs not split in L, then m, (r)

is either irreducible over F,, or it is the ¢** power of a lincar polynomial over F,.

The next lemma exploits the Galois structure of L to obtain more information

about the decomposition of the rational primes in L.

Lemma 5.4 Let L = Qla] be a cyclic number field of prime degrec ¢, with a an
algebraic integer, ard let p be a rational prime. If p splits compl. tely in L, then
m,(z) splits into (possibly equal) linear factors over Fy. Conversely, if m,(z) has

at least two distinct lincar factors over Fy. then p splits completely in L.
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Proof. If p splits cc.mpietely in L then the Frobenius automorphism of p is trivial.
l{ience any root of e, (r) has only one conjugate in the algebraic closure of Fp,
namely itself. This proves the first assertion.

To prove the second assertion assume that p does not split in L and m.(r) =
g(r)h(r) (mod p). with g(r) and h(r) relatively prime. This clearly contradicts
Corollary 5.1. O

The next lemma gives us a partial converse of Corollary 5.1.

Lemma 5.5 Let A = Q[3] be an algebraic number field. with 3 integral over Z, and
let p be a rational prime. If the mir:imal polynomial ms(x) of 3 over Q is irreducible
over F,, then p is inert in K.

Proof. See [25, Proposition 5.11. p. 102]. O

Combining the resuits obtained so far we obtain the following.

Lemma 5.6 Let L = Q[al be a cyclic ertension of Q of prime degree q. where a is
an algebraic integer. Then ils minimal polynomial m,(x) is either irreducible over

F, or it splits into linear factors over F,. If m,(x) has at least two distinct roots in

F,. then p splits completely in L. If m,(x, has no roots in F, then p is inert in L.

The value of Lemma 5.6 lies in the fact that it is possible to check very efficiently

whether its hypotheses are fulfilled. For this purpose we compute
{r) = gcd(a? — r.m,(1))

over F,; then m,(r) has no roots in F, precisely when deg!(zr) = 0. and it is a ¢**

power cver F, precisely when egl{r) = 1. In practice we compute
J(xr) = ¥ mod m_(r)
over F,. using the binary powering algorithin (see [23. p. 8]): then

I(r) = ged(j(x) — r.m,(x1))

Before proving the main theorem of this section. we need a last lemnma
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Lemma 5.7 Let L = Qla] be a cyclrc number field of prime degree q with a € O,
the ring of integers of L. and let p be a rational prime.

If p is ramifies in L and © € P\P?, where P denotes the umque prome ideal of
O above p, then the minimal polynomial m.(r) of = 1s Eisenstem at p. Conversely,

if the minimal polynomial m.(r) of some x € O is Eisenstein at p. then p ramifies

in L.
Proof. See [52, Proposition 11, p. 52]). O

Now we can state the main theorem of this section.

Theorem 5.1 Let L = Qla] be a cyclic number field of prime degree g with a € O,
the ring of integers of L. and let p be a rational prime. Then:

(t). If p is inert or totally ramified, then there erist m h € Z. with h > 0, such

that
a—m
=2 eo0 (5.3)
4
but no integers h'.m' with h' > h such that
a—-m'
V=0
7

(2t). If p is inert in L then m,(x) is irreducible over F,,.

(itt). Ifp ramifies in L then m.(x) = (r—c)® (mod p), withgq {fr = vp( Nyl —¢)).
Let s € N and 1 € Z be such that rs + gl = 1. Then m = (5 — ¢)°p' salusfies

an Eisenstein polynomial at p.

Proof. By assumption a € O\Z. Assertion (i) comes from the fact that when p does
not split completely a ¢ Q, by Lemma 5.3 and so we mst have O N Z, = Z. Note
that L = Q[v].

To prove (ii) assume that p is inert and . (7) is not irreducible over F,. Then.

by Corollary 5.1 we would have

m.(r)=(r-¢) (mod p)
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for some ¢ € Z. Hence v — ¢ € pO and so

a—m—cpt

ph-H €0

contradicting the choice of h.
To prove (111} assume that p ramifies, and so pO = P?, where P denotes the
unique prime ideal of O above p. Since m.(r) cannot be irreducible over F, by

Lemma 5.6, we must have
m.(z) = (z —c)* (mod p)
for some ¢ € Z. Then
(v —¢)? € pO
and so 7 — ¢ € P. We claim that
1-cgP?

For otherwise. reasoning as above we would have

a—m— cp

€0
ph+l

contradicting the choice of &. Therefore
4 —ceP\PH!

with 0 < r < ¢. Let s € N and [ € Z be such that rs + g/ = 1. It can be easily seen
that

m=(7-c)p € P\P?
and therefore by Lemma 5.7 the polynomial m.(z) must be Eisenstein at p. O

The next lemma shows that the integer k given by (5.3) is ‘small’.

Lemma 5.8 Lef us assume the notation of Theorem 5.1.

If p is inert, then
_ vp(di(a))
q(g—1)

b < vo(di(a))
~ q(g—-1)

If p 1s totally ramified then
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[+

Proof. Let us assume first that p is inert. Let S denote the multiplicative set Z\pZ,

and let T denote the multiplicative set O\P.
Now, by Theorem 2.2 the integral closure of S~'Z in L is equal to $~'O.

However, by Theorem 2.3 the integral closure of $7'Z in L is the intersection of
all the valuation rings of L containing S~'Z. Since P is the unique prime ideal of
O lying above p. it follows that the integral closure of S™'Z in L is equal to T7'O,

and so it is a local ring.

Since v is a primitive element for O/P over Z/pZ and T7'O is a local ring, by
Theorem 2.4 it follows that the set {1.4,....797!'} is an integral basis for T-'O
over S™'Z. Since p is inert this implies that v,(dL(7)) = 0.

Now in general. when § € O and b € Z, we have
di(p8) = p71dL(8)
and

dp(pb + b) = d.(pé)

and therefore

di(a) = pe~hd(+)

that is
vp(di(a)) = q(q — 1)k

This proves the first part of the lemma.

Assume next that p ramifies. We have seen that in this case
m.(r) =(z —c)’ (mod p)

for some ¢ € Z. with

4 —c€P\P (V<1 <q)

Clearly
vp(dp (- - ¢)) 2 v, (dy)
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Now, by Theorem 4.2 when ¢ is odd we have

~1 if p#
v(de) =1 i p#a
0 or 2(q—1) if p=gq

Moreover. it can be shown (see [23, Proposition 5.1.1. p. 218]) that when ¢ = 2 we

wun={l fop#2

have

20r3 if p=2

The same argument as above shows that
v(di(a)} = glg = 1)h + v,(dL(y — ©))

and so
Vp(dL(O)) 2 q(q - 1)" + Vp(dL)

It follows that
v.(dL{a)) —vy(dr)

h <
- q(g—1)
and hence
) < wlde(a))
- qlg—1)
a

Remark. Assuming that p is inert, we claim that if
vy(di(a))
q(g — 1)

then the minimal polynomial of (@ — u)/p' cannot be irreducible over F,. In fact,

vueZ and 1< h =

if w = (a—u)/p'. withi < h and u € Z, then the argument used in the proof of
Lemma 5.8 shows that v;(d.(«)) > 0. But then the set {1,w,...,w? !} cannot be
an integral basis for T7'O over S™'Z. hence « cannot be a primitive element for

O/P over Z/pZ. and so m_(x) must be a ¢g"* power over F,.
The computation of the algebraic integer 4 that satisfies (5.3) is carried out
by p-adic lifting. For this purpose we compute iteratively a sequence of algebraic

numbers 4, 72.... as follows: if

-

m,,_(r)=(r—¢)? (mod p)
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where 7 = a, then we let
-1 — G

P
From what has been said in this section it is clear that the process can stop as soon

e =

as either one of the following conditions is satisfied:

(1). ¢ = vp(dr(a))/(g(q — 1)). By applying Theorem 5.1 to 7 = 4, we are able to
venify if p ramifies or it is inert in L. If neither the cases are true then p splits

completely in L.

(i1). 7. € O for i < vp(dr(a))/(g(g — 1)). The note above shows that p cannot be
inert, and so we have to check if p is ramified. by applying Theorem 5.1 to

v = ~,-1. If pis not ramified then it splits completely.

(iii). The minimal polynomial of 4;, with ¢ < v,(d {a))}/(g(g - 1)), has at least two

distinct roots in F,. In this case p splits completely in L.

The algorithm DECOMPOSE. shown in Figure 5.1. implements the ideas described
above. It takes as input p and a. and returns INERT if p is inert in L = Qa],
SPLITS if it splits, and RAMIFIES plus an Eisenstein element 7 if p ramifies.

Remark. When p [ d;{a), then m,(r) is either irreducible over F, or it has
distinct roots in F,, depending whether p is inert or it splits in L. In order to check
whether m,(z) has roots in F, it is enough to compute I(r) = ged(x? — xr,m,(r)),

over F; if degl(r) # 0 then p is inert otherwise it splits in L.

5.2.1 Implementation and complexity issues

In this section we will show that the algorithin DECOMPOSE runs in timne polyno-
mial in the size of the input.

Let 3 be as in Figure 5.1. Since 3 is always an algebraic integer during the
execution of the prograni DECOMPOSE. we can write 3 as

FNRY: L S A OF I O

di(a)

3=
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withc, €Z (1=0,....q-1).

