
Polyhedra to reason about software

Enea Zaffanella

Dept. of Mathematical, Physical and Computer Sciences

University of Parma (Italy)

Geometry and Computer Science, Pescara, Feb. 2017 1

PLAN OF THE TALK

➀ Why formal methods in computer science

➁ Why polyhedral computations matter

➂ The many facets of polyhedral computations

➃ On the Detection of Exact Joins

PLAN OF THE TALK 2

WHY FORMAL METHODS IN COMPUTER SCIENCE

WE HAVE A PROBLEM

➜ Proper design, development and maintenance of computing systems

(hardware and software) are expensive activities

➜ Size and complexity of computing systems are increasing

➜ Human resources are (more or less) stable

➜ Growing interest in any methodology that can assist the programmers

WE HAVE A PROBLEM 3

NO SILVER BULLET

➜ Domain specific, higher level languages

➜ Code inspections, reviews, audits

➜ Coding standards (language subsetting)

➜ Systematic testing

➜ Proofs of correctness

➜ . . .

➜ No matter which methodologies are chosen, we need mechanical tools

to help the programmer reasoning about programs

NO SILVER BULLET 4

EXAMPLE: IS x/(x-y) WELL-DEFINED?

Many things may go wrong

➜ x and/or y may be uninitialized;

➜ x and y may be equal: division by 0;

➜ x-y may overflow;

➜ x/x-y may overflow;

➜ for floating point datatypes:

➜ x-y may underflow;

➜ x/(x-y) may underflow.

EXAMPLE: IS x / (x - y) WELL-DEFINED? 5

EXAMPLE: VALIDATION OF ARRAY REFERENCES

Are these array accesses safe?

proedure shellsort(n : integer, array [0..n-1℄ of integer)

begin

var h, i, j, B : integer;

h := 1;

while (h*3 + 1) < n do h := 3*h + 1;

while h > 0 do

i := h-1;

while i < n do

B := a[i℄; j := i;

while (j >= h) and (a[j-h℄ > B) do

a[j℄ := a[j-h℄; j := j-h;

a[j℄ := B;

i := i+1;

h := h div 3;

EXAMPLE: VALIDATION OF ARRAY REFERENCES 6

EXAMPLE: STRING CLEANNESS IN C/C++

Taken from Web2c: an implementation of TeX and friends that translates the original

WEB sources into C. See, http://www.tug.org/web2/.

#define BUFSIZ 1024

char buf [BUFSIZ] ;

char∗ i n s e r t _ l o n g (char ∗cp) {

char temp [BUFSIZ] ;

i n t i ;

asser t (cp >= buf [0] && cp < buf [BUFSIZ]) ;

for (i = 0 ; &buf [i] < cp ; ++ i)

temp [i] = buf [i] ;

s t r cpy (&temp [i] , " (long) ") ;

s t r cpy (&temp [i + 6] , cp) ;

s t r cpy (buf , temp) ;

return cp + 6 ;

}

EXAMPLE: STRING CLEANNESS IN C/C++ 7

FORMAL PROGRAM VERIFICATION METHODS

➜ To mechanically prove that all possible program executions are correct

in all specified execution environments. . .

➜ . . . for some definition of correct:

➜ absence of certain kinds of run-time errors;

➜ adherence to a (partial) specification. . .

Several methods

➜ program typing;

➜ deductive methods;

➜ static analysis;

➜ model checking.

FORMAL PROGRAM VERIFICATION METHODS 8

ABSTRACT INTERPRETATION

Because of the undecidability of program verification

➜ all methods are partial or incomplete

➜ all resort to some form of approximation

➜ Abstract Interpretation is a framework to reason about sound

approximation

P. Cousot, R. Cousot

Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints, POPL 1977

P. Cousot, R. Cousot

Abstract Interpretation Frameworks, JLC 1992

ABSTRACT INTERPRETATION 9

ABSTRACT INTERPRETATION

Assign a concrete meaning to a computing system

➜ D = 〈C,⊑,⊥,⊤,⊓,⊔〉, F : D → D

➜ ⊥ ⊑ F(⊥) ⊑ . . . ⊑ F i(⊥) ⊑ . . .

