-

of/de

PM-1 3%"x4" PHOTOGRA: HIC MICROCOPY TARGET
NBS 1010a ANSI/ISC #2 EQUIVALENT

" .0

lle=
2 0

NE
N
[
s
~
n

i

CPFTEREER
EEF
=
N
=

rr
r
£s

=
I

o

 ——

mu —
&

|




l l National Library
* of Canada du Canada

Bibliothéque nationale

s

Canadian Theses Service  Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

I pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university semt us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C 1970, ¢. C-30, and
subsequent amendments.

NL-379 (1 88/04) C

e

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la these soumise au microfilmage Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion

S manque des pages, veuillez communiquer avec
luniversité qui a contér? le grade.

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées a l'aide d'un ruban usé ou si l'université nous a fan
parvenir une photocopie de qualité inférieure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadienne sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents

Canada




Generating Random Elements

in a Permutation Group

by
Vincenzo Acciaro
A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfilment of
the requirements for the degree of

Master of Computer Science

School of Computer Science
Carleton University
Ottawa, Ontario
July 10, 1991
© copyright

1991, Vincenzo Acciaro



e

R |

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1A ON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without hisfher per-
mission.

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive pemmettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d’auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN ©@-315-70961-8

Canadi




The undersigned recommend to the faculty of Graduate Studies
and Research acceptance of the thesis
Generating Random Elements in a Permutation Group
submitted by Vincenzo Acciaro
in partial fulfilment of the requirements for

the degree of Master of Computer Science

M. D At

Thesis Supervisor

F halr

Chairman, School of Computer Science

Carleton University

July 10, 1991



ABSTRACT

In this thesis we present a new algorithm for testing whether the group G generated
by a given set of m permutations of degree n is regular. The worst case execution time of
this algorithm is O(m2n) and the expected execution time is O(mn(a(n)+e(G)))where
o(-) represents the inverse of Ackerman's function and e(G) the expected number of
elements of G which have to be drawn at random before a set of generators is found. The
function e(G) is then computed for some common classes of groups. Finally, we discuss
the problem of generating uniformly distributed random elements in arbitrary groups by
forming random words in the generators, and point out the connections with the
representation theory. A solution to this problem would give an upper bound to the
probability of error of a probabilistic algorithm for computing a chain of stabilisers, due to
J. Leon. A brief survey of the terminology, concepts and basic algorithms dealing with

permutation groups is also provided.
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0. Introduction.

The study of symmetry is a recurring theme in Mathematics and Science. The
ancient Greeks studied the symmetries of solids in space, as isometries of their vertices - an
isometry of a set Q of points in space is a permutation of {2 which maintains the distances
unaltered. In the eighteenth and nineteenth centuries the theory of equations advanced
through the analysis of symmetries of the set of roots of an equation. Most recently
chemists have studied the symmetries of crystals and molecules, and physicists have found
symmetry to be important at the subatomic level.

A core observation is that the composition of two symmetries is again a symmetry,
and on this property hinges the whole theory of groups.

Early nineteenth century work in group theory was concerned with “concrete
groups”, in which it is always possible to compute the product of two “operations” - the
most common examples of “"concrete groups” are groups of matrices and groups of
permutations.

Somewhat later in the century the concept of “"abstract group” was developed,
realizing that the structure of a group does not depend upon the nature of its “operations” -
thereafter called elements. In contraposition to “concrete groups” which are "presented” by
exhibiting real objects, an "abstract group” is "presented” by giving a set of generators and
defining relations.

It is oiten useful 1o "go back in time" and consider "concrete groups” instead of
abstract ones - the connection between the two lies in representation theory.

A representation 15 2n homomorphism of an abstract group into a concrete one.

For computational purposes, it is useful to represent a group as a group of
permutations: by Cayley's theorem every finite group can be represented as a permutation

group, but since the degree of this group is equal to its order this reprcsentation may be




ineffective for any practical purpose. Fortunately, most groups have a permutation
representation of small degree.

Very cfficient algorithms have been developed in the last two decades dealing with
permutation groups specified by a set of generating permutations: on the one hand, we have
algorithrs which test if the group satisfies particular properties, such as transitivity or
primitivity, on the other, we have algorithms which compute the order of the group or
decide if a permutation belongs to it. Here, we should recall that for abstract groups the last
two problems are simply undecidable.

The leitmotif of this thesis, viz. the generation of random clements in a permutation
group, while being interesting on its own right, is considered here as being instrumental to
the analysis of two (unrelated) algorithms which deal with permutation groups - the
analysis of the execution time for a newly developed test for regularity and the analysis of

the probability of error for an existing algorithm which builds a chain of stabilisers.

In the first chapter a brief survey of the terminology, concepts and basic algorithms
dealing with permutation groups is given. We begin by associating a labelled graph to each
permutation group and then continue by reviewing some fundamental algorithms in a graph
theoretical fashion.

We show that some properties of the group, like transitivity, depend exclusively on
the connectivity of the associated graph, while others, like regularity, depend also on the
labelling of the edges.

A comprehensive source of reference for the entire chapter is [Atk90].

In the second chapter we present a new algorithm for testing whether the group G
generated by a given set of m permutations of degree n is regular - a transitive permutation
group is said to be regular if its order and degree are equal.

The worst case execution time of this algorithm is O(m2n) and the expected

execution time is O(mn(a(n)+e(G)))- here a(-) represents the inverse of Ackerman's



function, a very slow growing function, and e(G) the expected number of elements of G
which have to be druwn at random before a set of generators is found.

We compare the execution time of this algurithm to that of an existing one, due to
C. Sims, presented in lectures given at Oxford in 1973, whose execution time is O(m2n),
and we show the superiority of our algorithm when the set of generators is redundant or
not minimal - this may happen, for example, if the generating set is the output of a
computer program.

We also consider two variants of the algorithm which are characterized by a short
and elegant proof of correctness and ease of implementation, while retaining an execution
time which is comparable to the more sophisticated one.

A reference for the entire chapter is [Acc90].

In the third chapter we compute the function e(G), previously introduced, for some
common classes of groups, starting from the simplest one, the identity group.

We give a detailed discussion of e(G) when G is a p-group, i.e. a group whose
order is the power of a prime p, and we prove that for these groups the quantity e(G) is
related exclusively to p and to the minirmai number of elements needed to generate them.

Groups which are the direct product of groups of coprime order are also analysed
and it is shown how to compute the function e(G) for them.

With these two results 2¢ our disposition we can thoroughly analyse the class of
nilpotent groups, i.e. those groups which are the direct product of their Sylow subgroups,
which includes among others the class of abelian groups.

Several general approaches for coinputing the function e(G) are given through the
chapter and, to show their validity, we employ them to compute e(G) for all the groups of
order less than sixteen.

For the entire chapter refer to {Hal36).




In the last chapter we discuss the problem of generating uniformly distributed
random elements in arbitrary groups by forming random words ix1 the generators, and point
out the connections with the representation theory of groups.

A solution to this problem would give an upper bound to the protability of errcr of
a probabilistic algorithm, due to J. Leon, which solves the membership problem in an
arbitrary permutation group and allows the generation of random permutation with a truly
uniform distribution.

For the entire chapter refer to {Dia88).



1. Background.

1.1. Action of a group on a set.

Definition 1.1.1 We say that a group G acts on a set 2 when there is a function
Q x G = Q which associates to each couple (a , g) an element o such that
@) (a8)h = o &b VaeQ,VgheG

) al =za VaeQ

When such a function is given, we call Q a G-set. It can be proved that because of
this function every element of G induces a permutation on the set , and that the function
which associates to each element of G the corresponding permutation of Q is a
homomorphism. When this homomorphism is one to one we call Q a faithful G-set: in this

case we can identify G with a subgroup of Sq, and we say that G is a group of

permutations of $2.

Example 1.1.2 If G is a group and H is a subgroup of G, let Q be the family of
the right cosets of H in G. We can define an action of G on Q in the following way: if
a = Hk is an element of Q and g is an element of G, a8 is the coset of H obtained by
multiplying the coset a on the right by g, i.e. the coset Hkg. Usually the set Q in this

example is written as G//H.
1.2, Graph associated to a permutation group.

Let G be a permutation group acting on a set Q, generated by a subset H of its

elements. Let us suppose that Q = {1,2,...,n} and H = {hyg,h3,....hyp}. We can



associate to the 3-tuple (G,Q2.H) a directed graph @ whose vertices are the points of Q
and such that there is an edge connecting x to y labelled h if and only if xb = y, for some
generator h in H.

Given such a graph @ and two vertices x and y not necessarily distinct, we can

identify a path going from x to y with the ordered sequence hj,hj,,....hj; of the edge
labels: it is easy to verify that the element g = hj -hj,-...-hj, of G movesx toy.

To represent @ inside a computer we need to store the generators of G: to store a
permutation of degree n we require O(n) memory cells, and since we have m
permutations belonging to the generating set a total of O(m n) memory cells are required.

In this chapter we will review some fundamental algorithms dealing with
permutation groups using to explain them properties of the associated graphs. We will see
that some properties of the group, like transitivity, depend exclusively on the connectivity
of the associated graph, while other properties, like regularity, depend also on the labels of
the edges of the graph.

1.3. Orbits.

Definition 1.3.1 If a group G acts on a set Q and ae Q , the orbit of a under the

action of G is the subset of {Z

In other words, the orbit containing o consists of the points into which o is moved
under the action of all the elen.ents of G.

It can be proved easily that two orbits are either coincident or disjoint, and therefore
the set of orbits constitutes a partition of the set  : to this partition it is possible to
associate an equivalence relation, where two points of the set Q are equivalent if they

belong to the same orbit.



We have seen that given a permutation group G acting on a set §2, generated by a
subset H of its elements, we can associate to it a directed graph G whose vertices are the
points of Q and such that there is an edge connecting x to y l.5elled h if and only if
xh =y, for some generator h in H.

To find the orbit containing a point o we merely need to find the set of points which
can be reached from a in G: this can be done by building a spanning tree rooted at a. In
fact it is easy to see that if there is a permutation g moving a to 8, then g must be
expressed as the product h;,-hj,-...-hj; of generators of H, and therefore there is a
directed path starting from a and ending in } whose arcs are labelled in order
hil’hiz""’hik .
A desirable property of this tree is to have a minimal height!: this is achieved by

using a breadth first traversal? of the graph @.

The above considerations lead to the orbit finding algorithm:

Algorithm ORBIT
Input: the graph G associated to (G,£2,H) and a vertex a of G
Ori put: a vector VISITED, with
VISITED[B] = yes if the vertex B can be reached from a
VISITED(P] = no if B cannot be reached from o
Q := queue containing a single item
for each vertex v e G do
VISITED|v] :=no
endfor

repeat

1 The reason of this assertion will become clear in section 1.5.

2 For the definition of breadth first traversal see [Aho74, section 2.4},




extract v from the queue Q

for each he H do
if VISITED[vh] = no then
VISITED[v"] := yes
insert vh in the queue Q
endif
until Q is empty

end

It is easy to see that the execution time of this algorithm is O(m n), since the
outdegree of each vertex is m and n is the number of vertices to be visited in the worst

case.
1.4. Transitivity.

Definition 1.4.1 We say that a group G acts transitively on a set §2 if there is just one

orbit:

aS=Q,VaeQ

The definition implies that given any two points o and P of €2 there is a permutation
ge G which moves a to B. Being transitive depends on the way in which the group acts on

the set, as we are going to show in the following example:

Example 1.4.2 Consider the following permutation groups:
G' {1, (12)(34), (13)(24), (14)(23)}
G" {1, (12), (34), (12)(34))
G' and G" are two permutation representations of the same abstract group, the Klein four

group, but while G' is transitive on the set {1,2,3,4}, G" is not.