The main problem in the complexity analysis comes from the fact that it is quite
hard to estimate accurately the size of the coefficients ¢, during the execution of the
program. Hence, we take another approach, namely we estimate the size of mg(z)
from time to time.

It can be shown that the size of the coefficients ¢; is bounded by a function of
the sizes of ms(z) and of m,(z) (see [92, Lemma 8.3]). However, we will never need
to know 3 in the form (5.4). since for the application that we have in mind (i.e. in
the NORM algorithm) it is enough to know m3(r). In fact. we have seen that the
algorithm NORM needs to know only the ramification type of p. and whenever p

ramifies it needs Ny ,q(7). for some Eisenstein element = at p.

Moreover it is easy to see that, whenever x is needed we can easily recover it from
a, from the sequence ¢y.c;. .. .. ¢r (where ¢, stands for the element ¢ constructed at
the '* iteration. in the algorithm DECOMPOSE). and from the values of s and !
found in the algorithm CONSTRUCT_EISENSTEIN. using the simple formula:

k k-2 $
aQ—p —Cp — ee.— Ck .
i ( b ) 4 (5:9)

An upper bound for the number of iterations. \We have shown in Lemma 5.8
that the internal loop of the algorithm DECOMPOSE is executed at most A =
vp(di(a))/(q(g — 1)) times. The greatest value of h is attained when p = 2. In this

case, using Mahler’s bound (4.7) we get
v2(di(0)) < qlogg + (29 — 2)log(1 + |ay_s| + ... + |ao])

Let H = ma-x“ar“r=0

of our input size. This measure will prove in the sequel more useful than the usual

o be again the height of mn,(z). and take log H. as a measure

measure size(my{r)) = Y7 _,log(la,| + 2). Then. from the formula above we obtain

v2(di(a)) < gqlogq+(2¢ — 2)log(gH)

= gqlogg+2(q— 1)(logq +log H)




Chapter 5. Recognizing the decomposition type of a rational prime 9

This shows that the number of iterations is bounded above by

B o= log ¢ 4 2(log ¢ + log H)
9-1 q

that is
logq +log H

q

h =0 )

The cost of computing ged(r? --r.m,(z)). The argument following Lemuma 5.6
shows that it is possible to check if m,(z) has no roots. at least two distinct roots
or just one root in F, - and in the last case compute the unique root. which has
multiplicity ¢ - by computing ged(2? — 2. m,(2)).

Let us show that this computation can be perforined in time polynomial in the
size of p and in the degree ¢ of m,(z).

In fact. we can compute x” mod m,{r) using Olog p) multiplications modulu
mq(z). Each multiplication costs, using the standard algorithms. O(¢?) operations
in F,, for a total of O(g*log p) operations in F,.

Next, the computation of ged((2? mod m,(z)) — r.m,(r)) can be performed in
O(q?) operations in F, (see [49. p. 427]) using Euclid's algorithm.

It is clear that we can consider each operation in F, as an operation on p-bit
integers, and so we can assume an upper bound of O((log p)?) bit operations per

operation in F,. This gives an overall complexity of O(¢*(log p)?).

An upper bound for the size of mg(r). Next let us show that, during the
execution of the main loop of the algorithm DECOMPOSE, shown in Figure 5.1, the
size of the minimal polynomial of the algebraic integer 3 is bounded by a polynomial
in the size of m,(z).

By looking at Figure 5.1 it can be seen that at the k** jteration of the internal

loop, the algebrai~ integer 3 can be expressed as

a — my
3=

Pk

where m, is an integer such that 0 < m; < p*. and m, = m in the notation of

Lemma 5.1.
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If 0 denotes a generator of Gal(L/Q). we can write

O"mk
pk

ma(zr) = [J(z— o' )
=l

q
= [I(z —p*o'(a —my))
=1
= f]p"‘(p"r —a'(a —my))
1=1

= p~% 1"z — o' (a) + mu)

= p7" m,(p*r + my)

Next, we expand symbolically m,(p*r + m,) around m; using Taylor's formula.

obtaining
9

ma(pk.l‘ + mk) = Z

1=0

miNmy) - (p*r)’
!

where m{")(m;) denotes the ** derivative of m,(r) evaluated at m,. It follows that

the coefficient b, of z* in 1mi3(r) is given by

mg"(mk) -pk""‘”
i!

b, =

We want to show that b, is not "too large’. Since b, € Z. it is enough to show that

m{)(m,) is not too large. Let
m,(r) = azxr? -+ (1.,..1.1""°i +...4+axr+ag
witha, € Z (1 =0,....q) and ¢, = 1. Then

m'(r) = qa% ' +{(g—1)a,.1777? +...2a:1 + a,

mP(r) = q(g—1)a2° 7 + (g - 1)(g = 2)ag12" > + ... + 2a2

and more generally

mf,"(.r) = 5: { III J)a,xr’ "’

r=1 j=r4l-1
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Clearly
q v
mmi)l = 13 I J) e mi7]
rey y=rdler
q r
< I 2 lad g
r=i J=r4l-
¢ ¢
< Y Z lag] lrnag}™?
¢ 3
< - H y r—g
S G- }_; LY
q -1
< (- i)!H 2 Imi?
and hence
24!
"'q' k{s— -1
b| < ——2 _pfF-dyg .9

Now, |m,| < p* by construction. and so we obtain

bl < .._;’_q_!__..pk('—ﬂ” =y

(g —1)
_ 2q!
tg-—2)!

Hence there is an ¢ffective bound for the size of the i coefficient of m,(r) which

is independent of the iteration number, namely
stze(b) < log(r,—gg-!—.-—) +log H (5.6)
g—1)!
where b, stands for the coefficient of x' in m3(r).
Computing the Taylor shift. At each iteration in the procedure DECOMPOSE
we need to compute the minimal polynomial of (3 - ¢)/p. where ¢ is an integer
betwen 0 and p — 1 included. In order to estimate the overall complexity of the
algorithm, we need an upper bound for the time spent in the execution of this step.
Let § = (8 — ¢)/p. Applying Taylor’s shift as before, we can write the coefficient of
r in mg_ (1) as

mf;’((‘)

7!
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and hence the coefficient of z* in m(r) as

_mye) 1

| &

' i P!

The problem of computing efficiently the coeflicients of the Taylor's shift has
been investigated by M. Shaw and J.F. Traub [87]. Let p(z) be a polynomial of
degre n, and let ¢y be a constant. An algorithm to compute p(r + z4) which makes
use of Horner’s rule requires n(n — 1)/2 multiplications and the same number of
additions. Shaw and Traub give in [87] an algorithm which requires only 2n — 1
multiplications and n — 1 divisions.

We have proved above that the height of m;(r) is bounded above by 2¢'H, and
that the same bound holds for the height of ms{r) as well. Hence. the height of
mg_.(r) is bounded above by pi2¢'H.

Let us make the following simplifying assumption: during the execution of the
algorithm of Shaw and Traub each multiplication and/or division is carried out on
integers bounded in absolute value by p? 2¢! H. Since log(p® 2¢' H) < gqlogp +
glog g +log H. It is clear that the algorithm of Shaw and Traub requires then

O(q(qlog p + qlog g + log H)?)

elementary operations for computing mz_.(r).
In order to obtain m;(r) we need to divide the coefficients of m;_.(z) by a
suitable power of p (namely. divide the coefficient of z* by p?=*. for i = 0,... ¢—1).

However. the cost of this operation is dominated by the cost of the Taylor's shift.

The cost of computing m.(z). It remains to bound the size of m,(z),
the minimal polynomial of # = (3)°p'. constructed in the procedure CON-
STRUCT _EISENSTEIN.

Equation (5.6) above shows that when the procedure

CONSTRUCT _EISENSTEIN is called the size of the norm of 3. which is simply

the coefficient by of m3(r). is quite small. namely:

size(Np/(3) < log(2) + log H
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In particular, the value of r = 1,( N /q(3)) is bounded above by 1 +log H (this
bound is attained when p = 2).

Now. elementary number theory tells us that the integer s such that rs + ¢l = 1
can be always taken between 1 and ¢ — 1 included. This forces the integer I, for
which the relation rs + ¢/ = 1 holds. to be negative. Again. elementary number

theory tells us that I can be always taken between 0 and —r 4 1 included. that is
—logH=—-r+1<1<0

In particular, from the consideration of the extreme case (s = ¢ ~ 1) we obtain the
following lemma. which shows that there is a bound on the size of N ,;q(x) which

is approximately equal to the size of m,(r).

Lemma 5.9 The size of the norm of the Eisenstein element & found by the algo-
rithm DECOMPOSE is bounded above by (g — 1)(1 + log H). where H denotes the
height of m_ (x).

Since on entering the procedure CONSTRUCT _EISENSTEIN the minimal poly-
nomial of 3 is known. we can compute the minimal polynomial of 3* as follows [61.
Theorem 7, p. 182]:

m3-(y) = Res,(x° — y.m (1))

where Res denotes the resultant of the two polynomials.