➜ M = lfpF =
⊔

F i(⊥)

Assign an abstract meaning to the computing system

➜ D♯ = 〈C♯,⊑♯,⊥♯,⊤♯,⊓♯,⊔♯〉, F♯ : D♯ → D♯

➜ ⊥♯ ⊑♯ F♯(⊥♯) ⊑♯ . . . ⊑♯ (F♯)i(⊥♯) ⊑♯ . . .

➜ M ♯ = lfpF♯ =
⊔♯(F♯)i(⊥♯)

Soundness: the two meanings are related

➜ γ : D♯ → D (concretization function)

➜ ⊥ ⊑ γ(⊥♯), c ⊑ γ(c♯) ⇒ F(c) ⊑ γ(F♯(c♯))

➜ M ⊑ γ(M ♯)

ABSTRACT INTERPRETATION 10

WHY POLYHEDRAL COMPUTATIONS MATTER

A TRIVIAL EXAMPLE OF STATIC ANALYSIS

A TRIVIAL EXAMPLE OF STATIC ANALYSIS 11

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

while x <= 100 do

(x, y) ∈ M ∈ ℘(R2)

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

Concrete domain:

〈℘(R2),⊆,∅,R2,∪,∩〉.

Concrete meaning:

M
def
= lfpF = Fω(∅).

EXAMPLE: THE CONCRETE MEANING 12

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

while x <= 100 do

∅

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

EXAMPLE: THE CONCRETE MEANING 13

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

∅

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 14

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0)}

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 15

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0)}

read(b);

if b then x := x+2

{(2, 0)}

else x := x+1; y := y+1;

endif

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 16

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0)}

read(b);

if b then x := x+2

{(2, 0)}

else x := x+1; y := y+1;

{(1, 1)}

endif

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 17

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0)}

read(b);

if b then x := x+2

{(2, 0)}

else x := x+1; y := y+1;

{(1, 1)}

endif

{(1, 1), (2, 0)}

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 18

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0), (1, 1), (2, 0)}

read(b);

if b then x := x+2

{(2, 0)}

else x := x+1; y := y+1;

{(1, 1)}

endif

{(1, 1), (2, 0)}

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 19

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0), (1, 1), (2, 0)}

read(b);

if b then x := x+2

{(2, 0), (3, 1), (4, 0)}

else x := x+1; y := y+1;

{(1, 1)}

endif

{(1, 1), (2, 0)}

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 20

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0), (1, 1), (2, 0)}

read(b);

if b then x := x+2

{(2, 0), (3, 1), (4, 0)}

else x := x+1; y := y+1;

{(1, 1), (2, 2), (3, 1)}

endif

{(1, 1), (2, 0)}

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 21

EXAMPLE: THE CONCRETE MEANING

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0), (1, 1), (2, 0)}

read(b);

if b then x := x+2

{(2, 0), (3, 1), (4, 0)}

else x := x+1; y := y+1;

{(1, 1), (2, 2), (3, 1)}

endif

{(1, 1), (2, 0), (2, 2), (3, 1), (4, 0)}

endwhile

O x

y

EXAMPLE: THE CONCRETE MEANING 22

EXAMPLE: . . . AND SO ON . . .

x := 0; y := 0;

{(0, 0)}

while x <= 100 do

{(0, 0), (1, 1), (2, 0), (2, 2), (3, 1), (4, 0)}

read(b);

if b then x := x+2

{(2, 0), (3, 1), (4, 0)}

else x := x+1; y := y+1;

{(1, 1), (2, 2), (3, 1)}

endif

{(1, 1), (2, 0), (2, 2), (3, 1), (4, 0)}

endwhile

O x

y

EXAMPLE: . . . AND SO ON . . . 23

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

while x <= 100 do

(x, y) ∈ Q ∈ CP2

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

Abstract domain:

〈CP2,⊆,∅,R2,⊎,∩〉.

Correctness:

X ⊆ P =⇒ F(X) ⊆ F ♯(P).