In the light of the discussion about the graphs associated to a permutation group G

acting on a set , generated by a subset H of its elements, we can say that G acts
transitively on Q if in the associated graph any vertex can be reached from a fixed vertex
through a directed path.

The above considerations lead to the transitivity algorithm:

Algorithm TRANSITIVE
Input: the graph @& associated to (G,2,H)
Output: true if the group G generated by H acts transitively on €, false otherwise
select a vertex a of G
apply the orbit algorithm to G and a
for each vertex v e G do
if VISITED{v] = no then return(false)
endfor
return(true)

end

It is easy to see that the execution time of this algorithm is dominated by the

execution time of the algorithm orbit, and therefore is O(m n).

1.5. Coset representatives.

Definition 1.5.1 If G is a permutation group acting on a set § then the set of all
elements in G which fix a point a of Q is denoted by Gq and is calied the stabiliser of the

point a.




It can be easily seen that G is a subgroup of G: in fact the identity certainly
belongs to Gq, if an element x of G fixes a its inverse fixes a too, and finally if x and y

are two elements of G which fix o their product also fixes a.

Theorem 1.5.2 (orbit-stabiliser theorem) If a group G acts on a set Q and
ae Q, there is a one to one correspondence between the elements belonging to a set of
coset representatives of Gq and the points belonging to the orbit containing a. Thus

IG:G ol = 1aGl

Proof. Sce [Dix67, problem 2.12].

We can therefore identify each coset of the stabiliser of o with a point belonging to
the orbit containing &t. If e oG then we write up to refer to that coset representative of
the set which sends a to B, i.e. such that aB=p.

We have seen how to compute the orbit containing a point & by exploiting the
graphical analogy. It is easy to extend the orbit algorithm to compute a set of coset
representatives for Go: for each vertex P of the graph @ that is being visited ug is defined
as the product of the edge labels in the path that leads from « to B.3 In particular, ug is set
equal to 1, and during the breadth first traversal if a vertex y leads to a vertex 8 not yet
visited, through an arc labelled h, then we set ug = uyh.

The above considerations lead to the coset representatives algorithm:

Algorithm COSET_REPRESENTATIVES
Input: the graph @ associated to (G,£2,H) and a vertex o of G

Output: a set {u;} of representatives of the cosets of Gg

3 Now it becomes clear the reason why it is preferable to have a tree of minimal height: the time required to
compute ug is proportional 1o the length of the path from a to B, and a tree of minimal height minimizes

the average length of the paths.
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Q := queue containing a single item
ug =1
for each vertex v € G do
VISITEDIv] := no
endfor
repeat
extract v from the queue Q
for each h e H do
if VISITED[v!] = no then
VISITED[v}] := yes
uyp :=u,ch
insert vh in the queue Q
endif
until Q is empty

end

It is easy to verify that the execution time of this algorithm is O(m n + n2).

1.6. Obtaining a set of generators for G,

There is an easy way to obtain a set of generators for the stabiliser of a point a: the

method relies upon the following theorem:

Theorem 1.6.1 (Schreier theorem) If G is a group generated by a subset
H={hy,h2,...hy} of its elements, K is a subgroup of G and uy,us,...,un a complete
set of representatives for the cosets of K, then the set of all the products u; hjuk-! lying in

K is a set of generators for K.

11




Proof. See [Jon90, section 2.3).

How can we apply this theorem to find a complete set of generators for Go? We
have seen before how to build a set of coset representatives for G while building a
spanning tree rooted at a.. Let uy stand for the coset representative of G mapping a to .
Let us suppose now that during the traversal of the graph @ a vertex P leads through an arc
labelled hj to a vertex & already visited. The path going from o to B is represented by the
product ug of the edge labels, and the path going from a to & is represented by the product
us. It is easy to see that the product ug-h j-ua'l fixes a , i.c. it belongs to G, and is of
the form required by the Schreier theorem. Moreover, it can be proved that no generator of
Gq is missed, i.c. the breadth first traversal of the graph @ satisfies the conditions of the
Schreier theorem.

The above considerations lead to the following algorithm:

Algorithm GENERATORS_OF_Gq

Input: the graph G associated to (G,£2,H) and a vertex o of G
Output: a set M of generators of Gy
M :=empty set

Q := queue containing a single item
u, = 1
for each vertex v € G do
VISITED{v] :=no
endfor
repeat
extract v from the queue Q
for each h € H do
if VISITED{vP] = no then
VISITED{vh] := yes

12



= u_-h

Uyh v

insert v! in the queue Q

else
add uv-h-uvh‘l to the set M
endif
until Q is empty
end
It is easy to verify that the execution time of this algorithm is O(m n2),
1.7. Semiregular and regular groups.

Definition 1.7.1 A group G which acts on a set Q is called semiregular if the

stabiliser of each point of €2 is equal to the identity.

Example 1.7.2 Let G be a given group, G1 and G2 two groups isomorphic 1o G.
Let Q = G1uUG2. Let G act on Q in the following way: if we Q2 and ge G then w8 is

defined as the product in G or G3, according to the group to which @ belongs. This
action is clearly semiregular: in fact w8 = ®-g = @ implies g = 1. This action induces

precisely two orbits, each of size IGl.

Suppose that G is the directed graph associated to a permutation group G acting on
a set , generated by a subset H of its elements. It is easy to see that G acts semiregularly

on Q if and only if any two directed paths connecting two vertices x and y determine the

same group element as product of their edge labels, for any pair of vertices x and y in G.

Definition 1.7.3 A group G which acts on a set Q is said to be regular if it is

semiregular and transitive.

13




As a consequence of the definition we have that the order of a regular permutation
group is equal to its degree: this condition is equivalent, for a transitive permutation group,

to the fact that the stabiliser of each point is the identity.
1.8. Blocks of imprimitivity.

Definition 1.8.1 If Qis a transitive G-set, we say that a subset A of Q is a block of

Q if forany ge G we have AB=A or ABNA=0D

Any G-set Q always admits the trivial blocks A=Q and A={a} where a is a

point of £ A transitive G-set Q is called primitive if it admits only the trivial blocks.

Definition 1.8.2 If Ais a block of Q, the set (A8 ge G) is called a block system or

system of imprimitivity generated by A.

It can be proved that all the blocks belonging to the same system of imprimitivity
have the same size, which must therefore be a divisor of IQI - it follows that group G

which acts transitively on a set 2, with € prime, must necessarily be primitive.

Example 1.8.3 If we consider the isometries of a square lamina in 2-dimensional
space, i.e. the group Dg acting on the set of points {1, 2, 3, 4} it is possible to
construct a non trivial block by taking any two opposite corners of the square. Thus for this

G-set we have the following block systems:

{11}, {2}, {3}, {4}) generated by {1} trivial
({1, 3}, {2, 4}} generated by (1, 3} non trivial
{{1, 2, 3, 4}} generated by (1,2,3,4} trivial

14



Example 1.8.4 If HEK<G, consider the set G//H of right cosets of H in G on

which G acts by right multiplication. The set of right cosets of H in K constitutes a block

of the G-set G//H.

Example 1.8.5 If Q is a transitive G-set and N is a normal subgroup of G, any

orbit of N is a block of G.

The theorem that follows relates the set of biocks containing a given point « to the

set of subgroups of a group G containing the stabiliser of a.

Theorem 1.8.6 (Correspondence Theorem) Let G be a group acting transitively on
a set Q and a a point of 2. There is a one-to-one correspondence between the set of blocks
which contain a
D= {AlaeA)
and the set of subgroups of G containing G
P = (K| Go<sK<G)
More precisely:
@) if Ke P then the orbit oK is a block
(i)  the correspondence ©:P—D defined by O(K)=aK is injective
(iii)  the function ¢ defined for any element Ae D by ¢(A) = (ge G| a8e A} has
codomain P
(iv) the functions © and @ are each the inverse of the other
Proof. See [Mac74, problem 49, p.117] or [Dix67, problem 2.31]

Corollary 1.8.7 A transitive G-set is primitive if and only if the stabiliser of a point
is a maximal subgroup of G.
Proof. See [Mac74, problem 51, p.117] or [Dix67, problem 2.31]
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To conclude this section we will show that if a group G actsonasetQ,and ais a

point of €2, then the set of fixed points of G form a block. This result will be needed later,

when we will discuss a new test for regularity.

Theorem 1.8.8 If G is a group which acts transitively on a set Q and « a point of
€2, then the normalizer N(Gg) acts transitively on the set A of points fixed by Gq.

Proof. 08eA = Ga<Gg= Gt Gg = (Gaf because of the
finiteness of G. The last equality is equivalent to ge N(Gg), and therefore the orbit of a

under the action of N(Gg) is precisely A.

Corollary 1.8.9 If G is a group which acts transitively on a set Q. a a point of Q,
then the size of the set A of points fixed by G is equal to [N(Gg):Gql.

Proof. Simply use the fact that (N(Ga))o = Gg, that N(Gg) acts transitively on
A and finally the orbit-stabiliser theorem.

Theorem 1.8.10 If G is a group which acts transitively on a set Q and a a point of
Q, then the set A of points fixed by G is a block of Q.

Proof. We have proven above that the normalizer N(G¢) acts transitively on the
set A of points left fixed by Go. Now we have G4 < N(Gg) < G and therefore
A = aN G js 3 plock, by case (i) of the Correspondence Theorem discussed above.

1.9. Graphs associated to a block system.

The purpose of this section is to give a historical background for the block finding
algorithm. Let G be a given permutation group which acts transitively on a set Q. We
define an action of G on the cartesian product Q x Q as follows:

(x, y)8 =(x8, y8) xy € Q
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we will call this action the diagonal action according to [Rot88, p.191]. We would like to
find the decomposition of Q x Q into disjoint orbits under this action. First we notice that
the "diagonal” {(x, x) | x € Q] is always an orbit, because of the transitivity of G on Q:
let us call this orbit Ag. For the proofs of the next theorems and lemmas refer 0

[Big79, chapter 4].

Lemma 1.9.1 If G acts transitively on €, then the number of orbits of Q x Q

under the diagonal action of G is equal to the rank of G acting on .

We recall here the fact that the rank of a group G acting transitively on a set Q is
just the number of orbits of €2 under the action of the stabiliser of an arbitrary point in £.

To each G-orbit on Q x Q we associate a digraph, built as follows:

Definition 1.9.2 Given an orbit A; of Q x Q, I'(A;) is the directed graph whose

vertices are the points of {2 and whose edges are the ordered pairs of A; .

Theorem 1.9.3  Let G be a group acting transitively on . G acts primitively on Q if
and only if each digraph I'(4;) is connected, for each orbit A; of € x Q.

Lemma 1.9.4 Let G be a group acting transitively on Q. Let x and y be two
distinct points of Q. The minimal block of imprimitivity containing both x and y
corresponds to the set of vertices in the connected component {of a digraph I'(4;) }

containing the edge (x.y).
1.9.1. A block finding algorithm.

The information embedded in Lemma 1.9.4 allows us to find the minimal block of
imprimitivity containing two given points x and y of . To do this we first compute the

orbit of € x Q containing (x , y) using the algorithm ORBIT, then we build the
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associated digraph 1nd collect together the points in the connected component containing
the edge (x, y). The problem with this approach is that it leads to an algorithm whose
execution time is directly proportional to the average size of an orbit of Q x €, i.e.
inversely proportional to the rank of G which we have seen to be equal to the number of
orbits of Q x Q. Consequently this algorithm behaves very well on a regular group, for
which the rank is equal to I€2l, and very badly on a k-transitive group with k 2 2, for
which the rank is always two.

For further information about this approach refer to [Dix71] or [Sim67].
1.9.2. An improved block finding algorithm.

Given a permutation group G acting on a set -Q, generated by a subset H of its
elements, the algorithm first described in [Atk75], finds the block system generated by the
block of minimal size containing two given points « and € of €2, in O(m n a(n)) time,
where a(n) is a very slow growing function related to the inverse of Ackerman's function.