Given two bivariate polyvnomials over Z. say f(r.y) and ¢g(r.y). with

deg, f(r,y).deg g(x.y).deg, f(r.y).deg, g(r.y) < m

and whose coefficients size is bounded by B. it is possible to compute
Res (f(x.,y).9(r.y)) in time O(n®B?) using the subresultant algorithm [61], or else
in time O(n®B + n*B?) using the modular resultant algorithm developed by G.E.
Collins [25). Now. the argument above shows that the largest coefficient of w(r)
in absolute value is bounded above by 2 ¢! H, and hence by ¢? H. Therefore we can
take

B =qlogg+logH
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and so we can compute the minimal polynomial of 3° [n time
O(g°(qlog g + log H) + ¢*(glog g + log H)?) (5.7)

Then, from

*

ma(r) =27+ by 7?7+ ..+ hir + by

we can obtain m ;.. (z) as follows
mg.(r) =1’ + (bq.,p‘).r"l + ...+ (b,p"“’"”)x + (bop"')

It is clear that the complexity of the resultant calculation dominates the com-
plexity of the algorithin CONSTRUCT EISENSTEIN. hence we can take (5.7) as
an upper bound on the complexicy of the algorithm CONSTRUCT _EISENSTEIN
itself.

5.3 Computational exaraples

The algorithm DECOMPOSE described in this chapter and the algorithm NORM
described in Chapter 4 have been coded in PARI. In this section we will show some
examples of computations which have actually been performed. Before doing this.
however. we will discuss the case in which there is only one ramified prime. which
is less interesting from a computational point of view. but is capable of a very nice

theoretical charactenization.

5.3.1 Discriminant of the form p?~! or ¢?-2

Let us assume that d; = p*~! with p # q. or d, = ¢*~%. In this case it is possible
to give a nice characterization of the norm elements in Q-. We begin by proving

the following

Lemma 5.10 Let L be a cyclic ficld of prime degree q. + ssume that there is only
on¢ rational prime p which ramifies in L (possibly p = q). Then

(1). p1s a norm from L:
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procedure DECOMPOSE(p. 3):
if p Jdi(B)
then if m3(z) has no roots in F,
then return INERT
else return SPLITS
endif
endif
let h = v (de(B))/(g(g - 1))}
for i = 1to h do
if ms(z) has exactly one root ¢ in F,
then let g = (3 - ¢)/p:
if ms(z) ¢ 2z
th-. et 3 = pj3,
return CONSTRUCT _EISENSTEIN(p, 3)
endif
else return SPLITS
endif
endfor
if m3(z) has exactly one root c in F,
then let 3= —-¢
else if mg(z) has no roots n F,
then return INERT
eise return SPLITS
endif
endif
return CONSTRUCT _EISENSTEIN(p, 55)

Figure 5.1: The algorithm DECOMPOSE.
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(ii). If r is a rational prime which splits in L. then r 15 a norm from L;

(iti). If r is a rational prime which is inert in L. then r is not a norm from L.

In perticular, if p # q then a rational prime r # p splits in L if and only if ri*="¢ =
1 (mod p).

Proof. Let p be the unique rational prime which ramifies in L. By Theorem 2.9 pis
a norm at all the unramified primes, and hence by Theorem 2.12 p must be a norm
at itself as well. Therefore. by the Hasse Norm Theorem p is a global norm.

Let r be a rational prime that splits in L. Again, by Theorem 2.9 r is a norm
at all the primes that split in L. and a norm at all the primes which are inert in L.
Hence Ly Theorem 2.12 r must be a norm at p as well, and therefore by the Hasse
Norm Theorem r must be a global norm.

Next, let r be a rational prime which is inert in L. Then by Theorem 2.9 r can
not be a norm at r. and hence r can not be a global norm.

Finally, assume that p # ¢. If a prime r splits in L then we have just proved
that r is a norm from L. and hence by Theorem 4.1 and Lemma 4.1 we must have
r(P-1Y/4 =1 (mod p). If a prime 7 is inert in L, tken we have just proved that r is
not a norm at r, although by Theorem 2.9 r is a norm at all primes that split and
at all the other primes that are inert in L. Hence, by Theorem 2.12 r can not be a

norm at p and therefore rP~1/? £1 (mod p). D

The previous lemma gives us a fast criterion to recognize if a rational number a

is a norm from L when there is only one ramified prime p # ¢, namely

Corollary 5.2 Let L be a cyclic field of prime degree q and discriminant p?=?, with
p # q prime, and let a be a raticnal number. Wiite a as p* []p;, where the elements
p; are distinct primes and s,2, € Z. Then a is a norm from L if and only if q | ¢,

for all the j such that pﬁp'”/q #£1 (mod p).

Note that Lemma 5.10 does not hold when there is more than one ramified
prime. Consider for example the cyclic field L of discriminant 13219% generated by
the polynomial z3 — z? — 82z + 311. The prime 43 splits in L, but 43'3-1/3 = g

(mod 13), and also 43"V =7 (mod 19).
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5.3.2 Some computed examples

To test the performance of our algorithms. we applied the algorithm NORM to each
positive integer 1.2.3, ... in turn until 100 norms were found. and we recorded the
running time.

In Table 5.1 we consider the polynomial 2% + 7% — 42% — 322 + 3z 4+ 1 whose
discriminant, which turns out to be the field discriminant as well. is 11*. The first
100 positive integers whick are norms from L were computed in 2 minutes and 4,710
ms.

For a comparison. consider the polvnomial r°—6663x*+608627r> —13160932z2 +
25240391 + 283999 which generates the same field as the polynomial z° + 24 — 423 —
3z +3x + 1. The discriminant of this polynomial is 11%23'243233124612505031%. All
the prines dividing the discriminant. except 11. split in L. Using this polynomial,
we computed the first 100 positive integers which are norms from L in 20 minutes

and 18,540 ms.

1 11 23 32 43 67 89 109 {121 {131
197 1199 |241 |243 253 |263 |307 |331 |352 |353
373 | 397 [419 (439 {461 {463 473 |529 |571 |593
617 | 659 |661 |[683 |727 |736 | 737 | 769 |857 |859
881 {947 {967 |979 989 |991 {1013 )1024} 1033|1123
1187 | 1199 | 1231 | 1277 | 1297 | 1319 | 1321 | 1331 | 1376 | 1409
1429 | 1441 | 1451 | 1453 | 1541 | 1583 | 1607 | 1627 | 1693 | 1759
1783 | 1847 | 1849 | 1871 | 1913 | 1979 | 2003 | 2047 | 2069 | 2089
2111} 2113 | 2144 | 2167 | 2179 | 2189 | 2221 | 2243 | 2267 | 2287
2309 | 2311 | 2333 | 2377 | 2399 | 2441 ] 2507 | 2531 | 2551 | 2617

Table 5.1: First 100 positive integers which are norms from L = Q[a}, where a is

aroot of r° + 14 —~4r3 - 3r2 4+ 32+ 1

For an example of a cyclic field with more than one ramified primes consider

the polynomial r* — r? — 82r + 311. Its discriminant, which turns out to be the
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field discriminant as well. is 13219°. Using this polynomial. we computed the first
100 positive integers which are norms from L in 3 minutes and 20.390 milliseconds.
These integers are shown in Table 5.2.

For a comparison, we performed the same test using the polynomial r* —
2656622 +105638441xr — 103601453623, which generates the same field. Note that the
discriminant of this polynomial is 13219222921747258512, and all the primes except

13 and 19 split in L. This time the test took 6 minutes and 40,490 milliseconds.

1 8 27 31 64 83 i03 1125 |151 216
221 229 239 247 |[248 |31I1 | 343 |391 | 437 |463
467 |[493 {512 |521 |551 |559 |571 577 |619 | 664
677 1729 733 | 767 |824 |837 863 |911 |923 961
989 | 1000|1019 1091 {1139 1171 | 1208 | 1217 | 1223 | 1247
1261 | 1273 { 1331 { 1357 | 1399 | 1451 | 1481 | 1483 | 1513 | 1559
1607 1 1633 | 1691 | 1711 | 1717 { 1721 | 1728 { 1741 | 1747 | 1768
1832 | 1873 | 1912 | 1019 | 1937 | 1949 | 1976 | 1984 | 2003 | 2053
2059 | 2159 | 2197 | 2231 | 2241 | 2249 | 2287 | 2303 | 2413 | 2488
2573 5621 2699 | 2729 | 2744 | 2781 | 2813 | 2839 | 2861 28814

Table 5.2: First 100 positive integers which are norms from L = Qla], where a is

a root of 3 — 2 — 82z + 311
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procecure CONSTRUCT _EISENSTEIN(p, 8):
let 7 = v,(N,Q(B)):
fglr
then return SPLITS
endif
find se Nandl€ Z such that ra+ gl = 1,
with1 <s<g-1,
let x = (8)°p";
if m,(z) is Eisenstein at p
then return RAMIFIES and x
else return SPLITS
endif

Figure 5.2: Auxiliary procedure used by DECOMPOSE.




Chapter 6

Norm equations over cyclic number fields

of squarefree degree

Let E = Q[v] be a cyclic number fielc E of squarefree degree n over Q. and let a
be a nonzero rational number. In this chapter we give an algorithm to decide if the

equation
Neg(A) =a (6.1)

is solvable in E, by generalizing the algorithm NORM described in Chapter 4. The-
orem 2.8, stated in Chapter 2, will play a major role in this chapter, for it will enable
us to reduce the problem over E to the same problem over all the eyclic subfields of
E of prime degree over Q.

We will show that the generalized algorithm runs again in time polynomial in
the size of the input, assuming that we are allowed to call an oracle to obtain a
complete factorization of a and a complete factorization of the discriminant dg(v)

of v.