Abstract meaning:

Q ∈ postfp(F ♯).

EXAMPLE: THE ABSTRACT MEANING 24

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

while x <= 100 do

{1 = 0}

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

EXAMPLE: THE ABSTRACT MEANING 25

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{1 = 0}

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 26

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{x = 0, y = 0}

read(b);

if b then x := x+2

else x := x+1; y := y+1;

endif

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 27

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{x = 0, y = 0}

read(b);

if b then x := x+2

{x = 2, y = 0}

else x := x+1; y := y+1;

endif

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 28

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{x = 0, y = 0}

read(b);

if b then x := x+2

{x = 2, y = 0}

else x := x+1; y := y+1;

{x = 1, y = 1}

endif

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 29

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{x = 0, y = 0}

read(b);

if b then x := x+2

{x = 2, y = 0}

else x := x+1; y := y+1;

{x = 1, y = 1}

endif

{x = 2, y = 0} ⊎ {x = 1, y = 1}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 30

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{x = 0, y = 0}

read(b);

if b then x := x+2

{x = 2, y = 0}

else x := x+1; y := y+1;

{x = 1, y = 1}

endif

{1 ≤ x ≤ 2, x+ y = 2}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 31

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{x = 0, y = 0}

⊎ {1 ≤ x ≤ 2, x+ y = 2}

read(b);

if b then x := x+2

{x = 2, y = 0}

else x := x+1; y := y+1;

{x = 1, y = 1}

endif

{1 ≤ x ≤ 2, x+ y = 2}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 32

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

read(b);

if b then x := x+2

{x = 2, y = 0}

else x := x+1; y := y+1;

{x = 1, y = 1}

endif

{1 ≤ x ≤ 2, x+ y = 2}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 33

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{x = 1, y = 1}

endif

{1 ≤ x ≤ 2, x+ y = 2}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 34

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{1 ≤ x ≤ 2, x+ y = 2}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 35

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

⊎ {1 ≤ x ≤ 2, x+ y = 2}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 36

EXAMPLE: THE ABSTRACT MEANING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: THE ABSTRACT MEANING 37

EXAMPLE: . . . AND SO ON . . . ?

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 4}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: . . . AND SO ON . . . ? 38

EXAMPLE: FINITE CONVERGENCE USING WIDENING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

∇{0 ≤ y ≤ x, x+ y ≤ 4}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: FINITE CONVERGENCE USING WIDENING 39

EXAMPLE: FINITE CONVERGENCE USING WIDENING

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x, x+ y ≤ 2}

∇{0 ≤ y ≤ x, x+ y ≤ 4}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: FINITE CONVERGENCE USING WIDENING 40

EXAMPLE: AN ABSTRACT POST-FIXPOINT

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2, x+ y ≤ 4}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: AN ABSTRACT POST-FIXPOINT 41

EXAMPLE: ABSTRACT DOWNWARD ITERATION

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2}

else x := x+1; y := y+1;

{1 ≤ y ≤ x, x+ y ≤ 4}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 42

EXAMPLE: ABSTRACT DOWNWARD ITERATION

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2}

else x := x+1; y := y+1;

{1 ≤ y ≤ x}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y ≤ 4}

endwhile

O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 43

EXAMPLE: ABSTRACT DOWNWARD ITERATION

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2}

else x := x+1; y := y+1;

{1 ≤ y ≤ x}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y}

endwhile

O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 44

EXAMPLE: ABSTRACT DOWNWARD ITERATION

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x}

∩ {0 ≤ y ≤ x ≤ 100}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2}

else x := x+1; y := y+1;

{1 ≤ y ≤ x}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y}

endwhile

O x

y

EXAMPLE: ABSTRACT DOWNWARD ITERATION 45

EXAMPLE: ABSTRACT FIXPOINT

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x ≤ 100}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2}

else x := x+1; y := y+1;

{1 ≤ y ≤ x}

endif

{0 ≤ y ≤ x, 2 ≤ x+ y}

endwhile

O x

y

EXAMPLE: ABSTRACT FIXPOINT 46

EXAMPLE: ABSTRACT FIXPOINT

x := 0; y := 0;