In this section we will discuss a variant of the algorithm more suited to our
purposes. Given a block system Z and two points a and € not belonging to the same
block, the function EXTEND computes the block system X' having the smallest blocks in
which a and € belong to the same block and each block of Z is contained in a block of Z'.

The algorithm makes use of the operations FIND and UNION described in [Tar75],
which are applied to the current partition X of Q. The operation FIND(0) returns a
distinguished point in the class containing 8 which will be used to identify the class. The
operation UNION(0,9p) replaces the partition £ by a new one in which the classes
containing 0 and ¢ are collapsed into a single one.

The classes in X are represented by rooted trees defined by a "father" function f :
f(0) is the node immediately above 0 in the set of trees, or 0 itself if O is a root. This

representation allows an efficient implementation of the FIND and UNION operations.
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The FIND(8) operation uses the fuxiction f to trace a path from 0 to the root of its
tree, returning the root.

The UNION(0O,9) operaticn inserts a branch between the rooc of the trees
containing 6 and @ if these trees are different. The weighting and path compression rules
described in [Tar75] are used.

The function EXTEND also uses a stack C containing tree branches which are

represented by pairs of end points.

function EXTEND(Z,0,€)
input: a group G acting on a set 2, generated by a subset H of its elements
a block system X of Q2
two points a and € not belonging to the same block
output: a block system ' having the smallest blocks in which
a and € belong to the same block and
each block of Z is contained in a block of Z'.
o’ :=FIND(o) ;
e* := FIND(e)
UNION(a* %)
C := empty stack
push (a*,e*) into C
repeat
pop 21 eiement (Y,) from C
for eachh e Hdo

o=, Y .= §h
¢ :=FIND(¢) ; 1 := FIND(Y)
if o#1then

UNION(o,1)

19




push (G,1) into C
endif
endfor
until C is empty

return(X)

Lemma 1.9.2.1 EXTEND(Z,a.e) computes the block system X' having the smallest
blocks in which @ and € belong to the same block and each block of ¥ is contained in a
block of Z'.
Proof. EXTEND(Z,a,€) manipulates a set of trees using the operations UNION
and FIND. Let us suppose, temporarily, that path compression is not performed in the
FIND operation. Then it is clear that the pairs in the stack C all represent tree edges. From
the body of the for statement it follows that, at the end of each iteration of the repeat loop,
we have the following condition:

for every branch (0,7) of the set of trees which represent the current

partition one of the following holds:

1. (0,7) e C, or

2. o/ and 1" lie in the same tree, for everyh € H
But on termination C is empty and so, for all tree branches (o,t), ob and b lie in the
same tree, for every h € H. Thus the partition in output is indeed a block system of the
action of G on €, and because of the initial step a and € belong to the same block. It is also
clear that the output block system is the one containing the smallest blocks, because the
algorithm only joins two blocks together when it is forced to do so to fulfil the properties.
Finally, note that the block system computed by EXTEND(Z,.€) is unaffected by how

FIND is implemented so that the assumption above that path compression is not used can

be removed.




2. Tests for regularity.

2.1. Sim's test for regularity.

Given a set of permutations we would like to determine if the group that they
generate is regular or not; moreover, we would like this test to be as efficient as possible.
An existing test for regularity is due to Charles Gims and is described in [Atk90]): its
execution time is O(m2 n) where m is the number of generators and n the degree of the
permutation group. To introduce the test we recall the definition of the centraliser of a

group:

Definition 2.1.1 The centraliser of a permutation group G, denoted by Cg; is the set

of all permutations ¢ of 2 which commute with every element in G.

It is easily seen that C¢ is a subgroup of Sq. The property that is used for
determining the regularity of a group is stated in the following lemma, whose proof can be

found in [Atk90]:

Lemma 2.1.2 Let G be a transitive permutation group, H a set of generators for
G and a a point of the set Q on which G acts. Then G is regular if and only if

Vhe H3ce Cg such that a¢ = b

The test devised by Sims is quite easy to describe: given a transitive permutation
group G generated by a subset H of its elements and a fixed point a of the set £2, for each
generator h in tum we look for an element ¢ of Cg such that the images of a under h and ¢
are the same: if for some generator h we cannot find such an element ¢ of Cg we can assert

that G ic not regular. How can we find such an element ¢ € C¢ ? Being a permutation of
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the points of Q we know ¢ when we know the effect of ¢ on each point of Q. Therefore,
for a given generator h we fix the initial condition o€ = @b and then we try toextend c to a
permutation of Q lying in the centraliser of G: by "extend" we mean determining
incrementally the image of each point of Q under c. If we have found the image of some
point B under ¢ and we want to find the image of a point y under ¢, where y = 38 for some
generator g of G, we use the fact that ¢ commutes with g, and therefore ¥¢ = (BB)¢ =
(B¢)8. In such a way we can compute the images of the points of £ under ¢ while we
compute the orbit of a , a job that we accomplish by a breadth first traversal in the graph

representing the action of the generators of G on Q.4

Algorithm REGULAR
Input: a subset H of elements of G which generate G
Output: true if G is regular on Q, false otherwise
select a point e Q
for each generator he H do
find a mapping c:Q—Q satisfying the initial condition a€ = b
by computing the orbit of &
and for each new point y= 8 added to the orbit, for some ge H,
setting ¥¢ = (B¢)8
if ¢ is not a bijection
or
¢ does not commute with some generator in H

then return(false)
endfor
return(true)

end

4 This is equivalent to building a spanning tree rooted at o..
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Let us now analyze the execution time of the algorithm. We assume for the rest of
this chapter that IHl = m and IQI = n. We also assume that G acts transitively on Q, and
so the size of the orbit containing a is equal to n.

The step "find a mapping ¢:Q—Q satisfying ..." takes time equal to the time
required to build the orbit containing a, which is O(m n). Testing if ¢ is a bijection takes
time O(n) where n is the degree of the permutation group. Finding if ¢ does not commute
with some generator in H takes time O(m n), since to test if ¢ does not commute with a
single generator of G we need O(n) time and the test has to be repeated m times. The

above steps have to be repeated for each generator in H, giving an overall execution time

which is O(m2 n).

2.2, New tests for regularity.

We have seen that a group G which acts transitively on a set £ is regular if its point
stabiliser is the identity subgroup.

This suggests a new technique to test the regularity of a group G: we have seen that
it is possible to extend the ORBIT algorithm to compute a set M of generators for Gq: if
some generator was not equal to the identity then the group G would not be regular.

The considerations above lead to the following algorithm:

Algorithm REGULAR_SLOW
Input: the graph G associated to (G,£2,H) and a vertex a of G
Output: true if the group G is regular on £, false otherwise
Q := queue containing a single item o
u =1
for each vertex v € G do

VISITED|{v] :=no
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endfor

repeat
extract v from the queue Q
for each he H do
if VISITED[v?} = no then
VISITED([vh] := yes
Uyp = ugh
insert vh in the queue Q
else
if u,-h-u ! =1 then return(false) endif
endif

until Q is empty
return(true)

end

It is easy to verify that the execution time of this algorithm is O(m n2), since the
test u -h-u gyl # 1 takes O(n) time, and it must be repeated O(m n) times. We can
conclude that this algorithm behaves worse than Sim's algorithm, whose execution time is
O(m2 n), since usually m is much smaller’ than n. The improved algorithms discussed in
this chapter all have a structure similar to that of REGULAR_SLOW.

At the heart of the new algorithms there is an efficient implementation of a function

that decides whether the stabiliser of a point o fixes another point B: if & and B belong to

the same G-orbit this corresponds to the test Gg = Gp.

5 For all practical purposes we could assume m = log n
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In the next sections we will show how to apply this function to decide if a group is
regular, restricting this section to the description of the function, which we call
EQUALSTABILISERS.

The key consideration is that for G to fix B any set H of generators of Go must
fix B, and in particular this assertion holds if H is a set of Schreier generators computed by
the algorithm explained in section 1.6.

Therefore, if uy-k-ug™! is a Schreier generator of Go we must have

Buu-k-u5‘1= B.

but the latter equality is equivalent to the following one
BUu'k

It is now easy to see how the function EQUALSTABILISERS is derived from the

=p3

algorithm that computes a set of Schreier generators of Gq:

- Instead of labelling the vertex yof the graph @ with the coset representative
sy we label it with B 1

- If during the breadth first traversal of the graph an arc labelled h takes the
vertex Y to a vertex 1) not yet visited, then we label n with (B“Y)h. that is with the
image of the label of the vertex ¥ by the permutation h: this labelling clearly can be
done in constant time.

- If on the contrary the vertex Y is mapped, through an arc labelled h, to a
vertex 1) already visited, then we have to verify the equality of the label of the vertex
n with the image of the label of the vertex ¥ by the permutation h: this too can be

done in constant time.
The following algorithm implements the function:

Function = EQUALSTABILISERS(a,B)
Input: the graph & associated to (G,£2,H) and two vertices o and f of G
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Output: true if Gq fixes P, false otherwise
Q := queue containing a single item
LABEL[a]} =B
for each vertex v € G do

VISITED|v] :=no
endfor
repeat
extract v from the queue Q
for each h € H do
if VISITED(vh] = no then
VISITED[v"] := yes
LABEL{vh] := LABEL{v]h
insert vh in the queue Q
else
if LABEL[vh] # LABEL[v]" then return(false) endif
endif
until Q is empty
return(true)

end

It is easy to see that the test G = Gp takes time O(m n), corresponding to the

time needed to visit the graph G.

2.2.1. A probabilistic version.

A single test Gg = Gp is not enough to guarantee the regularity of the group.

Consider for example the isometries of a square lamina in 2-dimensional space, i.e. the
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group Dg acting on the set of comers (1, 2, 3, 4}: it is easily seen that the stabilisers of
two opposite corners are equal, although the action is not regular, being
IDgl=8 # #corners.

The problem arises because of the fixed points of Gg: in fact the equality

u,k-ug!

B =P is always satisfied when B is a fixed point of Gq, yet Gg # 1.

The simplest test for regularity which applies the ideas described in the previous
section is a probabilistic one in which we select some points B at random from the set Q

and verify the equality of the stabilisers of ¢ and B, for a fixed a:

Algorithm PROBABILISTIC_REGULAR
Input: the graph @& associated to (G,C,H), a vertex o of G and a parameter k
Output: probably_true if G fixes k randomly selected points
false otherwise
counter :=0
repeat
select B at random from Q
if EQUALSTABILISERS(a.,B) = false
return(false)
endif
counter := counter + 1
until counter = k
return(probably_true)

end

Lemma 2.2.1.1  The probability that the algorithm outputs “probably_true" when a

- [ N(Gg):Gq ]T
n .

non-regular group is given in input is (“
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Proof. We proved in corollary 1.8.9 that if Q is a transitive G-set and « is a point
of £, then the size of the set A of points fixed by Gg is [N(Gq):Gql. Since the degree of

our permutation group is B, the probability that a point B is not a fixed point of G is
n- 1 N(Gq):Ga ]
n .

2.2.2. A deterministic version.

We are going to show next how to guarantee a deterministic behaviour by selecting
more carefully the points B from the set Q.

For this purpose we exploit the fact that the set of points fixed by Go forms a
block: it is here that the improved block finding algorithm comes into play, thereby
explaining the detailed presentation given in chapter 1. |

The first time that we run the test we select the point B at random. If the ouwcome of
the test EQUALSTABILISERS(a,B) is "true” we compute the minimal block of Q
containing both a and P, then we select a new point B' among the points of Q not
belonging to this block and repeat the test. If the outcome of the test is again "true” we
extend the previous block to a bigger one containing B', select a new point B" not
belonging to the new block and repeat the test. We proceed in this way until the outcome of
the test is “false” or there is no point left to be selected. The latter case is verified when
the set of points fixed by Gq is the whole £2, which implies that G = {1}, i.e. the group
is regular.