6.1 Reduction to the prime degree case

Let P be a prime of E. The next lemma tells us how to obtain all the minimal
subfields of Ep, the P-adic completion of E.
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Lemma 6.1 Let E be a cyclic number field of squarefree degree n. Let p be a rational
prime, and P be a prime lying above p in E. Let Ep be the completion of E with

respect to vp. Let M be a minimal subficid of Ep over Q,. Then
(i). The degree of M over Q, is a prime number q;

(ii). M is the composite in Ep of Q, and M, where M is the unigue minimal

subfield of E over Q of the same degree q.

Proof. By Lemma 2.1 the extension Ep/Q, is cyclic of degree m, with m | n.
Therefore if M is a minimal subfield of Ep over Q,. its degree must be a prime
number ¢, with ¢ | n. We show next that A7 = Af Q;. where M is the unigne
minimal subfield of E over Q of degree g. Suppose that the assertion were false. By
the primality of g this would be possible if and only if M/ Q, = Q,. Since [E : Q] is
squarefree, this would imply that ¢ | [Ep : Q] but ¢ f [E : M), contradicting the
fact that [Ep : MQ,)] must divide [E : M]. O

In the following lemma we characterize the global norms in terms of the local

norms.

Lemma 6.2 Let E be a cyclic number field of squarefree degree n, and a € Q.
Then a € Ng/q(E") if and only if

(i). if E is totally complex then a > 0;

(ii). for each minimal subfield M of E and for each finite prime D of M lying above
p we have a € Npgy q,(Mp).

P. s0f. For a subfield K of E and a divisor P of E let us denote the restriction of
P to K by PN K. By Theorem 2.11, a € Ng/q(E*) if and only if 2 € N, /q,(Ep)
for all the prime divisors P of E.

Let us consider the infinite primes first. If P is an infinite prime of E, then
P N Q = oo, the unique infinite prime of Q, and Q. = R. Then, either Ep» = R,
and because E is Galois this is equivalent to saying that E is totally real. or Ep = C,
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and because E is Galois this is equivalent to saying that E is totally complex (see

Section 4.4). We have seen that in the first case
NEp/Qo(Ep) = Np/r(R) = R
while in the second case
NEp1Qo(Ep) = Ne/r(C) = R*

Let us consider next the finite primes. By Theorem 2.8, if we fix a finite prime
P of E, then a € Ng,/q,(E3) if and only if a € N /QP(AAI‘) for all the minimal
subfields M of Ep.

Therefore a € Ng/q(E™) if and only if (i) holds and for each prime P of E we
have a € Ny, /Qp( A*) for all the minimal subfields Af of Ep.

Note that. when M is a minimal subfield of E and P is a finite prime of E,
then the composite M - Q, (in Ep) is either Q, or a proper minimal subfield of
Ep of prime degree q. Moreover, by Lemma 6.1 each minimal subfield M of Ep is
obtained in this way, that is by composing Q, with a minimal subfield of E of the
same degree g (the composition taking place in Ep).

Since M is the completion of M with respect to the valuation determined by the
finite prime P N M, we can write Mpnas instead of M.

But then a € Ngq(E") if and only if (i) holds and for each minimal subfield M

of E we have
ac "vanM/Qp(“I;’nM)

for all the finite primes P of E.

Next note that, for each finite prime P of E there is exactly one prime of M
below P, which we denoted by P N M. and conversely, for each finite prime D of M
there is (at least) one finite prime P of E such that PN M =D.

But then a € Ng/q(E") if and only if (i) holds and for each minimal subfield M
of E we have a € Npy,, q,(Mp) for all the finite primes D of M. This proves the

lemma. O
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Since E/Q is cyclic of squarefree degree, it follows that E is the composite of all
its minimal subfields. Therefore E is real if and only if all its minimal subfields are
real. In other words, if E is complex then it has at least one minimal subfield which
is complex.

The following theorem is now an easy consequence of Lemma 6.2.

Theorem 6.1 Let E be a cyclic number field of squarefree degree n, and a € Q".
Then a € Ngjq(E") if and only if a € Naq(AI"). for each minimal subfield M of
E.

6.1.1 Computation of the minimal subuelds of FE

In order to apply Theorem 6.1 we must be able to compute all the minimal subfields
of E = Qlv].

We recall here that there are very general algorithms to compute the lattice of
subfields of a general algebraic number field [29], but in our case we do not necd the
full power of these algorithms, since a very simple ad hoc method will turn out to
be more than adequate.

For this purpose we need to know a generator 7 for the (cyclic) Galois group of
E/Q.

Let m,(z) be the minimal polynomial of v over Q. An algorithm due to Lenstra
[57] allows one to factor a polynomial over an algebraic number field, in time poly-
nomial in the size of the input. If we apply this algorithm to m,(z) over the field
E itself, then m,(z) factors into linear factors, and any other root of m,(z) will be
expressed as a polynomial

9(8) G=1,....n)

in the symbolic root 6, correspouding to the complex root ». We can now choose g;
such that

v — gi(v)

determines an automorphism 7 generating Gai(E/Q).
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Once 7 is known we can compute the minimal subfields of E. since these are in
one to one correspondence with the maximal subgroups of Gal(E/Q).

For each prime ¢ dividing n. let Hy;, = {77) denote the unique maximal subgroup
of Gal(E/Q) of order d/q. and let L, denote the unique minimal subfield of E of
degree g corresponding to it. To find L,. compute the following polynomial, of
degree n/q:

ho(z) = (2 — T*(V))(x = 7¥(¥)) - - - (¢ — T"(¥)) (6.2)

It is a standard fact from Galois theory (see {91, p. 169}) that the coefficients of
h,(z) lie in L, and they generate L, over Q. From the minimality of L, it follows
that any coefficient of h,(x) which does not lie in Q is a primitive element for L,

over Q.

6.1.2 The complete test

Using the results of the previous sections, we are now able to describe the main
algorithm of this chapter. Let E be a cyclic number field of squarefree degree n over
Q. The algorithm NORMSQF, described in Figure 6.1. takes as input a nonzero
rational number a and the minimal polynomial for an algebraic integer v which
generates E over Q, and returns TRUE if a belongs to the norm group of L/Q,
FALSE otherwise.

We will show next that the algorithm NORMSQF runs in time polynomial in
the size of the input. assuming that we are allowed to call an oracle to factor «, and
to factor the discriminant of the primitive element of each minimal subfield of E.

Clearly the procedure NORM is called at most size(n) times, since |log n} is an
upper bound for the number of prime divisors of n, and size(n) is equal to {logn | +1.

For each prime factor q of n, the coefficients of the polynomial k,(r) are algebraic
integei~. and they are represented as polynomials in v.

In order to show that the entire test rums in time polynomial in the size of
the input it is necessary to bound the size of m,(z), where a is any non rational

coefficient of h,(z), for each prime factor ¢ of n.
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Lemma 6.3 Let b, (r) and m,(z) be as in (6.2). Then the size of hy(z) is bounded

by a polynomial in the size of m, (z).

Proof. Note that h (z) is a factor of m,(z). Now, we can factor m,(z) completely
over Q[v] in time polynomial in the size of m,(r). using Lenstra’s algorithm {57]
for factoring polynomials over arbitrary number fields. This implies that the size
of each conjugate of v is bounded by a polynomial in the size of m,(z). Since
m,(r) is given in its dense representation. then n is bounded above by the size of
m,(z). Therefore the size of the coefficients of h,(r). which are just the elementary
symmetric functions in
{r%(v). T5(v). . ... ™(v)}

is bounded by a polynomial in the size of m,(x). O

An intuitive argument to prove that the size of m,(x) is bounded by a polynomial
in the size of m,(z) runs as follows. By Lemma 6.3 the size of each coefficient a of
hy(z) is bounded by a polynomial in the size of m,(r). Since m,(z) can be computed
in time polynomial in the size of =. using standard methods from linear algebra (see
[23, Section 4.3, p. 160]). then necessarily the size of m,(r) must be bounded by a
polynomial in the size of m,(r).

We present now a rigorous proof. Recall that the height f(I)max of a polyno-
mial f(r) with complex coeflicients is defined as the maximum of the moduli of its

coefficients.

Corollary 6.1 Let hy(z) and m, (r) be as in (6.2). If a is a non rational coefficient

of hy(x). then the size of my(z) is bounded by a polynomial in the size of m,(x).

Proof. By hypothesis m,(z) is monic with integral coeflicients. A classical theorem
due to Cauchy [68. p. 146] states that the roots of m,(r) are bounded in modulus
by M = 14 m,{T)mex- By construction. a is the ;' elementary symmetric function
of n/q of the roots of m,(r), for some j € N (1 £ 7 < n/q). Hence, the maximum

|a| of the moduli of the conjugates of a satisfies the inequality

al<| ™ ).w
J
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Since the coefficient a, of r' in m,(r) is the (g —1)-th clementary symmetric function

of the conjugates of a. we can bound it as follows:

(
la < | ¢ ) lal

()

mo(r)m,x < q' ((ll!q)' (1 + fnu(r)“mh)n,ﬂ; X

1A

Hence

and

IA

log(g! ((n/g)! (1 + m,(r)max)"/"}?)

qlog q + qlog{(n/g)! (1 + M, (2 )mac)’?)