{x = 0, y = 0}

while x <= 100 do

{0 ≤ y ≤ x ≤ 100}

read(b);

if b then x := x+2

{0 ≤ y ≤ x− 2 ≤ 100}

else x := x+1; y := y+1;

{1 ≤ y ≤ x ≤ 101}

endif

{0 ≤ y ≤ x ≤ 102, 2 ≤ x+ y ≤ 202}

endwhile

{100 < x ≤ 102, 0 ≤ y ≤ x, x+ y ≤ 202}

EXAMPLE: ABSTRACT FIXPOINT 47

OPERATORS MAPPING

➜ conditional (affine) guards ⇒ (affine) constraints

➜ (affine) assignments ⇒ (affine) images

➜ adding variables ⇒ adding dimensions

➜ removing variables ⇒ projecting dimensions

➜ merging control flows ⇒ (approximating) unions

➜ iteration to fixpoint ⇒ widening + check for containment (+ narrowing)

➜ . . . there are others

OPERATORS MAPPING 48

IMPLEMENTING CONVEX POLYHEDRA

➜ Single Description approach

• Keeping only constraint representation

• Fourier-Motzkin elimination procedure

• Main issue: removal of redundant constraints

• Well suited for few, sparse constraints

➜ Double Description approach

• Keeping both constraints and generators

• Chernikova conversion algorithm

• Main issue: size of representations

• Simpler redundancy elimination

IMPLEMENTING CONVEX POLYHEDRA 49

THE DOUBLE DESCRIPTION METHOD

Constraint Representation

➜
{

x ∈ Rn
∣

∣ Ax ≤ b
}

Generator representation

➜
{

Rρ+ Pπ ∈ Rn
∣

∣ ρi, πi ≥ 0,
∑

πi = 1
}

THE DOUBLE DESCRIPTION METHOD 50

EXAMPLE: DOUBLE DESCRIPTION

O x

y

x+ y ≥ 5

x− 2y ≤ 2

y − 2x ≤ 2

points:
{

(4, 1), (1, 4)
}

rays: {(1, 2), (2, 1)}

EXAMPLE: DOUBLE DESCRIPTION 51

NOT NECESSARILY CLOSED (NNC) POLYHEDRA

Constraint Representation: strict inequalities

➜
{

x ∈ Rn
∣

∣ Ax ≤ b, A′x < b′
}

Generator representation: closure points

➜
{

Rρ+ Pπ + Cγ ∈ Rn
∣

∣ ρi, πi, γi ≥ 0,
∑

πi +
∑

γi = 1,π 6= 0
}

N. Halbwachs, Y.E. Proy, P. Raymond

Verification of Linear Hybrid Systems by Means of Convex Approximations,

SAS 1994

R. Bagnara, P.M. Hill, E. Zaffanella

Not necessarily closed convex polyhedra and the double description method

FAC 2005

NOT NECESSARILY CLOSED (NNC) POLYHEDRA 52

EXAMPLE OF NNC POLYHEDRON: CONSTRAINTS

P = con
(

{2 ≤ x, x < 5, 1 ≤ y ≤ 3, x+ y > 3}
)

.

O x

y

A

B C

D

EXAMPLE OF NNC POLYHEDRON: CONSTRAINTS 53

EXAMPLE OF NNC POLYHEDRON: GENERATORS

P = gen
(

(R,P,C)) = gen
(

(

∅, {A,E}, {B,C,D}
)

)

.

O x

y

A

B C

D

E

EXAMPLE OF NNC POLYHEDRON: GENERATORS 54

CONVEX POLYHEDRA: PROS AND CONS

➜ Pros

• High precision (many optimal operators)

• Reasonable efficiency in several contexts (not everywhere)

➜ Cons

• Exponential complexity bites (in some contexts)

• Sometimes precision is not enough

CONVEX POLYHEDRA: PROS AND CONS 55

SIMPLER ABSTRACT DOMAINS

CONVEX POLYHEDRA ARE NOT THE ONLY OPTION . . .