In the algorithm that follows Zy will denote the current block of Q containing the

point q.

Algorithm DETERMINISTIC_REGULAR
Input: the graph G associated to (G,£,H) and a vertex a of G

Output: true if G acts regularly on €, false otherwise
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initialise I to that partition of 2 whose classes are singletons
repeat
select  from Q - Z,
if EQUALSTABILISERS(a.p) = false
return(false)
else
EXTEND(Z, a, B)
endif
until Q =X,
return(true)

end

Let t denote the total number of times that the function EQUALSTABILISERS is
called: since each new block has a size which is a multiple of the previous one, t is at most

equal to the total number of prime divisors of I€.

Lemma 2.2.2.1  The execution time of the algorithm DETERMINISTIC_REGULAR
is bounded above by O(t m n + m n a(n)).

Proof. During all the executions of EXTEND(Z,a,) at most n - 1 UNION
operations can be performed, since each one decreases the number of parts of £ by 1. Thus
a total of n - 1 pairs are pushed into the stack C and so at most 2 (n - 1) m FIND
operations are performed in all. Thus, according to [Tar75] the total time spent in all calls
of EXTEND is O(m n a(n)) where a(n) is a very small growing function related to the
inverse of Ackerman's function. The other contribution comes from the time spent in the
EQUALSTABILISERS function, and we have seen that EQUALSTABILISERS takes time
O(m n).
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2.2.3. A simplified deterministic version.

To conclude this exposition we describe a deterministic variant of the previous
algorithms which does not require the blocks framework at all.

To prove that G is trivial we now try to confirm the equality Go= Gqb for all the
generators h of G: it is easily seen this condition implies the equality Go= Ggg for all the
clements g of G, i.c. Gg = {1}. Thus, instead of selecting each new B from Q- Z,,
we select it from {a® | h € H): this ensures that the number of times that the function
EQUALSTABILISERS is called is always less than or equal to the number m of

generators, giving an execution time which is in the worst case O(m2 n).

Algorithm NO_BLOCKS_REGULAR
Input: the graph G associated to (G,QQ,H) and a vertex @ of G
Output: true if G acts regularly on Q, false otherwise
L:={ahlhe H)
repeat
delete some P from
if EQUALSTABILISERS(x,B) = false
return(false)
endif
until X is empty
return(true)

end

In the next section we will analyze more accurately the execution time of the
algorithm DETERMINISTIC_REGULAR and we will show that the number t of times that
the test EQUALSTABILISERS has to be repeated is usually very close to the minimal

number of elements required to generate G: therefore the execution time of the algorithms
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DETERMINISTIC_REGULAR and NO_BLOCKS_REGULAR is similar when the given
set of generators H is a minimal or nearly minimal generating set. However, when the

number of given generators is much larger than the minimal number required,

DETERMINISTIC_REGULAR is a superior algorithm.

2.3. Expected time complexity for the
deterministic version.

Let us suppose that the group G to be tested for regularity is regular, since our
algorithm usually runs considerably faster for non regular groups. We would like to
compute the expected number of elements of G which have to be drawn at random before a
set of generators is found, since this quantity is related to the expected execution time of the
algorithm DETERMINISTIC_REGULAR, as we are going to show. We start with some
definitions, taken from [Hal36]:

Definition 2.3.1 An n-basis of a group G is defined as an ordered set
(X1,X2,...,Xn) Of N elements® of G which generates G:

<(X1,X245ecsXn)> = G

Definition 2.3.2 The number of distinct n-basis of G is denoted by ¢5(G) and is
call :d the n*h Eulerian function of G.

Two important cases must be noticed:

(i) if G cannot be generated by n elements then ¢p(G) =0
(i) if G is cyclic of order m then ¢»(G) = $(m), where ¢(m) is the ordinary Eulerian

function of an integer.

© The condidon x; # xj if i # j is not required.
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Obviously an n-tuple (g1,g2,...,8n) Of elements of G either generates G, that is
(g: 424--+8n) constitutes an n-basis of G, or it generates a proper subgroup H of G, in
which case it constitutes an n-basis of H. The total number of n-tuples (g1,82,...,n) Of
elements of G is |G|2. We therefore have the fundamental identity:
IGId= Y ¢a(H) 2.1)
H<G
Definition 2.3.3 Let A4(G) denote the probability that a d-tuple (g},82,....8n) of

elements of G chosen at random generates G.

It is easy to see that

24(G) = ‘bl%l(j) (2.2)

Now we can define e(G) as the expected number of elements of G which have to
be drawn at random before a set of generators is found. The probability that a sequence
£1:825---s8d-1,8d Of elements of G generates G and g1,82...,8d-1 does not is
Ad(G) - Ag-1(G). Therefore

o0
e(G) =3, d (Ag(G) - X4.1(G)) (2.3)
d=1
Theorem 2.3.4 The expected execution time of the algorithm

DETERMINISTIZ_REGULAR when applied to a regular group G i.
O(m n (a(n) + e(G))),

Proof. If G is regular, its elements hy,hy, ...,hg generate G if and only if the
smallest block containing ahl,ahz,...,ozhd is Q. Thus the expected number of elements of
Q that would have to be generated before the smallest block containing them is Q itself is
e(GG). Since each new point P is chosen outside the block containing the previously

chosen points, the expected times that the algorithm DETERMINISTIC_REGULAR has to
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be called is at most e(G). Since each execution of the algorithm
DETERMINISTIC_REGULAR requires O(m n) time and the total time required to exiend
an initial block to the full set Q is O(m n a(n)) the overall execution time is

O(mn a(n) + m n e(G)).

The quantity e(G) is usually very difficult to compute. Kantor and Lubotzky have
proved in [Kan90] that

lim A(G)=1
IGl—00

for all classical simple groups G.

In the next chapter we will compute e(G) for some common families of groups.
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3. Computation of the Eulerian
function for some common families
of groups.

In this section and in those to follow, we will show how to compute the Eulerian
nth function for some common classes of groups, starting from the very simple ones, the
cyclic groups of prime order. Besides the Eulerian n'® function we will compute the
expected number of elements which have to be drawn at random from the group to obtain a

complete set of generators.
To compute the Eulerian nth function of a group G we will try to solve for ¢p(G)
the fundamental identity which we introduced in the last chapter

IGIP= ) ¢n(H) (3.1)
H<G

The basic combinatorial identity that we will use through the computations is the

following:

Y = (3.2)
d=1

o0

where x is a real number stictly greater than one.

For the very first examples we will show the details of the computations. For the

next classes of groups we will follow the same scheme.
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3.1. The group of order one.

Consider first the group of order one since it is the base of our inductive
construction: it is easily seen that for this group we have
¢a({1}h) = 1
since all the d-tuples of elements from {1} are of the form (1,1,...,1).
It follows easily that
Aq({1h =1
and that
e{1}) =0

3.2. Groups of prime order.

The only subgroup of a group of prime order p is the trivial one. The fundamental
identity (3.1) becomes
pd=da((1}) +64(G) = 1 +¢4(G)
from which it follows that
¢d(G) =pd- 1

and then’

Let us now compute the expected number of elements which have to be drawn at

random before a set of generators is found.

7 An intitive proof is the following: among all the possible d-tuples of clements of G, the only one that
does not generate G is the wple (1.1,...,1). Since there are pd possible tuples, pd- 1 of them generate G,

hence the result.
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o0 o0
0o d. | pdl.] -1
G =de-x.G=Zd" . P =2dp—
eG) =Y.d (Ad(G) - 24.1(G)) d=l(pd pu)dﬂ A

d=1
o0 [- -]
=(p-1)2£ =u21‘_ _p-1 p2
pd P pt! P (p-1)2
d=1 d=1
__P - 1
=p -1 =l+53

The result e(G)=1+ p l ] agrees with our intuition.

3.3. P-groups.

In this section we will address the problem of computing the probability of
generating an arbitrary p-group. First we will show how to reduce this problem to that of
computing the probability of generating an elementary abelian p-group. For this purpose
we start with a consideration valid for arbitrary groups:

Lemma 3.3.1 Let G be an arbitrary group and ®(G) its Frattini subgroup. Then r
elements xj,...,x; of G generate G if and only if their images8 in G/®(G) generate
G/®(G).

Proof. The proof of this lemma is a standard one and can be found for example in

[Dix67, problem 8.7].

Lemma 3.3.2 If G is a p-group with minimal number of generators d then
G/®(G) is an elementary abelian group of order pd.
Proof. Again, the proof of this lemma is a standard one and can be found for

example iﬁ [Dix67, problem 8.26].

8 That is, the cosets @(G)xy,....0(G)xy .
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We can now use the information contained in the two lemmas above to compute the
probability of generating an arbitrary p-group with minimal number of generators d. To
start, we recall the fact that an elementary abelian group of order pd can be consicered as a

vector space of dimension @ over GF(p). In the light nf this equivalence we introduce a

new quantity:

Wr,s is defined as the probability that a sequence of r elements xj,...,x, drawn from a

space of dimension d generates a subspace of dimension s.

Lemma 3.3.3

B Mo = prd

Gi) s 0 ifr<e

s-1

s
Hr-l,s& + Hp-1,5-1 (1 - pF)

(i)  Mrs

Proof.

@) r elements chosen at random span a subspace of dimension zero in a space of

dimension d over GF(p) if and only if they are all equal to the null vector. But the
- . . 1
probability that this event occurs is equal to ( 'p? ).

(ii))  itis obvious that r elements cannot generate a space of dimensions if r <s.

(iii) Mrs = Prob( dim <xj ,.., x> = s and dim <xj ,.., Xr.1> =5 ) +
Prob( dim <xj ,..., x> = s and dim <xy ,..., X;.1> = s-1 ) =
Prob( dim <xj ,.., X;-1> = s and xr € <x| ,.., Xp.1> ) +
Prob( dim <xi ,.., Xr.1> = s-1 and x; & <xj ,..., X(.1> ) =

B, _(l_ps_")
ur-l.spd Hr-1,5-1 pd
d

Corollary 3.34 pgs = r[(l -phH
i=d-s+1
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-1 S
Proof. Hss =Hs1s1 (1 ’E;Tl) +lls-l,sga
s.
=ps1st (1-E)

=Hs-15-1 (1- PS'I'd)
=Hs2s2 (1-ps2d) (1-p+14d)
=(1-p)(1-p2)..(1-ps24d) (1-psid)

as required.
k
- L__
Corollary 3.3.5 jgks = pd: T 1
=1
Proof. By induction on k. For k = 0 the result follows from the last corollary. For
k >0 we can write
MUs+k+1,s =
u + Useks-1{ | pe-l
= k : -
S+ spd S+K,S- ( Pd)
k k+1 '
_ DS Mss e__+(,-psld)us-1s- pilti- 1
P p : paeeD II pi -1
i=1
k k+l
_ P Mss pSti - 1 Uss I I ps-i+i. |
=
k .
St TPestiot e, -1
pd(k-a»l) pi-1 ( pk+l . 1)
=
k+1

_ _Hss ps*i - 1
"pd(k+l) pi- 1

The lemma that follows is the most important of this section. In fact, it allows us to
effecuvely compute the probability that some elements chosen independently and at random

generatc a p-group with minimal number of generators d.
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Lemma 3.3.6 If G is a p-group with minimal number of generators d, then

d
@ G =]Ja-pH
i=1
k

E' . B-d

i=1
Proof. Part (i) of the lemma follows from the fact that A4(G) = puqq and part (ii)
from the fact that Aq4k(G) = Mg+k g-

The formulae given above are quite complicated: the next theorem gives a handy

estimate for Ag(G), and also shows that Lim Ad(G) = 1.

pyen

Theorem 3.3.7 If G is a p-group with minimal number of generators d, then
L“, L2262 1- p-l-p2
Proof. The upper bound follows from the expression for A4(G) given in

Lemma 3.3.6.