< qlogg+q((n/q)log(n/q) + (n/q)log(1 + m,(r)max))
qlog g + n'og(n/q) + nlog(l + (T )mux)

108 mo(‘t )mtx

il

i

It follows that

size(m,) < qlogmy(r)max

it

g(qlog g + nlog(n/q) + nlog(l + m,(r)max))

Now, log(1+ m,(Z)max) is clearly bounded by size(m,(r)), and by hypothesis m, (r)
is given in its dense representation. which implies that ¢ < n < size(m, (7)). This

proves our assertion. O

Remark on the execution time. We can derive an upper bound for the time
needed to factor m,(r) over its splitting field. simply refernng to the results in {57].
If we denote by {m,(x)| the Euclidean length of m, (r), that is the square root of the
sum of the squares of its coefficients, then Theorem 4.5 in [57] shows that Lenstra's

algorithm computes the irreducible factorization of m, (r) over its splitting field in

O(n'? + n''log(n |m,(x)]) + n'°log m,(z)max)
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operations on integers of binary length

O(n® + n*log(n jm, (z)|) + n'log m,(T)max)

Remark. Bounds for the height of the irreducible factors of f(r) over Q have
been studied by M. Mignotte ([66].[67]. [41]). These bounds are extremely useful in
the design and analysis of algorithms for factoring polynomials over Q. or over an

algebraic number field.

6.1.3 Implementation issues.

In practice, the factorization of m,(r) over its splitting field is unfeasible even when
the degree of m,(z) is small. say 15. with the known algorithms and the current
computer technology. As a practical alternative we suggest the use of the polyvnomial
reduction algorithm POLRED developed by H. Cohen and F. Diaz y Diaz [22]. Given
a polynomial f(r) defining a number field X of degree n. the algorithm POLRED
produces smaller polynomials which define the same number field K. In addition,
the algorithm may produce minimal polynomials of elements defining subfields of
K. Note however that it is not guaranteed that all the subfields will be found,
since POLRED returns at most n polynomials, while the number of subfields of
K may be much larger (note however that this problem does not arise for cyclic
extensions). The great advantage of the algorithm POLRED over the (known)
polynomial factorization algorithms is that POLRED applies the Lattice Reduction
Algorithm of Lenstra, Lenstra and Lovasz to a lattice of dimension n, rather than

n?,

We tested the implementation of POLRED in PARI, on a SPARCSTATION 10,
using the following polynomial which defines a cyclic number field E of degree 15:
m(z) = ' +43r" — 242" — 662" + 201" + 5012
—710z° — 16592 + 975z° + 24132° — 261z° — 1329z*
249 + 842 +12r — 1

POLRED found in 66 seconds the following polynomials:
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015

— r* — 473 + 3r% 4 3r — 1. defining the unique subfield of E of degree 5;
o 3 —3r — 1 defining the unique subficld of E of degree 3.
o r — ] defining Q: and

o 13— 27Tx1 —4r'? 4+ 252x" +60x'0 —976,° — 288r" + 14737 + 3840 — TS51°
168r* + 150x% + 27r? — 9r — 1. defining E.

For a comparison. we were not able to factor m,(r) over its splitting ficld using

the factorization algorithm implemented in PARIL
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procedure NORMSQF(a. m,(z)):

compute a generator T of the Galois group of E/Q;

for all the distinct prime factors g of n do
compute h(z) = (2 - 7)) (z - (1)) - - - (z — T™(v));
let a be any non rational coefficient of h,(z);
compute the minimal polynomial m,(z) of a over Q;
if NORM(a, m,(z))=FALSE then

return(FALSFE)

endif

return(T RU E);

Figure 6.1: The algorithm NORMSQF.
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Chapter 7

Test of cyclic algebras over Q for zero

divisors

In this chapter we show how the algorithm NORM described in Chapter 4 can be

exploited to test if a cyclic algebra over Q has zci0 divisors.

Let us recall first some basic definitions from the theory of finite dimensional
associative algebras. For some of the computational aspects of the theory we refer
to [36], [80], [81]. [82], [85] and to [30, Chapt. 2].

Let A be a finite dimensional associative algebra over a field F. An element
a € Ais called a divisor of zero if there is a nonzero element b € A such that ab = 0;
an algebra without nonzero divisors of zero is called a division algebra. An algebra A
is said to be simple if it does not possess any nontrivial two sided ideal, and central

if its center is equal to the base field.

Let A be a central simple algebra of finite dimension n over Q. Recall that the
dimension n of a central simple algebra A over the base field is always a square

number; the positive integer d = /nt is called the degree of A.

By the Wedderburn Structure Theorem [76, p. 49|, any central simple algebra A
over a field F is isomorphic to a full matrix algebra over a. possibly noncommutative,
finite extension D of F. The degree of D over F (as an algebra) is called the (Schur)
indez of A. Clearly. A is a division algebra if and only if its inder and its degree are

the same.
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On the other hand it is known from Brauer’s theory (see [76, p. 260]) that, for
some finite number &, the tensor product A®...® A (h times) is isomorphic to a
full matrix algebra over F. The smallest such h is called the ezponent of A.

An important class of central simple algebras is given by the cyclic algebras.
They were discovered by L.E. Dickson and named ‘Dickson’s algebras’ after him by
J.H.M. Wedderburn [27, p. 66].

Following Pierce [76, p. 276] they can be defined in a concise way as follows:

Definition 7.1 An associative algebra A of dimension n over a field F s called
cyclic if it is central simple over F. and it has a cyclic subfield M of degree \/n over
F.

In a more concrete way cyclic algebras can be defined as follows (see [76. p. 277]):

Definition 7.2 A finite dimensional associative alyebra A over a field F is called

cyclic if it is generated over F by two elements ¢ and b such that:

(i). The subalgebra Fc] of A generated by c is a cyclic extension field M of F of
degree d, say:

(it). b is invertible and b~'cb = o(c), where o is a generator of the Galois group

Gal(M/F);
(iii). b* € F=.

It follows from this characterization that A is a central simple algebra of dimension
d? over F with basis {c¢'d*|0 < i,k < d}. Let a = b®. We denote the algebra A by
(M.o.a).

Although cyclic algebras have an uncomplicated structure, as the next theorem

shows they are quite general (see {76, p. 359] for a proof).

Theorem 7.1 (Brauer-Hasse-Noether) Every central simple algebra over an al-

gebraic number field is cyclic, and its index is equal to its ezponent.
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In particular, every division algebra over Q is cyclic. The theorem that follows is

basic for our construction - for its proof we refer to [5. p. 98].

Theorem 7.2 (Albert) Let M/F be a cyclic extension of commutative ficlds of
degree d. Then the cyclic algebra (M. o.a) has ezponent d if and only ifa & Ny ;p(L*)
for each minimal subfield L of M over F.

Note that when F is an algebraic number field, Theorems 7.1 and 7.2 give a criterion
for (M, 0,a) to be a division algebra.

Given a cyclic algebra A = (M, 0,a), we can use the algorithm NORM developed
in the previous sections to check if the conditions of Theorem 7.2 are satisfied.

The minimal subfields of M are in one to one correspondence with the maximal
subgroups of Gal(M/Q). For each prime g dividing d. let Hy/, = (a'?) denote the
unique maximal subgr . p of Gal(M/Q) of order d/q, and let L, denote the unique
minimal subfield of M of degree g corresponding to it. To find L,, compute

hy(z) = (7 = o%(e))(z = 0*(c)) - -+ (x ~ 0(c)) (7.1)

It is a standard fact from Galois theory (see [91, p. 169]) that the coeflicients of
h,(z) lie in L, and they generate L, over Q. From the minimality of L, it follows
that any coefficient of h,(z) which does not lie in Q is a primitive element for L,
over Q. Note that the number of subfields which must be considered is bounded
by size{(d) = size(n)/2, since |logd| is an upper bound for the number of prime
divisors of d, and size(d) is equal to |logd| + 1.

The algorithm SKEWFIELD, shown in Figure 7.1, implements the ideas dis-
cussed above.

It takes as input a primitive element c for M over Q, a generator o of Gal(M/Q),
and a nonzero rational number a. and returns TRUE if A = (M,0,4a) has no zero
divisors, FALSE otherwise.

The same considerations about the complexity of the algorithm NORMSQF show
that the test runs in time polynomial in the size of the input, assuming that we are

allowed to call an oracle in order to obtain a complete factorization of ¢ and a
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complete factorization of the discriminant of the primitive element of each minimal
subfield of M.
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procedure SKEWFIELD(c, o, a)

let d = /n;

for all the distinct prime factors ¢ of d do
compute hy(z) = (z — 0%(c))(z — 0%9(c)) - - -(z — a%(c)) ;
let a be any non rational coefficient of h,(z);
compute the minimal polynomial m,(z) of a over Q;
if NORM(e, m,(z))=TRUE

then return FALSE

endif

endfor

return TRUE

Figure 7.1: The algorithm SKEWFIELD.
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Chapter 8

Un the discriminant of cyclic number

fields of odd prime degree

Let L = Q|a] be a cyclic number field of odd prime degree q over Q, where a is
given by its minimal polynomial m,(z) over Q. Without loss of generality assume
that a € O, the ring of algebraic integers of L.

Once again we recall that the discriminant of L can be computed using a very
general algorithm due to M. Pohst and H. Zassenhaus ([77], [98],{23, p. 297]): this
algorithm indeed computes an integral basis B = {w;,...,u,} for the extension
L/Q, and hence the discriminant d. .