CONVEX POLYHEDRA ARE NOT THE ONLY OPTION . . . 56

NO ABSTRACTION

O x

y

{

. . . , (2, 9), . . . , (12, 21) . . . ,
}

NO ABSTRACTION 57

CONVEX POLYHEDRA (I)

Ax ≤ b

aij , bj ∈ Q

P. Cousot, N. Halbwachs

Automatic discovery of linear restraints among variables of a program

POPL 1978

CONVEX POLYHEDRA (I) 58

CONVEX POLYHEDRA (II)

O x

y

6x+ y ≤ 111

3x+ 2y ≤ 78

x+ y ≥ 11

2x− y ≥ −5

y ≥ 3

y ≤ 21

CONVEX POLYHEDRA (II) 59

SIGNS (I)

xi ⊲⊳ 0

⊲⊳ ∈ {≤,=,≥}

P. Cousot, R. Cousot

Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints

POPL 1977

SIGNS (I) 60

SIGNS (II)

O x

y

x ≥ 0

y ≥ 0

SIGNS (II) 61

BOUNDING BOXES (I)

ℓ ≤ x ≤ u

ℓi, ui ∈ Q ∪ {−∞,+∞}

P. Cousot, R. Cousot

Static determination of dynamic properties of programs

ISOP 1976

BOUNDING BOXES (I) 62

BOUNDING BOXES (II)

O x

y

2 ≤ x ≤ 18

3 ≤ y ≤ 21

BOUNDING BOXES (II) 63

BOUNDED DIFFERENCES (I)

ℓi ≤ xi − xj ≤ ui

ℓi, ui ∈ Q ∪ {−∞,+∞}

R. Shaham, E.K. Kolodner, S. Sagiv

Automatic removal of array memory leaks in Java

CC2000

A. Miné

A new numerical abstract domain based on difference-bound matrices

PADO2001

BOUNDED DIFFERENCES (I) 64

BOUNDED DIFFERENCES (II)

O x

y

2 ≤ x ≤ 18

3 ≤ y ≤ 21

−10 ≤ x− y

BOUNDED DIFFERENCES (II) 65

OCTAGONS (I)

ℓi ≤ ±xi ± xj ≤ ui

ℓi, ui ∈ Q ∪ {−∞,+∞}

A. Miné

The octagon abstract domain

WRCE 2001

OCTAGONS (I) 66

OCTAGONS (II)

O x

y

2 ≤ x ≤ 18

3 ≤ y ≤ 21

−10 ≤ x− y

11 ≤ x+ y ≤ 33

OCTAGONS (II) 67

MORE ABSTRACTIONS: PENTAGONS

ℓ ≤ x ≤ u

xi < xj

F. Logozzo, M. Fahndrich

Pentagons: A Weakly Relational Abstract Domain for the Efficient

Validation of Array Accesses

SCP 2009

MORE ABSTRACTIONS: PENTAGONS 68

MORE ABSTRACTIONS: OCTAHEDRA

Ax ≤ b

aij ∈ {−1, 0, 1}, bj ∈ Q

R. Clarisó, J. Cortadella

The octahedron abstract domain

SCP 2007

MORE ABSTRACTIONS: OCTAHEDRA 69

MORE ABSTRACTIONS: (BOUNDED) LOGAHEDRA

aixi + ajxj ≤ b

ai, aj ∈ {−2n, 0, 2n | n ∈ Z,−k ≤ n ≤ k }

J.M. Howe, A. King

Logahedra: A New Weakly Relational Domain

ATVA 2009

MORE ABSTRACTIONS: (BOUNDED) LOGAHEDRA 70

GENERALIZATION: TEMPLATE POLYHEDRA

Ax ≤ b

Note: matrix A is fixed, vector b is variable

S. Sankaranarayanan, H.B. Sipma, Z. Manna

Scalable analysis of linear systems using mathematical programming

VMCAI 2005

GENERALIZATION: TEMPLATE POLYHEDRA 71

AFFINE EQUALITIES

Ax = b

aij , bj ∈ Q

M. Karr

Affine relationship among variables of a program

Acta Inf, 1976

AFFINE EQUALITIES 72

WEIGHTED HEXAGONS

ℓ ≤ x ≤ u

xi ≤ a · xj , (a ≥ 0)