To prove the lower bound, we see that :

d [o%)
MG =[Ja-pi 2 JJa-pm

i=1l n=1
By Euler's formula [Knu73, p.20] :
o0
[Ja-m=1-2-22+425427-212. 215+ . = Y (-1)i 2GBiP+in2
n=1 -00 < j < o0

if we put z = p-1 we obtain :
00

I-I(l - p-n) = 1 - p'l - p-2 + p's + p'7 - p-12 - p—l5 + ...

n=1

this can be considered as an alternating series, if we collect each even term with the
consecutive one; if we take the first three terms by Liebniz's theorem the error will be

negative and less than p-5+ p-7 in absolute value.
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Note 3.3.8 The lower bound for A4(G) given in Theorem 3.3.7 is also valid for
A4+ (G), since Ag(G) = Hq d S Hd+kd = Ad+k(G).

As an example of the numerical effectiveness of this approximation, for a four

generator p-group with p=7, by Lemma 3.3.6 we have A4(G) = 22%33—%2‘;‘;—.8 = (.8368,

while Theorem 3.3.7 gives 0.8367 = 55 S A4(G) S 5 = 0.8571.

3.3.1. Computation of a presentation for G/®(G) when G is

a p-group given by generators and relations.

Let us suppose that G is a p-group, for which a presentation is given. We would
like to compute the quotient group of G with respect to its Frattini subgroup. The following

theorems will prove very useful.

Theorem 3.3.1.1 If N is the minimal normal subgroup with the property that G/N is
elementary abelian, then N = &(G)

Proof. Let M be maximal in G. Then M is normal, since G is a p-group, so G/M
is elementary abelian, and then by hypothesis N < M. This shows that N is contained in
the Frartini subgroup of G, since it is contained in all the maximal subgroups of G.
Conversely, consider G/N = A1/N x A2/N x ...x A/N, where each Ay/N has order p.
Let Bi/N = X, Aj/N. This group is easily seen to be maximal. Clearly M(By/N) is

equal to the identity in G/N, from which it follows that /MB; = N. But then N contains

the Frattini subgroup of G.

Theorem 3.3.1.2 A presentation for G/®(G) is obtained by adding the following
relations to the given ones:
Ix,y;j=1 for all generators x and y

xP =1 for all generators x
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Proof. Let K be the minimal normal subgroup containing (x,y} and xP for all
generators x and y. G/K is elementary abelian, since [xK , yK] =1 in G/K and
(xK)P = xPK =1 in G/K. But then ®(G) < K, since by the previous theorem ®(G) is
the minimal normal subgroup N of G with the property that G/N is elementary abelian.
Conversely, since G/®(G) is elementary abelian, [x,y]le ¢(G), xPe ®(G). This shows
that K < ®(G).

3.3.2. Application to the dihedral groups of order 2",

Let us consider the dihedral group G of order 2®. A presentation for G is the

following
G= (a bla?'=b2=(ab)2=1)
By imposing the relations
al=1,[ab}=1
we obtain a presentation for G/®(G)
(a,blaZ=b2=[ab]=1)

and it is easily seen that this defines a group isomorphic to the Klein four-group V4.

Therefore, for all the groups belonging to this class we obtain

4d . 3.2d + 2
Ad( D2n) = 2d
and
c(Dzn)=l3Q=2+§

To compute the dth Eulerian function we multiply the order of the group raised to
the dth power by the d! lambda function

d . 3.0d
04( D)= (amyd 2320+ 2

4d
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3.3.3. The generalized quaternion groups, Q,

A generalized quaternion group or dicyclic group Qg is a group of order 2®
generated by two elements a and b which satisfy the relations
2% =v2 ; aba=b
such a group can be considered as a generalization of the quaternion group Q. Being Qp a
2-group with minimal number of generators 2, its behaviour is the same as the dihedral
groups of order 2%, that is

. 8d - 3.4d 4 2d+1]
0d(Qn) = 89 - 3-4d + 20+1 Ad(Qn) = 24

Qi ==2+3
3.4. Groups of order p?, p prime.

It is well known that a group of order p2 must be abelian. Furthermore, such a
group can be either cyclic or the direct product of two cyclic groups of order p. Let us
examine in detail the two cases. In the following discussion we will not use the general
results about the probability of generating a p-group, but instead we will compute the

required quantities after looking at the subgroup lattice structure.
3.4.1.  Cyclic groups of order p2.
The subgroup lattice structure of these groups is very simple: other than the trivial
subgroups these groups have just one subgroup, which is of order p.
The fundamental identity (3.1) becomes

ICp2ld = (P24 = 0a({1)) + 94(Cp) + 8a(Cp) = 1 + (P~ 1) + 44(Cp2)
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from which it follows that

¢a(Co=pd(pd- 1)
The quantity Ag(Cap) is easily scen to be
_04(Cp2) _pd-1

Hence

e(Cp2) =2.d (Ad(Cp2) - Aq.1(Cp2)
d=1

00 o0
d. d-1 . -
Segegt By
d=1 d=1

By using the combinatorial identity (3.2) this expression becomes

1
p-1

- P _
c(sz)-p_ l--l+

3.4.2. Elementary abelian groups of order p2.

We begin by deriving the subgroup lattice structure. This is easily done: in fact we
cannot have any element of order p? (otherwise the group would be cyclic) and therefore
by Lagrange's theorem the order of all non identity elements must be p. Since we have p?
elements, p2 - 1 of which are non identity of order p, and since the intersection of two
distinct subgroups of order p must be the identity, we have a total of p + 1 subgroups of
order p.

The fundamental identity (3.1) becomes

ICpxCpld=(p2)d  =0d({1)) + (p + 1) $a(Cp) + ¢a(Cp x Cp)

=1+ (p+1)(pd- 1) +¢4(Cpx Cp)
from which it follows that

0a(Cpx Cp) =p2d-pd*! -pd+p
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Qd(cnx Cp) _ p2d - pd+| - pd +p

Ad(Cp x Cp) =
Hence

o0
e(Cp x Cp) ): d (A4(Cp x Cp) - A4-1(Cp x Cp) )

d p2d-pd+l_pd+2 p2(dl)-pd pdl...p
pZ(d-l)

[ ]

=ded+2.Jd-p3+p
pM

d=1

By using the combinatorial identity (3.2) this expression becomes

e(Cpx Cp) =2 + g—zl

3.5. Groups of order 2p, p prime greater than
two.

It is known that a group of order 2p, p prime greater than two, must be one of the
following:
i) Cyclic C2p
ii)  Dihedral Dyp

Their subgroup lattice structure is different, and therefore we have to consider the two

cases separately.




3.5.1. Cyclic groups of order 2p.

A cyclic group of order n has exactly one subgroup of order d for each divisor of
its order. Therefore, in addition to the trivial subgroups we have a subgroup of order 2 and
a subgroup of order p.

The fundamental identity (3.1) becomes
IC2pid=(2p)3 =04({1)) + $4(C2 + d4(Cp) + da(C2p)
=1+Q29-1)+(pd- 1) + ¢4(C2p)
from which it follows that
¢d(Cap) = (2p)3- 24 -pd + 1

0d(Cap) _ (2p)9 -2d - pd + 1
leld - 2p)d

Ad(C2p) =
Hence

e(Czp) = 2.d (Aa(C2p) - Ad-1(C2p) )

&1
o0

=Zd((zp)d'zd -_pd-l' l‘(z‘p)d-l-zd-l 'Ld"' 1 )
d=1

2pyd (2pyd-1
20
_ded+ 2d (p-1) - 2p + 1
- 2pyd
&I

After simplifying this expression, by using the combinatorial identity (3.2), we obtain

2.
C(Czp)ﬂ,,%r;__@:_l: 24— B
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3.5.2. Dihedral groups of order 2p

It is known that these groups have one subgroup of order p and p subgroups of
order two, other than the trivial subgroups, of course.
The fundamental identity (3.1) becomes
Dogd = (2p)d =da(i1)) + P 04(C2) + 6a(Cp) + daD2p)
=1+p(24- 1) +(pd- 1)+ dg(Dzp)
from whi. i it follows that®
¢a(D2p) = (2p)d-p2d-pd+p

The quantity Ag(D2p) is easily seen to be

_9%aD2) (2p)d-p2d-pd+p
MmZp) = lDde = (2p)d

Hence

eD2p) =2, d ( ha(D2p) - Ag-1(D2p) )
1

d=
o0

=Zd((2p)d'jzd-pd+p-(2p)d-l-p2d-] .pd+ p )
=1

(2pd py-!
o0
=Zd pd-2dp+p+2dp2-2p2
(2pd
d=1

After simplitying this expression, by using the combinatorial identity (3.2), we obtain :

(Dyp) =2+ P’
) = e T 3 p+1

9 Note that ¢1(D2p) = 0, since in order 1o generate a dihedral group at least two elements are required.
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3.6. On the direct product of two groups.

Let G and H be two finite groups. If we knew ¢u(G) and ¢y (H), what could we
say about Pn(G x H) ? Or otherwise, if we knew A5(G) and Aq(H), what could we say
about Ax(G x H) ? Generally speaking, very little, but if the two groups have coprime
order then the latter quantity is exactly equal to the product of the two former ones, as we

are going to show.

Theorem 3.6.1 Let G and H be (wo finite groups of coprime vrder. Let x, = (g; , hj),
gic G, hje H. Then xy,...,xq generate G x H if and only if g),.. .84 gererate G and

hi,...,hq generate H.

Proof.
= This is true even without the assumption that IG! and IH| are coprime, since the
homomorphism that maps an x; into the corresponding g; (resp hj), i.e. the projection

homomorphism, is onto.

<  Let xj= (g hj), gic G, hje H. Then x;kK® = (g;k(@), h;k() We can choose
k(i) so that k(i) is the order of g;, and by hypothesis k(i) is coprime with the order of h;.
But then h; and hj*® generate the same group, and therefore
(xik®) = (hi)
It follows that:
(X1y.xd) 2 (x1K(D,... xgk@) = (hy,....hq) =H

Using the same argument it is possible to prove that {(xj,....xg) 2 G. By combining the
two inclusions it is shown that (xi,....xq4) 2 G x H. Since it is obvious that

(x1,....Xd) £ G x H, the theorem follows.

Application 3.6.2 A finite group is called nilpotent if and only if it is the direct product

of its Sylow subgroups. The class of nilpotent groups includes among others the class of
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all abelian groups. From the discussion in the previous sections we know how to

effectively compute the functions ¢p(G) and Ax(G) when G is a p-group. Let G be a

nilpotent group which is the direct product of k Sylow subgroups:

G =HjxHjyx .. xHg
Then we have:
®n(G) = On(Hy) - On(H2) - ... - Gn(Hy )
and

An(G) = An(Hy) - An(H2) - ... - Ag(Hyk )

Example 3.6.3 Consider the group C3g. We know that C36 = C4 x Cy.

According to the previous sections we have:

$4(Cq)= 24 (2d- 1) 64(Co) =34 (34-1)
d. d.
Ad(Cq) = 22(, 1 Ad(C9) = 33 dl
Therefore
¢d4(C3s) =2d(2d-1)3d(3d. 1)
and

94 -1)3d-1)

Ad(C36) = ———43g

3.7. Groups of order pq, p and q primes.

A group of order pq, with p and q primes, q less than p, must be of one of the two
following types:
- cyclic

- non abelian and metacyclic

48



The first case may happen for any values of p and q, since there is a cyclic group of
any given order. The second case can happen only if q divides p - 1, i.e. a group of order
pq, with p and q primes, q less than p, and q not dividing p - 1 must be necessarily

cyclic. The structure of these groups is very simple and therefore their Eulerian functions

may be calculated.