In this chapter we show that, if we do not need an integral basis for L/Q for other
reasons, then the full power of the Pohst-Zassenhaus’ algorithm is not required.

Indeed we give an algorithm to compute the discriminant d; of L, which relies
upon a fast method to find Eisenstein elements in L. The algorithm accepts as input
the minimal polynomial of a over Q and a raticnal prime p, and decides if p ramifies
in L. If it does, then the algorithm returns an algebraic integer # whose minimal
polynomial is Eisenstein at p. It is easy to see that such an element = generates the
value group of the unique valuation that extends the p-adic valuation from Q to L;

x is sometimes called a prime element or a local uniformizer.

The algorithm described in this chapter is conceptually simpler than the algo-

rithm described in Chapter 5. The reason lies in the fact that now we are not asking
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for the decomposition type of a rationa! prime p, but simply whether p ramifies or

not. The results of this chapter will appear in [2].

Let di(a) denote ouce again the discriminant of a. For each p | di(a) we have
to decide if p | d..

Firstly, by Urazbaev’s criterion (Theorem 4.2). we can ignore those primes p # ¢
for which either p #1 (mod q) or vp(dL{a)) < ¢ — 1. Moreover. we can ignore the
prime ¢ if vy(dz(a)) < g — 1).

Secondly, we take into account the fact that L/Q is Galois. As we have seen in
Chapter 4, this implies that if p is a rational prime then either p splits completely
in L, or p is inert in L, or p is totally ramified in L.

By assumption o € O, and therefore the coefficients of m,(r) lie in Z. The next
lemma, which relates the decomposition of a prime p in L to the factorization of

m,(z) over F,, is a simple consequence of Corollary 5.1 and Lemma 5.5.

Lemma 8.1 Let L be a cyclic extension of Q, of odd prime degree q. Let p be a
rational prime, and a be an algebraic integer in L\Z. If p ramifies in L, then the

minimal polynomial m,(z) of a over Q splits into the product of q identical linear

Jactors over F,.

It is easy to apply Lemma 8.1 following the method described in Section 5.2:
the polynomial m,(z) is a ¢'* power over F, precisely when the degree of {(z) =
ged(z? — x,m,(z)) is equal to one (the ged is computed over F,). Moreover I(x)
can be computed very efficiently using the binary powering algorithm.

Unfortunately, the previous lemma gives only a necessary condition for a prime
p to ramify in L. In the next section we will develop some some necessary and

sufficient conditions.

8.1 Eisenstein polynomials

Let us assume that p is totally ramified, and let P be the unique prime ideal lying

above pZ. Since there is only one extension of the p-adic valuation from Q to
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L, if 6 € L we must have vp(8) = v,(N,q(6)). In particular, if § € P\P?, then
vp(Np/q(8)) = vp(8) = 1. This shows that if p is ramified, then O contans elements

whose norms have p-order equal to 1. On the other hand

Lemma 8.2 If a rational prime p is inert in L then there is no 8 € O\Z whose

norm has p-order 1.

Proof. Assume that 6 € O\Z is an element whose norm has p-order 1. 1f8,,6,,...,6,
denote the conjugates of 8, with § = 6, say, then N;,q(0) = 6,#;---0,. Since p is
inert, pO is the only prime ideal of O lying above pZ. By assumption 6,0;---8, €
pZ C pO, and hence. since pO is a prime ideal, some conjugate of § must Lie in
pO. But then, since pO is o-invariant, all the conjugates of # must lie in pO, and
therefore Ny q(d) € pPONZ = pZ, against our assumption. O

The next theorem is an immediate consequence of Lemma 8.2 and of Lemma 5.7.

Theorem 8.1 Let p be ¢ rational prime. Assume that there is an element 8 € O\Z
whose norm has p-order 1. Then p ramifies in L if and only if mg(z) is Eisenstein

at p.

In order to apply Theorem 8.1, we need an efficient algorithm to solve the fol-
lowing problem: find an element of O whose norm has p-order 1. The next lemma
shows that it is enough to find any algebraic integer whose norm has p-order not
divisible by ¢.

Lemma 8.3 Let p be a ramified prime. Given +' € O with ¢ f vo(Nrjq(7')), we
can construct an element v € O with v,(Nyq(v)) = 1.

Proof. Let r = v,(Ny;q(7')). Since p is ramified by hypothesis, we must have
4" € P'\P™*). Since q fr, wecan find an s € Nsuch that rs +gl=1 (I € Z). If
we let 4 = (7/)*p'. then

= 1)u+ql \ opn-ﬁ-qH-l

that is. v € P\P2. which proves our assertion. O
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8.2 Finding Eisenstein elements

We will continue to assume that p is ramified. Let ¢ be a generator of Gal(L/Q).
The uniqueness of P shows that o(P) =P and O = Z + P. Thus

6(3)-3€P forall €O

We will use this fact often, in the following.

Let us consider the embedding O < Op. For this purpose, we fix, once for all,
an element # € P\P?, and we take R = {0,1,...,p—1} to be a set of representatives
of O/P in O. Every 3 € Op can be written as a convergent series (in the P-adic

metric)
o 9-1 )
'8 =zza'~1p!”-’ (a;‘] € R)
1=0 ;=0
where the coeflicients a, ; are uniquely determined by 3.

Moreover, if 3 € O\Z, then for some A,k € N, with 0 < ¥ < ¢ we must have
(i) Qh.k # 0; and
(). e;; =0 whenever (i <hand 0 < j<q)or (i =hand 0 < j <k).

for otherwise, using the fact that ef = [Lp : Q,] = ¢ = [L : Q}, the clement 3 would
be a p-adic integer in O, and therefore an element of Z.

We define now a function A : @ — O as follows: if 3, h,k are as above, then

g-1 a  g-1
A(B) = Z ah,,p"‘ir’ + Z Za.,,p’t’
=k 1=h<+1 3=0

Since o fixes p and any element of R, clearly we have

Lemma 8.4 Let 3€ O. Ifo € Gal(L/Q) then a(3) — 3 = a(A{3)) — A(B).
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8.3 p is totally and tamely ramified

In this section we assume that p is ramified and p # ¢, and we let P denote the

unique ideal of O above pZ.
Lemma 8.5 Let o be a generator of Gal(L/Q). Then vp(o(x) — =) = 1.
Proof. Since {1,%,...,797 '} is a local basis at p. we must have (see [93, Proposition
4.8.18, p.164))
vp(di(x)) =vp(dL) =¢—1
But dl,(t) = NL/Q(m;_,(#))» and
vp(Npjq(my (7)) = vp(mi (7)) = vp((a(x) = &) -+ (697} (7) ~ x))
Each factor on the right hand side has P-order greater than zero, there are ¢ — 1
factors, and so by the pigeon hole principle vp(o(7) — #) must be 1. O
Lemma 8.6 Let o be a generator of Gal(L/Q).
Ifo<r<gqtheavp(o(z")—x")=r.
Proof. Since P and all its powers are o-invariant,. it follows that
o(x) = axr (mod P?)
with 0 < a < p. Then
o%(x) = ao(x) (mod P?)
that is,
o*(z) = d’xr (mod pz)

and more generally

o'(x) = a'x (mod P?)
But 0%x) =7, and soa? =1 (mod p). Therefore the order of ¢ in F; must divide
q. Since g is prime and @ # 1 (mod p) by Lemma 8.5, the order of a in F} must
be equal to ¢g. f 0 < r < ¢, then

o(z’)—x" =o(x) —x" =a'x" — 2" (mod P*})

with a”" #1 (mod p). which proves the assertion. O
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Corollary 8.1 Let o be a generator of Gal(L/Q). If 3 € O\Z. then
ve(a(A(3)) — A(B)) = ve(A(3))
In particular, g fvp(a(A(B)) — A(8)).

Proof. Define a function F : L — L by
F(z)=o(z)-1x

Note that vp(o(z)) = vp(z). and so vp(F(2)) 2 vp(x). Since F is Z-linear, we have

q9-1 o0 g9=1
FAB) = FQ_an;p"x’+ Y Y a,,p'x’)
1=k i=h+1 =0
g=-1
= Y F(an,p*®’) + F(t)
=k
with
o g9-1
t = Z Za,.,p'k"
i=h+1 )=0
Now,
vp(t) 2 (h+1)q
and so
vp(F(t)) 2 (h+1)g
Note that

vp(Flan,p*x’)) =gh+j (j=k.....q-1)
if 0 < ap; < p, and
vp(F(an,p*n’)) = 0o

if ap; = 0. Clearly 0 < a1« < p, by the definition of the function A, and so

g-1

vo(Y_ Fan;p"x’)) = hg+ k

1=k
Therefore
vp(F(A(B))) = kg + k = vp(A(3))
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Theorem 8.2 If 3 € O\Z then q [vp(m}(3)).

Proof. By Lemma 8.4, if o denotes a generator of Gal(L/Q). we have

mp(B) = (0(8)=8)---(a°"*(3) - 3)
= (o(A(8)) — A(B))--- (0" (A(B)) — A(B))

By Corollary 8.1, then
vo(my(8)) = (¢ — Lrp(A(3))

Since ¢ fup(A(B)), it follows that ¢ Yvp(m(3)). O

The algorithm TAME, shown in Figure 8.2, implements the ideas described
above. 1t takes as input a prime p # q and a and returns RAMIFJIES
plus an Eisenstein element = if p ramifies in L = Qa]. otherwise it returns
DOES_NOT_RAMIFY.