J. Fulara, K. Durnoga, K. Jakubczyk, A. Schubert

Relational Abstract Domain of Weighted Hexagons

ENTCS 2010

WEIGHTED HEXAGONS 73

PARALLELOTOPES

ℓ ≤ Ax ≤ u

Note: A (not fixed) is squared and invertible

G. Amato, F. Scozzari

The Abstract Domain of Parallelotopes

ENTCS 2012

PARALLELOTOPES 74

TVPI (TWO VARIABLES PER INEQUALITY)

aixi + ajxj ≤ b

ai, aj , b ∈ Q

A. Simon, A. Kind, J.M. Howe

Two Variables per Linear Inequality as an Abstract Domain

LOPSTR 2002

TVPI (TWO VARIABLES PER INEQUALITY) 75

SUBPOLYHEDRA

ℓ ≤ x ≤ u

Ax+ ǫ = b

ǫ ≥ 0

V. Laviron, F. Logozzo

SubPolyhedra: A (more) scalable approach to infer linear inequalities

VMCAI 2009

SUBPOLYHEDRA 76

TOO MANY DOMAINS?

➜ Another handful have been proposed . . .

➜ Not mentioning domains that are not abstractions of polyhedra:

(relational) congruences, ellipsoids, polynomial (in-) equalities, . . .

➜ Combinations of domains

TOO MANY DOMAINS? 77

ALTERNATIVE APPROACHES FOR EFFICIENCY

KEEP CONVEX POLYHEDRA BUT . . .

KEEP CONVEX POLYHEDRA BUT . . . 78

STATIC VARIABLE PACKING

➜ Statically split dimensions into smaller subsets (the packs)

➜ Note: packs are not necessarily disjoint

➜ Keep a polyhedron for each pack

➜ (optional) Let packs communicate to each other constraints on shared

variables

➜ Approach widely adopted, even for weakly-relational domains

B. Blanchet, P. Cousot, R. Cousot, J. Feret,

L. Mauborgne, A. Miné, D. Monniaux, X. Rival

A static analyzer for large safety-critical software

PLDI 2003

STATIC VARIABLE PACKING 79

APPROXIMATE COSTLY OPERATIONS

➜ Replace the convex polyhedral hull (a.k.a. strong join) by

➜ weak join

➜ inversion join

S. Sankaranarayanan, M.A. Colon, H.B. Sipma, Z. Manna

Efficient Strongly Relational Polyhedral Analysis

VMCAI 2006

A. Simon

A Note on the Inversion Join for Polyhedral Analysis

ENTCS 2010

APPROXIMATE COSTLY OPERATIONS 80

EXPLOIT SPECIFIC PROPERTIES

➜ Constraint sparsity

A. Simon, A. King

Exploiting Sparsity in Polyhedral Analysis

SAS 2005

➜ Dimension independence (dynamic packing)

N. Halbwachs, D. Merchat, C. Parent-Vigouroux

Cartesian Factoring of Polyhedra in Linear Relation Analysis

SAS 2003

G. Singh, M. Puschel, M. Vechev

Fast Polyhedra Abstract Domain

POPL 2017

EXPLOIT SPECIFIC PROPERTIES 81

WHAT IF PRECISION IS THE PROBLEM?

Precision losses typically arise:

➜ when merging control flow paths

➜ without widenings (convex polyhedral hull)

➜ with widenings

➜ when approximating non-linear operators

WHAT IF PRECISION IS THE PROBLEM? 82

IMPROVING THE PRECISION OF WIDENINGS

➜ Many general purpose (i.e., domain independent) techniques

➜ Many domain specific heuristics (extrapolation operators)

➜ Can be combined to improve precision while enforcing termination

R. Bagnara, P.M. Hill, E. Ricci, E. Zaffanella

Precise Widening Operators for Convex Polyhedra

SAS 2003

➜ Can not be more precise than convex polyhedral hull

IMPROVING THE PRECISION OF WIDENINGS 83

EXAMPLE: INTEGER WRAPPING (AND GUARD EVALUATION)

A. Simon, A. King

Taming the Wrapping of Integer Arithmetic

SAS 2004

EXAMPLE: INTEGER WRAPPING (AND GUARD EVALUATION) 84

EXAMPLE: WEAK UPDATES

*ptr = *ptr + 2;

O x

y

O x

y

EXAMPLE: WEAK UPDATES 85

HOW TO IMPROVE CONVEX HULLS: AVOID THEM!