3.7.1. Cyclic groups of order pq, p and q primes.

A cyclic subgroup of order n is known to have one and only one subgroup of order
d for each divisor d of n, therefore Cpq possesses one subgroup of order p and one of
order q, in addition to the trivial subgroup.

To compute its Eulerian function we use the general result for the direct product of
two groups of coprime order. We know from the past sections that for a cyclic group of

prime order p we have

d.
Therefore for a cyclic group of order pq we obtain
d_ 1)(qd-1
0d(Cpgy=(pd- 1(gd-1)  and Ad(Cpq) = (p pd)((;dl )

It is easy now to compute e(Cpg)-

00
d. d. d-1 . d-1_
e(Cpq)=2d((L 1)(@9-1) (pf 1)(q 1) )
d=1

pd qd pd-lqd-l

o0
_E:d(q-l)y‘”(p-l)q"-pq+l
- d

(pq)
d=1

After simplification, by using the combinatorial identity (3.2), this expression becomes

S B
p-1"q-1 pgq-1

C(Cm) =14+
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3.7.2. Non abelian groups of order pq, p and q primes.

If Mpq is a non abelian group of order pq, with q < p, then in addition to the trivial
subgroup, it has a normal subgroup of order p and p subgroups of order q.
The fundamental equation (3.1) becomes now
Mpqd = (pg)d =a({1)) + 4(Cp) + p $4(Cq) + aMpg)
=1+(pd- D) +p(qd-1)+¢a(M)
from which it follows that

6aMpg) =(pq@)3-pd-pqd+p

(pqd-pd-pqd+p
Ad(Mpg) =
d(Mpq) (p g

Therefore

o )
Ppqd-pd-pqd+p (pqd-!l-pdl-pqgdl+p
"y |
“Mpa) ( (p q)9 (p q)d-! )
d=1

00

-Zd-e“+p-pq"+p"q-p2q+p2q"
- d
(P Q)

d=1

After simplification, by using the combinatorial identity (3.2), this expression becomes

1 1 p
+ -
q-1'p-1pgq-1

e(Mpg) =2 +

Example 3.7.2.1 For the non cyclic group of order 21 we obtain e(M3) = 2 + 0.31
3.8. Groups of small order.

In this section we will show that it is possible to compute the quantities ¢4, Ag and
e for all the groups of order less than sixteen by using the methods discussed in the

previous sections. In fact, the group of order 1 is dealt with in section 3.1, the groups of
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order 2,3,5,7,11,13 are dealt with in section 3.2, the groups of order 4,9 are dealt with
in section 3.4 and the groups of order 6,10,14 are dealt with in section 3.5. We are left

now with the groups of order 8 and 12.

It is known that there are five groups of order eight, and they are: Cg, C4 x C3,

the Quaternion group Q, Dg and C3 x C3 x C3.

The first group that we consider is Cg: this is a 2-group with minimal number of

generators equal to one. Therefore its behaviour is the same as C3, that is

d.
Ad(Cg) =24(C2) = lz—d—l , e(Cg)=e(C)=1+1

0d(Cg) = Ag(Cs)-84 = gd=gd_4d

2d-1
A

The next three groups, C4 x C3, the quaternion group Q and the dihedral group
Dg are 2-groups with minimal number of generators equal to two. Therefore the behaviour

of each of these group is the same as Vg4, thatis

4d.3.24 4+ 2

)"d(G) = 44 ’

e(G)=z+§—

and

04(G) = Ag(G)-8d = 8d - 3.4d 4 2d+1

The last group considered, the elementary abelian group of order eight, is known to
have seven subgroups of order two and seven subgroups of order four, isomorphic to the
Klein four group, in addition to the trivial subgroup. By applying the fundamental identity
(3.1) we obtain

89 =0g({1}) +7 0a(C2) + 7 dg(Va) + 04(C2 x C2 x C2)
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from which it follows that
04(C2xCaxCp) =84 - 7.4d +14.2d -8

By applying the equations (2.2) and (2.3) we obtain

.4d _ 42.2d
e(C2xCaxCy)= E d 1 idz + 36

d=1

after simplification, by using the combinatorial identity (3.2), this expression becomes

c(szszC2)=g-‘:-=3+ 1.47

Before talking about the groups of order twelve, we introduce a theorem which

proves to be quite useful for our purposes.

Theorem 3.8.1 If a finitely generated group G is the direct product of two
subgroups A and B then the Frattini subgroup of G is isomorphic to the direct proauct of
the Frattini subgroup of A and the Frattini subgroup of B.

Proof. See [Dix67, problem 8.22].

Let us consider now the groups of order twelve. It is known that there are five of
them, and they are: Cjp2, C2x C2xC3, A4, D12 and the group

T=(ablab=1,b2=ald=(ab)?).

Let us consider first the cyclic group of order twelve. Since Cy3 = C4x Cs3,

according to Theorem 3.8.1 we have
D(C2) =PCyxC3) = PC) xP(C3) =Cax {1} =C2

Ci12/®(C12) = Ce,

Therefore, by Lemma 3.3.1 the behaviour of Cy3 is the same as Cg, that is
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d.od_sd

and

$d(C12) =Ag(Cy2)-12d=2d (6d - 2d . 3d 4 1)

The next group to consider is C3 x C3 x C3. This group is nilpotent, since it is
the direct product of its Sylow subgroups, which are isomorphic to V4 and C3. Therefore,
according to the Theorem 3.6.1 we obtain

0d(V4xC3) = (22 - 2d+1 . 2d 42)(3d . )= 12d - 3.6d. 4d 4. 2.3d 4 32d.2

By applying the equations (2.2) and (2.2) we obtain

o0
2: 6d + 2.4d _ 6.3d _ 15.9d
e(V4 x C3) = d36 + 2 63 15.2¢ + 22
12d
d=1
after simplification, by using the combinatorial identity (3.2), this expression becomes
38 24 18
e(V4xC3) -6+§-§+—1-?= 2+ 141
The third group to consider is the alternating group on  “orsy ot i, sbgr g
structure of A4 is well known: besides the trivial subzronp: Y four subgrours .
order three, one subgroup isomorphic to the Klein four grosp ~t. 7L suhgro s ol

order two. The fundamental identity (3.1) becomes now

124 = 6a((1)) + 4 04(C3) +3 04(C2) + 0a(Va) + b(As)
from which it follows that

Od(Ag) =120 43d.4d 1 4

By applying the equations (2.2) and (2.3) we obtain

o0

E 2-4d 4+ 12.3d . 44
e(Ag) = d 12

d=1
after simplification, by using the combinatorial identity (3.2), this expression becomes
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e(A4)=%+13—6-%=2+0.-‘l6

The fourth group to consider is the dihedral group of order twelve: this group is
known to have, besides the trivial subgroups: one cyclic subgroup of order six, two
dihedral subgroups of order six, one subgroup of order three, seven subgroups of order
two and three subgroups of order four isomorphic to the Klein four-group.The
fundamental identity (3.1) becomes now

129 = ¢g({ 1)) + 0d(C3) +7 ¢a(C2) + 3 $4(Va) + ¢4(Co) + $a(D12)
from which we obtain
¢da(D12) =129 -3.64+2.3d.3.4d49.2d.5

By applying the equations (2.2) and (2.3) we obtain

o0

z : 66 + 3.6d - 6-3d + 6.4d . 45.2d
e(D12) = d 124

¢=1

aher simplification, by using the combinatorial identity (3.2), this expression becomes

4
c(D|2)=%- 83-+ %- 5?+6=-l§m=2+ 1.57

The last group of order twelve to consider is the group T, isomorphic to the group

generated by the two matrices (0 6 ) and (3 22 )whcre i=v-1 and € is a non real

complex cubic root of the unity. Besides the trivial subgroups T has three cyclic subgroups
of order four, a cyclic subgroup of order six, a cyclic subgroup of order two and a cyclic
subgroup of order three. The fundamental equation becomes now

129 = ¢g({ 1)) + 3 04(Ca) + ¢a(Cs) + 6(C2) + ¢d(C3) + ¢a(T)
from which we obtain

04(T) = 124 - 69 - 3.4d + 3.2d

By applying the equations (2.2) and (2.3) ve obtain
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[« ]
6d + 6-44 . 15.2d
e(M = Zd 124
d=1

after simplification, by using the combinatorial identity (3.2), this expression becomes

20 45 36
e(T) =0t 10 2+09

3.9. The groups PSL(2,k).

In the discussion that follows all the fields will be finite, which implies that any
field considered here will have p® elements, for some prime p and some positive integer n.
To introduce the groups PSL(2,k) we have to introduce some groups of matrices from
which PSL(2,k) is obtained. First we define the general linear group GL{m.k) as the
multiplicative group of all nonsingular m x m matrices over GF(k). Then we define the
special linear group SL(m,k) as the multiplicative group of all m x m unimodular
matrices (i.e. having determinant equal to one) over GF(k). Finally we define the
projective unimodular group PSL(m.k) as the group SL(m,k)/Z(m,k) where Z(m,k) is
the centre of SL(m,k).

The order of PSL(m,k) is known to be (k+1)(k2-k) if k is a power of two,

2.
L‘Si’.l_)i(_k_ﬁ if k is a power of an odd prime.

The groups PSL(m,k) are known to be simple except for a small number of
exceptions. In this section we focus on the case m=2 and k=p, a prime.

Some special cases of these groups are PSL(2,3) = A4 (which is not simple!),
PSL(2,4) = Ag = PSL(2,5) and PSL(2,9) = Ag.

The structure of the projective unimodular groups has been fully investigated by
L.E.Dickson in his treatise Linear Groups which dates back to 1900.

P. Hall used the structure of these groups as an example of computation of the

Eulerian functions of PSL(2,p) in his paper [Hal36], upon which this section is
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fundamentally based. The dth Eulerian function of PSL(2,p) is given by the following

formula:
¢a(PSL(2.p)) = (2pqr)d - 2r (pq)d- pq(2r)d + pr[ 2 qd - (2q)9] + 2pgr-S
where

and S depends on the form of the prime p. For p>11 we have

(i) if ps l(modS) and 1 (mod8)
60d 249 12d jod gd 2.6d

= o AP LA il d-1_ 5.2d-1
S = IRV Y SR the 3-23 5:20-1 +2
) if p=s tl(modS) and 13 (mod8)
S = 60d 12‘“+10|d 6d+4dl 3d-1.3.2d-1 41
"30 * 5
(i)  if ps $2(mod5) and I (mod8)
244 sd 6d
S = ‘Tt -2d¢1
Gv) if ps 2 (modS) and 3 (mod8)

= - 124-1 4 4d-1 4 3d-1 4 2d-1.

Example 3.9.1 We computed the closed formula for the expected number of
elements of PSL(2,p) which have 1o be drawn at random before a set of generator is

found, when p belongs to the case (iv). It is:

1 12 4 2
ePSL2p) = 2+ - + ——— + — y —
P P 13.(-3 + p) 33:(-2 + p) 3.(-1 +p)
Y ) 2 i 1
3-(1 +p) 32+p) -1+p+p?
24 6-p 72_12-p
RN O R 8
3+2p+p? 8 +3.p+p2 -8-p+p3
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. S —2
-4 -p+p3 2-p+p3

This formula shows that, if p =12 (mod 5) and p =13 (mod 8)

e(PSLQ2.p)) =2 + O(%)

The same asymptotic formula for e(PSL(2,p)) holds when p belongs to one of the

other classes (i), (ii) or (iii).!10

3.10. Ou the direct product of isomorphic simple
groups.

Let us define dy(G) as the greatest number d for which the direct product of d

groups isomorphic to G can be generated by n elements.

In [Hal36]) it is proved that, if G is a simple group of compositc order, then

ou(G)
a(G)

dn(G) =

where a(G) is the order of the automorphism group of G.