8.4 p is totally and wildly ramified

In this section we assume that p is ramified and p = ¢, and we denote by P the
uniqu+ :leal of O above ¢Z. and by = an element of P\P2. Define a function
G:L — Lby

G(zr)=Tryq(z) - qr

Clearly, G is Z-linear and it vanishes on Q.
Lemma 8.7 Let 0 < r < q. Then
G(x") = ag— gx" (mod P¥)
with0 < a<gq.
Proof. Since Trp,;q(%x") € qZ, we can write
Triq(") = aq (mod ¢°)

with 0 < a < ¢. This proves the assertion. O
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procedure CONSTRUCT(v. p):
let r = v,(Nr/q(7)):
find se Nandl € Z such that rs + gl = 1;
let € = 7* pl;
if m.(z) is Eisenstein at p
then return ¢
else return 0
endif

Figure 8.1: The algorithm CONSTRUCT.

procedure TAME(p, a):

fp#1 (modyg)

then return DOES_ NOT_RAMIFY
endif
if vp(dr(a)) < g - 1

then return DOES_NOT RAMIFY
endif
compute ¢(z) = ged(z? — 2. my(z)) over F;
f deg(c(z)) #1

then return DOES_NOT RAMIFY
endif
let v = m;(a):
let x = CONSTRUCT(v.p):
fx#0

then return RAMIFIES and »

else return DOES NOT_RAMIFY
endif

Figure 8.2: The algorithm TAME.
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Theorem 8.3 Assuming the notation of Section 8.2, if 3 € O\Z, then G(3) =
G(A(B)) and
G(ﬂ) = bqh-ﬁ - th+lﬂ,k (mod p(h+l)v+k+l)

with0<b<gand0 <c<gq.

Proof. Since the function G is Z-linear, and it vanishes on Q. we have

G(3) = G(A(B)

-1 ac g¢-1 )
= G(Z ahdqhﬂ” + Z za.",q’r’)
=k t=h+1 y=0
g=1 x gq-1
= z G(ah.;thj) + G( Z Z a,,9'7’)
1=k t=h+1 ;=0
g-1 g-1
= Y Glan,q"m) + 3 Glaner, "' 77) + G(t)
=k y=0
with
o g~1
f = z Zd,‘dq‘ﬂ"’
1=h+2 )=0
Now,
ve(t) 2 (h +2)q
and so

v.(G() 2 (h+ 2)q

Also, by Lemma 8.7,
vp(G(ansr,¢"'7)) 2 q(h +2) (7=0,...,q—1)

and

h+1

G(ah,kq"‘x") = big"*! — cig"t'z*  (mod Ph+2)9)

with ¢, #0 (mod ¢). since api: #0 (mod ¢) by the definition of the function A.
Moreover.ifay, Z0 (modgq) (s=k+1..... qg—1) then

G(an,q"7") = b,¢"* — c,¢"*'x*  (mod P+3)9)
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This shows that

q-1
G(8) =" *' (L b) - ¢**'cr*  (mod Plh+D+kst)

=k

with ¢, # 0 (mod g). To prove our assertion, let b = ¥}

icb.modg, and ¢ = ¢;.
]

We show next how Theorem 8.3 can be used to obtain an algebraic integer whose

norm has g-order not divisible by ¢. Let w = v (N ,q(G(3)))-
Hq Jwthenb=0 (mod ¢), and G(B) is the desired element.

Otherwise, w = g(h + 1), and if we let v = w/q then
G(8)/q" =b—cx* (mod P**)

Note that G(B)/q" € O. since »5(G(3)/q") = 0 and vo(G(8)/4") = va(G(B)) 2 0,
when Q is any prime ideal of O not equal to P. Let p = G(3)/q". It is easily seen
that, if

mge(x) =27 +bx% + ...+ bir + by

then
my(z) = 2% + (byy /¢")2  + ..+ (b1/q" ")z + (bo/q")

Since ¢ is assumed to be ramified. then
m,(z) = (z - $)" (mod q)

Let s be a representative of the residue class of §, with 0 < s < q¢. Then (p—5s)? € qO.
Hence s = b and

p~s=—ct* (mod P**!)
Therefore p — s is the desired element.

The algorithm WILD, shown in Figure 8.3, implements the ideas described above.
It takes as input ¢ and a and returns RAMIFIES plus an Eisenstein element # if
q ramifies in L = Q[a]. otherwise it returns DOES_.NOT _RAMIFY .
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8.5 Some remarks

In this chapter we have shown how to determine if a rational prime p ramifies in L,
and if this is the case, how to find an Eisenstein element at p. The algorithms TAME
and WILD given here are conceptually simpler than the algorithm DECOMPOSE
given in Chapter 5. However, they do not tell us if a nonramified prime p is inert
or splits in L.

It is natural to ask if there is some general algorithm to accomplish the task of
recognizing the decomposition type of a rational prime p in a number field K = Q|[3],
with ring of integers O, without having to compute the prime ideal decomposition.
The trivial case, when p does not divide the module index [O : Z[3]] is dealt with
using a classical theorem of Kummer {47, Theorem 7.6, p. 32]. For the abelian case,

we state the foliowing general result due to M.A Huang [45, Theorem 1.3].

Theorem 8.4 Let K be an abelian number field and p a rational prime non dividing
[K : Q). Assuming the Ertended Riemann Hypothesis, it is possible to compute the
ramification index and the residue class degree of p relative to K in deterministic

polynomial time.

Assume that [K : Q] = ¢ is prilne, and let ¢ be a primitive ¢** root of unity.
Huang’s algorithm works by translating the original problem to the Kummer ex-
tension K[¢]/Qle]. However Huang’s method appears to be of theoretical rather
than practical interest, since it requires application of the Lenstra-Lenstra-Lovasz

algorithm [54] in various constructions of fields and groups (see [43, p. 123]).

8.6 Computational examples

The algorithms described in this chapter have been implemented in PARI and tested
on a SPARCSTATION 10. Since the running time is negligible, we report for each
field the Eisenstein elements found, in order to compare them with the Eisenstein
elements found using the algorithm DECOMPOSE.
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procedure WILD(q, a):
if voldL(@)) < 2(g ~ 1)
then return DOES NOT RAMIFY
endif
if m,(z) is not a ¢** power over F,
then return DOES_NOT_RAMIFY
endif
let § = Trp q(a) - qo:
let w = vy (N /q(6)):
ifg fwthenlet y=§
else
let v=w/q let p=6/q";
if m,(z) ¢ 2(z}
then return DOES_ NOT _RAMIFY
endif
compute c(z) = ged(z? — z,m,y(z)) over Fy;
ife(z)#z -5
then return DOZS_ NOT_RAMIFY
endif
lety=p-s;
if g1 vo(Nrs(7)
then return DOES_NOT_RAMIFY
endif
endif
let x = CONSTRUCT(7,¢);
fr#0
then return RAMIFIES and =
else return DOES_NOT_RAMIFY
endif

Figure 8.3: The algorithm WILD.
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8.6.1 Discriminant of the form p?~! with p # ¢

The algorithm TAME was tested using the following polynomials found in H.Cohen’s
book [23, p. 327]: ’

pa(z) = 2P+ -22-1
ps(z) = z8+2' —42> 32 +3z +1
pi(z) = '+ 2% -122% - Tr' + 2823 + 1422 - 9z + 1

The corresponding field discriminants are 72, 11%, 298,

Below we list the Eisenstein polynomials w, ,(z), corresponding to the polynomial
pi(z) and to the prime p, which were found using the algorithm TAME:

wyrz) = -T2t +14r -7

ws(z) = z°—88z* 4+ 660z —627r% + 154z — 11

wrae(z) = 7 - 1104572330073z° + 4722139878230826133194°
—279772708771873219858337478x*
+534539595997153741131767941 1%
—3009073955331456639517564210z? + 14368312908084136906477z
—16896044879663069

For a comparison, we list below the Eisensiein polynomials u;,(z), corresponding
to the polynomial p;(z) and to the prime p, which were found using the algorithm
DECOMPOSE:

usz(z) = 2°—142% 4+ 63z — 91

usn(r) = z°—44x' + 7702 — 6699z% + 28974z — 49841

ur29(r) = z7 - 1742% + 129632° —~ 536007z¢ + 13285103z°
19737208612 + 1627442416z — 5745350399
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8.6.2 Discriminant of the form ¢?2

In this section we show that it is quite easy to produce cyclic fields of prime degree
g in which the only ramified prime is q. and we give some examples below.

Recall that, by the Kronecker-Weber theorem [47, p. 165] every abelian number
field can be embedded in a cyclotomic field of suitable degree.

In particular, if a cyclic field L of odd prime degree g has ¢ as its only ramified
prime, then [63, Exercise 37, p. 129] it can be shown that L is contained in the ¢*-th
cyclotomic field. Now, the Galois group of the g*-th cyclotomic field is isomorphic
to the multiplicative group of the ring Z/q*Z, and hence it is cyclic of order g(g—1).
It is well known how to produce all the subfields of the ¢"-th cyclotomic field {91,
p- 176], where g is prime and n is a positive integer - let us recall briefly the
construction, when n = 2.

Let { be a primitive g*-th root of unity. Then the minimal polynomial of ¢ over
Q is the ¢>-th cyclotomic polynomial, which is given by

£0-1) + z99-2) 4+...42741

Let r be an integer such that its image in the ring Z/¢*Z generates the muitiplicative
group of Z/¢*Z. Then the Galois group of Q[(]/Q is generated by the automorphism
7 such that

() =¢

It can be proved that the term
E=(+TUO+TH( + ... + 77

belongs to the unique subfield L of degree g of Q[(], and moreover { is a primitive
element for L over Q. The minimal polynomial m¢(z) of £ over Q is the desired
polynomial needed to test the algorithm WILD.

The following polynomials have been computed using the method described
above:

ps(z) = 22 -3z +1
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ps(z) = %102 + 522 +10r + 1
pr(z) = =7 —212% — 212% 4+ 912 + 11227 — 84z — 97
pu(z) = z'' —55z° 4+ 33z° + 82527 - 3962°
—49722° 4 1287z + 127602 — 9242% — 10989z + 243

Below we list the Eisenstein polynomials w;(z), corresponding to the polynomials
pi{z), which were found using the algorithm WILD (resp. in 10, 25, 45, 80
milliseconds):

wi(r) = 2% 61 +9x -3

2% — 20z + 150z® — 5251 + 850r — 505

ws(z)

x7 —422% + 7352% — 6909x* + 3738723

wq(z)
—11515072 + 183436z — 112511

w(z) = ' - 1102 + 53445z° — 1600837° + 3105465z
—417297542° + 3962517682° — 2658133687x* + 12340722240z°
~37.48534076x2 + 68437746531z — 55682227953

Foi a comparison, we list below the Eisenstein polynomials u;(z), corresponding to
the polynomials p;(z), which were found using the algorithm DECOMPOSE (resp.
in 20, 20, 60, 105 milliseconds):

us(r) = r*-3r2+3

us(z) % — 524 4+ 2527 — 252 + 5
ur(z) = ' —72° +49x* — 9822 — 49z 4+ T
un(z) = ' - 112 4+ 3632° - 10897 — 10892° + 64132°

+242r* — 1161623 — 21782% + 6534z + 2673

Our experiments with this construction on a SPARCSTATION 10 using PARI
have been limited to ¢ < 11, and failed for larger primes. The bottleneck lies in the

computation of the minimal polynomial of £ over Q, which essentially reduces to the

computation of the minimal polynomial of a g(g ~ 1) x g(¢ — 1) matrix with integer
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coefficients. The function char() implemented in PARI computes the characteristic
polynomial of a n X n matrix M by computing the adjoint matrix AM°¥ of M, and
it is known [23, p. 52] that this method requires O(n') operations in the straight
line model of computation.

Hence, in order to construct larger examples, we have to avoid the computation of
the minimal polynomial of £. This can be done by estimating numerically a primitive
%-th root of unity, and then estimating £ and all its conjugates say &,,...,£. This
is easily done, since we know the action of the Galois group of C,2 on . It is clear

that the polynomial

me(z) = (= = &)...(z = &)
is an approximation of m¢(z), the minimal polynomial of {. If we carried out the
computations using an adequate precision, then m(r) is obtained by rounding the

coefficients of men(::) to the nearest integer. A Maple procedure that implements the

ideas discussed above is shown in Figure 8.4. The procedure is called as follows
collect{elem(n), z,i— > round(1));

where n is the (prime) degree of the desired cyclic field. Using this program we

constructed the following polynomials

pis(z) = ' — 782" — 652'° + 2080s° + 24572°

—2412827 — 27027% + 137683z° + 110214x* — 376064r°
—1282062% + 363883 — 12167

V7 — 1362'° + 85z + 6154z'® ~ 654572

piz(z)
—119680z"" + 168555z'° + 998835z — 1749300z°
—2783546z7 + 6581040z° — 678725z° — 3813882s*
+7705931% + 616267z° — 826201 — 577

po(z) = z'°—1717'7 - 1332 + 114762"° + 15580z"*
~385833z'% — 6734362'% + 6916190z + 13391960z'°
—66283229x° — 126730380z° + 339213156z" + 5825753408
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—8619159241° — 1264657480x* + 8686381052 + 11381042752
—137550709z — 221874931

The corresponding Eisenstein polynomials which were found using the algorithm
WILD (resp in 88, 110, 125 milliseconds) are

wia(z) = z'3 - 156z'% + 11154z — 4838472'° + 14202760z
—2078133212° + 45877199682 — 525471951812° + 447305133691z°
—2793444538794x* + 124327200424962° — 37317982335218z%
+67654117212955r — 55893361285021

wir(z) = z'7 —2722'% + 34680z'° — 2752725714
+152345194z"% — 62383814552'% + 195716959168z "!
—~48049397126192' + 93449986408595x° — 1447942780998268°
+17872066460817606x° — 174719193199899088 r°
+1336162045976908987° — 78248798979774362782*
+33883949327735099809x° — 102221649203474911611x°
+191796224112178399652r ~ 168488758269952339199

wie(z) = z'% - 3427 + 5523327 — 55987491 + 3993252041
—21291694804x'* + 8800561155752 — 28854510538714x2
+761500599861254x" — 16317905187968636z'% + 2850738427301666832°
—4059926571594316938z° + 46937897320989445908z°
—436643544083067734340..% + 32204441601786891261242°
—18400938925820506096160z* + 78535649477687333418873z°
—235628045690362587415769z° + 443231717937172714093283x
—393221801447722764394343

The corresponding Eisenstein polynomials which were found using the algorithm
DECOMPOSE (resp in 100. 120. 140 milliseconds) are

uy3(z) = z' - 137'? 4+ 507r'° —- 8457° ~ 7605r° + 1487277
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+566152° — 100724z — 217841r* + 288314r° + 38092627
—268203r — 158171
wr(z) = =7 - 172" + 14452 - 69362 — 23120712
+2346682"" — 232934 — 2255645z° + 6539492r°
+2044386z° ~ 31812253z°% 4+ 39958007x° 4 14934653r*
—74809095z> + 67717324x? — 25975320r + 3684767
we(z) = z'°—192'% + 18052 — 57762'° — 67868
+205659z'3 4 1304293x'% — 6563702x'" — 134833502
+76176054z° + 69810180x® — 467936864r" — 125336312x°
+1371428531x° — 1357674072 — 1370374050 + 224419621x?
+182716540z — 28492267

8.6.3 Discriminant of the form p?~1¢%~2 with p # ¢

Finally, let u- onsider a mixed example, namely the splitting field of the polynomial
p3=1:3—61‘2—271‘+44

This polynomial generates the same field as the polynomial r* — 39z — 26, which was
found in the number fields tables recently released by The Computational Number
Theory group in Bordeaux. These tables contain the description of more than 55000
number fields of degrees 3.4,5.6 and 7, and are available by anonymous ftp at the
address megrez.math.u-bordeaux.fr. The discriminant of the splitting field of p; is
34.13%. The Eisenstein polynomial at 13, which was found using the algorithm
TAME is

3 —1053z% + 303264z — 21835008

The Eisenstein polynomial at 13, which was found using the algorithm DECOM-
POSE is

2% — 3.2 4+ 468r — 1716
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with(numtheory);
fred(elem);
elem := proc(p)
local g.h.k,h1,k1,c,i.jL.f;
g := primroot(1,p%);
h := g? mod p?; k := g{P~1) mod p*;
kl := 1; ¢ := array(0..p-1);
for i from O to p-1 do
cfi} := 0.0; b1 ;= 1;
for j from 1 to p-1 do
cfi} := <fi] + cos(2*Pi*h1*k1/(p*p)):
hl := h1*h mod p*;
od;
k1 := k1*k mod p?;
od;
f:= expand(evaif(product (x-c[i},|=0..p-1)));

end:

Figure 8.4: A Maple program to construct wild examples.
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The Eisenstein polynomial at 3, which was found using the algorithm WILD is
P —6r? - 27r + 96

The Eisenstein polynomial at 3, which was found using the algorithm DECOMPOSE
is

> —127% 4+ 9r + 66

8.7 Concluding remarks

The computational examples given in the previous sections show that the size of
the minimal polynomial m,(r) of the Eisenstein element x found by the algorithm
TAME (or WILD) is generally larger than the size of the corresponding minimal
polynomial m.(z) found by the algoritm DECOMPOSE.

In the case of the algorithm TAME it is possible to give a very simple explanation
of this behavior. When the procedure CONTRUCT is called, « is equal to m/,(a),
and so |Ni/q(7)| = |dr(a)]. Hence, from Mahler’s bound {4.7) we get

size(Ny Q7)) < qlog g + 2(g — 1)(log ¢ + log H)

where H stands for the height of m,(z).

Now, elementary number theory tells us that the integer s such that rs + ¢l =1
can be always taken between 1 and ¢ — 1 included. This forces the integer 1, for
which the relation rs + ¢/ = 1 holds. to be negative.

In particular, from the zonsideration of the extreme case (s = q¢—1, I =0) we

obtain the following lemma (compare it with Lemma 5.9):

Lemma 8.8 The size of the norm of the Eisenstein element x found by the algo-

rithm TAME is bounded above by (q — 1)qlog g + 2(q — 1)*(log g + log H), where H
denotes the height of m,(z).
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