Example 3.10.1 For all the groups Ap , n#2 and n#6, we have a(Ay) = n!. For
Ag we have a(Ag)=1440. In general, for the groups PSL(2,p), p prime, considered
above, a(G) is twice the order of the group. For As which is isomorphic 1o PSL(2,5) we

have d3(As) = ¢—§%\;5-)2 = 19; this means that A;’ can be generated by two elements,

but two elements are not enough to generate Aszo.

10 This assertion was proved using the computer program Mathematica. See [Wol88).
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The formula for da(G) given above can also be applied to a characteristically

simple group!! 10 decide if n elements are enough to generate it.

11 A finite non trivial group without charactesistic subgroups is said 1o be characteristically simple: such a
group is either simple or direct product of isomorphic simple groups [Rot88, theorem 5.20).
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4. Random walk on a Cayley graph.

4.1, Introduction.

In this chapter we are going to discuss the problem of generating random elements
in a group, with uniform distribution, when a set of generators for the group is known.

To introduce the subjeci we relate it to another problem, viz. the generation of all
the clements in a finite group.

Let G be a group generated by a subset H = {hy,h3,....hy} of its elements. Each
element g of G can be expressed as a word in the generators h;, i.e. as a product of the
form hj;-hi,-...-hj,, with k being called the length of the word. This suggests an
elementary method to generate all the elements in G: form ail the words of length 1, then all
the words of length 2, and so on... The problem with this approach is that usually an
element ge G has more than one representation as a word in the elements in H: this
happens because of the relations holding among the generators. Thus each time we form a
nuw word we have to test that the corresponding element has not been produced already.

The following example, taken from [Atk90] points out this problem.

Example 4.1.1 In the dihedral group generated by the two permutations:
({1 2 3 n 1 2 3 n
a'(n n-1 n2 ... 1 ) b.(n-l n-2 n3 .. n)
the element ababab... of length n has no representation as a word of length less than n.

With the method given above this element will not be discovered until about 2® words have
been formed.
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Even if we knew in advance the order of the group, that is when to stop forming
new words, it is clear that this method for producing all the elements of a group is not
effective. For the same reason, a naive strategy of production of random elements in a
group by forming random words in the generators is not generally successful.

A better method for generating all the elements of a group G is based on the
following idea : let G = G0 > G! > G2 > .. > G™ = {1} be a descending chain of
subgroups of G ending in the identity subgroup and let Uy be a set of representatives for
the cosets of G¥ in G¥-1, for k=0,1,...,m-1. It can be proved by induction that every
element ge G can be expressed uniquely as a product of the form up.1-up.2-...-ug-Up
where each u; is in U;. To produce all the elements of G form all the products of the
form Um.1-Um-2-...-u1-ug . To produce a random element of G choose cach u; at
random from Uj, and then compute the product um.;-Up-2-...-U - UQ .

A practical application of these ideas was first picposed by C. Sims in [Sim70] and
is known as the stabiliser chain representation of a permutation group: let G be a
permutation group acting or a set 2 = {1,2,...,n} and take for Gk the stabiliser of the
points 1,2,...,h in G. Great effort was done to reduce the space required to store the
crain of stabilisers and to compute the representation in acceptable time: see [Sim71] and
{Sim75]. Further development of Sim's methods by M. Jerrum produced an algorithm,
described in [Jer86], which computes the chain of stabilisers in O(n5) time using O(n2)
space.

In [Leo80] J. Leon described a probabilistic algorithm for computing a chain of
stabilisers which is much faster than either Sim's or Jerrum's algorithm and is based on the
assumption that we are given an external process which generates random elements ot G.
Being probabilistic Leon's algorithm can give the wrong output without any waming: but if
the external process is known to generate the random elem=nts with true uniform
distribution, then we could at least give an upper bound on the probability of error. In

Leon’s description of the algorithm the random elements are produced by simply forming
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random words in the original generators; we have already observed that this method is not

uniform.

In the present chapter we will relate the length of the random words to the

distribution of the random elements.

4.2, Cayley graphs.

The Cayley graph @ associated to a group G = 31,82,-..,8n} generated by a
subset H = {hy,h3,...,hm} of its elements is a directed graph with vertex set G and
edge set L={(gi, gi-hk)!i=1,2...,n; k=1,2,...m}, the edge (g, gi-hx) being
labelled hg. For simplicity of notation we denote by I the vertex representing the identity,
and we write "the Cayley graph @" for "the Cayley graph @& associated to a group
G = {g1,82,.---8n} generated by a subset H = {hy,hy,....,hq} of its elements”. In
addition, when a generator is involutory we will represent its effect by a single undirected
arc.

The Cayley graph @ associated to 2 group G can be considered as a special case of
the graphs considered in section 1.2, if we take = G and we define gb to be g-h, for all
ge G and he H.

It is easy to see from the definition that in a Cayley graph the indegree of each
vertex is equal to the outdegree which in tumn is equal to the number of generators of the
group.

The property of a Cayley graph @ which is most important for us is that a product
of generators corresponds uniquely to a walk in @ starting from 1.

Many properties of the group G can be derived by examining @ - we list here some
of them whose proof is obvious:

() G is abelian if all the walks of length two starting from I whose arcs are labelled

hishj and hj,h; lead to0 the same point, Vi,je {1.,2,...,m}

61




(ii)  a generator h is redundant'? if every vertex of G is reachable from I by a walk

which does not include any arc labelled h. In other words h is redundant if and

only if the digraph obtained from @ by deleting all the arcs labelled h is strongly

connected.

It should be clear that the Cayley graph @ of a group G depends on the generating set H.

As an example, the following two graphs which are not isomorphic represent the same

group, S3, being generated by different sets :

(132)

(132) (23)

13) (123)

Here the group S3 is
generated by the elements (12) and
(123). The dashed undirected lines
correspond to the involutory
generator (12), the directed ones to

the generator (123).

Here the group S3 is
generated by the elements (12) and
(13). The dashed undirected lines
correspond to the involutory
generator (13), the other ones to the

generator (12).

12 A generator is redundant if it can be wnitien as the product of other generators.
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4.3. Properties of the adjacency matrix of a
Cayley graph.

Theorem 4.3.1  If A is the adjacency matrix associated to a graph @ then (AY);; is
the number of paths of length t from the vertex i to the vertex j.

Proof. See [Chr75, section 1.8.1).

Theorem 4.3.2 If A is the adjacency matrix of a Cayley graph @, then the sum of
the elements in any row is equal to the sum of the eletaents in any column and it is equal to
the size of the generating set of the group G.

Proof. This follows from the fact that in a Cayley graph the indegree of each vertex
is equal to the outdegree which is equal to the number of generators of the group

considered.

Corollary 4.3.3  Let A be a square n x n matrix with row and column sums equal to

d, and entries in {0,1}. Then (1,1,...,1) is an eigenvector of the matrix with

eigenvalue d.

Theorem 4.3.4 If A is the adjacency matrix of a Cayley graph @, then (A%);; , the
number of closed paths of length t from the vertex i to itself, is independent of i.
Proof. A closed path of length t in a Cayley graph simply represents a product of t

group elements chosen among the generators which is equal to the identity.

n n
Corollary 4.3.5 z (AY);j = race( A!) = 2 kti =0 (mod n) forallt, where n
1=1
1=l

is the degree of A, and A; is the it eigenvalue of A.

Theorem 4.3.6 livAll €d livll for all vectors v, where |l-if denotes the euclidean

norm.
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Proof. If v =(vy,v2,...,vp) then
n n

n n
IIvAII2=Z( ¥ vjAj)? = z (T vj AjiAji)?
I3 =1

=1 i=1
n

n n
2 vit Ay ) Aw?
— | k=l
i1=1
{ by the Cauchy inequality applied to each term of the outer summation )
n n
z ij AJ' 2 Akl = E 2 Z Ajl z Akl
k=1
i=] Fl

=d2Ivii2

Theorem 4.3.7  Every eigenvalue A of A satisfies (Al <d .
Proof. Let v be the eigenvector for A. Then vA = Av and 1Al livil = livAll £d livll ,
ie. IAl €d.

Theorem 4.3.8 If A is the matrix of a directed graph which has the properties:
1) there exists a vertex 1 from which every vertex can be reached
(i1) there exists an odd cycle

then vA = Av implies that v is a multiple of n.

Proof. In the proof of Theorem 4.3.6 cquality implics equality in each application

n
of the Cauchy inequality. But ( Y xi Vi Zx Zy. if and only if x and y are
i=1 i=t i=1

linearly dependent (i.e. they are parallel). Hence there exist numbers w; such that
Aji = wi-vj-Aji. Thus, if there is an edge from jtoi (thatis, Aj = 1) then w; = Vj'l.
It follows that, if there is an even length path from 1 to i then v; = vi. But since an odd
cycle exists we can replace paths of odd length by paths of even length and so v; = vy for

all i.




Note 4.3.9 If the Cayley graph has no odd cycle, then it is bipartite. But this
implies that G has a subgroup K of index .wo and all the generators lie in G-K. In this

case there is no hope of convergence.

Note 4.3.10 The theorems shown above still hold when we normalize the
adjacency matrix of the Cayley graph, i.e. when we consider the doubly stochastic matrix

obtained by dividing each entry by d, according to the next theorem:

Theorem 4.3.11 If A is an eigenvalue of A and d is a real number, then % is an
eigenvalue of dl A.

Proof. If v is an eigenvector corresponding to the eigenvalue A, then
Av = Av, which implies that (%l)v:( %A)v.

4.4. On the rate of convergence to uniform.

We have seen that a product of generators in a group G corresponds uniquely to a
walk in the associated Cayley graph @ starting from the point I representing the identity.
Thus a product of m randomly chosen generators correspond to a random walk of length m
on the Cayley graph. The question that we would like to answer here is the following: how
big should be m in order to achieve a uniform convergence, that is in order to visit each
vertex with equal (or close to equal) probability?

The analytic tool used to analyse random walks on graphs is the theory of Markov
chains. Let us briefly review some facts concerning finite Markov chains.

Let us suppose that a system can be at a given time t = 0,1,2,3,.. in one of n
possible states. Let us define pjj as the probability that at any time the system moves from
state i to state j. The matrix P = (p;j) is called the transition matrix of the Markov chain.

The probability that the system will move from state i to state j in k time steps is given by
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(P")ij. Let us also define the initial probability vector ®, of a Markov chain as the vector
whose ith entry represents the probability that the system initially is in the state i. In the
same way we define the kth step probability vector ntk as the vector whose ith entry
represents the probability that the system will be in the state i at time k. The following
relation holds:
nk = Pk o

For our purposes we can suppose that ny = (1,0,0,...,0). Let ey, ey, ...,ep

be the n distinct eigenvectors of the matrix P, to which correspond the eigenvalues A,

A2,..., Ap Where we assume that iApI2IA312... 2144l If the eigenvectors were linearly
n

independent, we could express ng as z aj-e; where the a; are opportunely chosen
i=1

coefficients. We obtain now
n

n
Pk n, =Zaill;ei = Al; Zai (—l-i-)kci
Ay
i=1

i=1

nk

]
>
—
4]
2
M
=
IR
Kl g
~—x
o
N—

i=2

The last expression behaves like kll‘-el-al when k goes to infinity, that is

E'_n’“n" = (a1,3a1,...,81)
since as we have seen before, for a doubly stochastic matrix we have Ay = 1 and
e; = (1,1,...,1).

The important thing to note here is the fact that the rate of convergence depends on

the second largest (in modulus) eigenvalue, that is on A;.



4.5. Automorphisms of a graph.

An automorphism o of a graph @ is a permutation of its vertices which preserves
adjacency: if (a,b) is an edge of @ then (a%,bO) is also an edge of @. We can associate to
an automorphism ¢ a matrix S defined in the following way:

Sij= 1 if i%=j for two vertices i and j

Sij= 0 otherwise
The set of all the automorphisms of a graph @ forms a group under the operation of

composition.

Theorem 4.5.1 If G is a graph with adjacency matrix A and O is an automorphism

of G with matrix S, then ST =S§-1.
n

Proof. (SST)ij = Y. sikSjk
k=1

A summand on the right hand side is nonzero if and only if i9= k and jO= k, but this can
happen if and only if i is equal to j because o is a bijection. it follows that (SST);; = &;;,

where §;; is the Kronecker symbol, which is equal to one if i is equal to j, zero otherwise.

Theorem 4.5.2 If @ is a graph with adjacency matrix A and © is an automorphism

of @ with matrix S, then SAST = A .

n
Proof. (SAST);; = Esip‘apq‘sjq
pq=1

A term in the summation on the right hand side is equal 10 one if and only if (p,q) is an
edge of G, i%= p and j%= q. But p and q are unique if they exist and they exist precisely if

i is joined to j, and this proves that (SAST);; = a;;

Corollary 4.5.3 If G is a graph with adjacency matrix A and o is an automorphism
of @ with matrix S, then SAS-1 = A | i.e. the adjacency matrix of a graph @ commutes

with all the matrices associated to the automorphisms of G.
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Theorem 4.5.4 The adjacency matrix A of a Cayley graph G commutes with L(g),
the left regular representation of G, for all ge G.

Proof. For an arbitrary Cayley graph @ the left multiplication by an element ge G
is an automorphism of @. In fact, if (a,b) is an edge of @ labelled x, this means that
ax = b; but then gax = gb, that is there is an edge labelled x which connects ga to gb.
Therefore by Corollary 4.5.3 the adjacency matrix of a Cayley graph commutes with all the
matrices associated to the automorphisms of @ induced by left multiplication by any

clement ge G.

4.6. Review of fundamental concepts in
representation theory.

To obtain deeper results about the eigenvalues of the adjacency matrix of a Cayley
graph, we use some basic facts from the representation theory of groups - in particular, the
representation theory explains the large multiplicity which usually characterizes these
eigenvalues. We recall some fundamental concepts, drawing freely from [L2d77].

If G is a group, a matrix representation A of degree m over a fizld K is an
homomorphism A:G—GLy(K), the group of all non singular matrices of degree m over
K.

We say that two representations A and B are equivalent over K, and we write
A~B, if there is a non singular matrix T with coefficients in K such that B(x)=T-1A(x)T
for all x in G.

A matrix representation A is said to be reducible over K if there is a non singular
matrix T with coefficients in K such that

B(x) = T-1A(X)T = (g((:)) (l’)(x)

for all x in (5, irreducible otherwise.
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Every matrix representation can be put in lower triangular form, in which the
diagonal blocks are irreducible.
M0 ....0
fM =[ 0 f\'?z 0 0 J we say that the matrix M is the direct sum of the
o .. ..0 M,
matrices M,M3,...,M; and we write M = i D M;.
=1

A matrix represcniation A is said to be completely reducible over K if
r

A~ Z @ A; and each Aj is irreducible over K.

i=1

If G is a finite group of order g and K is a field whose charactenistic is zero or
prime to g, then every matrix representation of G over K is completely reducible over K
(Maschke's theorem ).

A matrix representation A of a group G over an algebraically closed field K is
irreducible over K if and only if the oniy matrices that commute with all the matrices A(x)
(for all xe G) are the scalas multiples of the unit matnix (Schur’s lemma ).

Given two square matrices A = (aj;) and B of degrees m and n respectively, we

define their tensor product or Kronecker product A ® B to be the mn x mn matrix:

3113 .123 . . ams
a21B az22B .. azyB
A®B= 21 22 2m

T = @;B)
anm1B ag2B . . apyB
The set C(A) of all matrices T over K commuting with A(x) (for all xe 5) is an

algebra over K, that is a vector space endowed with an associative multiplication: C(A) is

called the commutant algebra of A, and it is a subalgebra of the matrix algebra My (K).

r
If A= z ® (I, ® F;) where F1,F,...,Frare inequivaient irreducible
i
i=1

representations of degrees fq,f2,....fy which occur with multiplicities ej,e2,...,er in
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the diagonal form of A, then the algebra C(A) has dimension ej2+e32+...+e.2, and r
represents the dimension of its centre.

A typical element of C(A) is a matrix of the form

r
T=Ze (X; ® I )
]
i=1

where X is an arbitrary e; x ej matrix.
4.7. Regular representations.

Let us consider now the clements of G as the basis of a vector space
Gk = [21,82)..-8a] Over a field K, endowed with an associative multiplication.
Gk is an algebra, called the group algebra of G over K, its elements being linear
combinatic.s of the g;'s with coefficients in K. The clements of G can be regarded as
linear combinations of elements of the basis in which all the coefficients are equal to zero,
except one (which is equal to one).

We can define the right regular representation of G as the group of linear
mappings induced by multiplication on the right of elements of Gk by elements of G.

The mapping corresponding to the multiplication on the right by a particular g in G
transforms each element g; of the basis into g;-g and therefore can be regarded as a
permutation of the elemen: of the basis. Such a permutation can be specified by a
permutation matrix R(g) of degree n, where R(g);jis equal to one if g;jg = gj, zero
otherwise.

The set of matrices R = {R(g) | ge G} forms a group, the operation being matrix
multiplication. This group is isomorphic to the group of linear mappings defined above,

and we will call R the right regular representation of G, without creating confusion.
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In the same way we can define the left regular representation of G, as the group L

of all permutation matrices L(g) of degree n, where L(g)j,i is equal to one if

g'gi = 8j» zero otherwise.

Theorem 4.7.1 If a group G has ¢ conjugacy classes then there are ¢ distinct
irreducible representations over the complex field, and they are all present in the left (resp.
right) regular representation of G, each one with multiplicity equal to its degree.

Proof. See [Led77,pag.49]

c c
Thus, in the left regular representation L(x) we have |Gl = z fie; = z f;2

=1 1=

because the relation ¢; = f; holds for all i = 1,2,....c.

A typical element T of the commutant algebra of the left regular representation L

C
T=Z@ (X;® I, )
H
i=1

where X is an arbitrary e; x e; matrix.

has the form

Theorem 4.7.2 If X is a square matrix of degree m, the matrix X ® I has the

same eigenvalues of the matrix X, each one repeated n times.
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1
v2

Proof. Ifv=|" is an eigenvector of X, corresponding to an cigenvalue A,

Vm
i
vi

v2

1 i M
and (‘l. Jis a vector of n ones, consider w=v@® [l ]= ;2

1 1

on )

it is easy to scc that w is an eigenvector of X ® I, to which correspond n copies of the

cigenvalue A.

As we said at the beginning of section 4.6 the representation theory of groups is the
tool that allows one to explain the multiplicity of the eigenvalues of the adjacency matrix of

a Cayley graph; the next corollary makes this assertion more clear.

Corollary 4.7.3 If T is an element of the commutant algebra of L of the form

(¥
T=2$ (Xi® I, )
1
i=1

where X; is an arbitrary e; x ¢; mawix, then if k; is the multiplicity of the eigenvalue A; of
T, which has multiplicity z;j in the matrix X;, ihe following conditions hold:
C
M Y el =Gl
1=1

(it) ki = zj1-e1 +zj2-€2 + ... + Zjc-€e

() Y zki = €
k
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Proof. The validity of the first condition has been shown before. The second
condition simply states that the eigenvalue A; was present in the matrices X ,X2,...,X¢
with multiplicity resp. zj1, 22, ... , Zic. The third condition states that the sum of the
multiplicities of the distinct eigenvalues in X; is equal to the degree of Xj , which is equal

to e; because we are dealing with regular representations.

4.8. Some final considerations.

If we are given the character table of a group G, it is easy to obtain the degrees of
all its irreducible representations: in fact, they correspond to the values that each simple
character takes in the identity:

e; = xi(1)
This greatly simplifies our work.

In the case of a finite abelian group, the number ¢ of conjugacy classes is equal to
the order of the group. It follows that each ej=f; =1, i.c. all the irreducible
representations have degree one. Therefore nothing can be said in this < ase, by applying the
methods discussed above, about the origin of the eigenvalues of the adjacency matrix and

their muitiplicities.

When we form the random products of generators, if we add 1o each element in the
generating set H its inverse, the sum of the elements of each column in the adjacency
matrix of the Cayley graph becomes:

d = 2-#(non involutory generators) + #(involutory generators)
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In this case the adjacency matrix A of the Cayley graph is symmetric, and therefore all its
eigenvalues A, lie in the real field. The doubly stochastic matrix A" obtained from A by

"
dividing each entry by d has therefore all its eigenvalues A; in the real field, and each A;

is equal to % where A (i=1,2,...JGl ) are the eigenvalues of A.

If we add the identity to the set of generators then we create cycles of odd length in
the Cayley graph, which may have the effect of transforming a non convergent Markov

chain into a convergent one.

4.9. Methodology to build an example.

Given a finite group G finiteiy presented an algorithm known as “coset
enumeration”, first described in [Tod 36}, allows us to obtain among other information the
regular representation of G, which shows the effect of multiplying each element of G by

its genzrators. To build the example discussed in the next section we followed this

procedure:

step 1 Obtain a presentation of G.

step 2 Run the coset enumeration algorithm to produce the regular
representation of G.

step 3 Build the doubly stochastic matrix A corresponding to the original
presentation, plus for each generator its inverse.

step 4 Obtain the eigenvalues, and try to determine which irreducible

representation they are associated with.
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A small example : S4

<ablaz=bd=(ab)3=1>

4.10.

Presentation:
\ - —_
N
P |
T
| ‘/ N\ |‘
1.0
ke N

Cayley graph:

represent the effect of the involutory
generator, the directed ones the

effect of the generator of order four.

Eigenvalues rounded to the fifth decimal place:

The dashed undirected lines

eigenvalue

-1.56155

2.56155

multiplicity

3

3

Degrees of the irreducible representations
denived from the character table :

e] e e3 e4 es
1 1 2 3 3
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Number of conjugacy classes:

value
of ¢

Origin of the eigenvalues.

The cigenvalue 1. hav ¢ multiplicity one, must come from the block [1] which is
of the form X3 ® lel.

The same argument applies to the eigenvalue 3, which must come from the block
[3] which is of the form X2 ® lez .

The eigenvalues -1.56155 and 2.56155 are the solutions of the equation
x2 + x - 4 = 0, which is irreducible in the integers, thus they must appear always in
the same block. Now, all the eigenvalues of multiplicity three must come from the same
block: it follows that the eigenvalues -1.56155 and 2.56155 come from the block of
degree nine, which canbe X4 ® le4 or Xs® les .

In the table that follows we show the possible!3 dispositions of the eigenvalues in

the blocks of the adjacency matrix: each configuration corresponds to a row in the tabls.

To be more concise, we consider the permutations of the blocks of the same size as

belonging to the same configuration.

13 “possible” stands for "compatible with the conditions stated in the present chapter”.

76




The notation Axk inside a cell stands for “an eigenvalue A with multiplicity K is

associated to this block".

lock | block [ block of block of degree 9 block of degree 9

of of degree 4
degl |degl

-1.56155 x 3 0Ox3

Ix1] 3x1 X2 2.56155 x 3 2x3

2x3 -1x 3

0x 2 -1.56155 x 3 -2 x

Ix1| 3x1 2% 256155 x 3 2x3

Ox3 -1x3

0x2 -1.56155x 3 Ox3

Ix1] 3x1 2% 2.56155x 3 2x3

-2x3 -1x3

0x2 -1.56155x 3 0x3

Ix1] 3x1 2%2 2.56155x 3 -2x3

-1x3 2x3
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