➜ Disjunctive domains: avoid the computation of joins

P. Cousot, R. Cousot.

Abstract interpretation frameworks

JLC 1992

➜ Trace partitioning: delay the computation of joins

X. Rival, L. Mauborgne.

The Trace Partitioning Abstract Domain

TOPLAS 2007

HOW TO IMPROVE CONVEX HULLS: AVOID THEM! 86

FINITE POWERSET DOMAINS

➜ Finite disjunctive sets of incomparable domain elements

➜ F additive ⇒ apply it to each disjunct in isolation

➜ Careful with widening: termination guarantee is easily lost

R. Bagnara, P.M. Hill, E. Zaffanella

Widening Operators for Powerset Domains

VMCAI 2004

FINITE POWERSET DOMAINS 87

DETECTING EXACT JOINS

➜ Different disjunctions may represent the same powerset: the fewer

disjuncts, the better.

➜ For {D1, . . . ,Dk} ⊆ Dn, decide whether
⊎k

i=1
Di =

⋃k

i=1
Di.

➜ Too hard! But the binary case is doable: decide whether

D1 ⊎D2 = D1 ∪D2.

DETECTING EXACT JOINS 88

EXACT JOINS FOR CLOSED POLYHEDRA

➜ For non-empty P1,P2 ∈ CPn, is P1 ⊎ P2 = P1 ∪ P2?

➜ Problem already studied in the literature.

➜ Three variants considered:

• legenda: n = dimension, li = ♯ cons, mi = ♯ gens;

• algorithm for H-polyhedra (constraint representation):

O
(

l1l2 · lp(n, l1 + l2)
)

;

• algorithm for V-polyhedra (generator representation):

O
(

m1m2 · (lp(n,m1) + lp(n,m2))
)

;

• algorithm for VH-polyhedra (double description):

O
(

n(l1 + l2)m1m2

)

;

A. Bemporad, K. Fukuda, F.D. Torrisi.

Convexity recognition of the union of polyhedra

CGTA 2001

EXACT JOINS FOR CLOSED POLYHEDRA 89

ALGORITHM ON CLOSED (V OR VH) POLYHEDRA

➜ Intuitively, based on a mid-point checking technique.

p

q
p+q

2

P1

P2

➜ V-polyhedra: O
(

m1m2 · (lp(n,m1) + lp(n,m2))
)

;

➜ VH-polyhedra: O
(

n(l1 + l2)m1m2

)

;

A. Bemporad, K. Fukuda, F.D. Torrisi.

Convexity recognition of the union of polyhedra

CGTA 2001

ALGORITHM ON CLOSED (V OR VH) POLYHEDRA 90

IMPROVEMENT FOR CLOSED VH-POLYHEDRA (I)

➜ Lemma: let P1,P2 ∈ CPn, non-empty

• β satisfied by P1, violated by P2

• p ∈ P1 \ P2 saturates β

then P1 ∪ P2 is not convex (hence P1 ⊎ P2 6= P1 ∪ P2).

β

β2

s1

p

p2

q

P1

P2

➜ s1 = (p, q) ∈ (P1 ⊎ P2) \ (P1 ∪ P2)

IMPROVEMENT FOR CLOSED VH-POLYHEDRA (I) 91

IMPROVEMENT FOR CLOSED VH-POLYHEDRA (II)

➜ Theorem leading to improved algorithm:

P1 ⊎ P2 6= P1 ∪ P2 iff ∃ constraint β1 and generator g1 of P1 s.t.

➀ g1 saturates β1,

➁ P2 violates β1,

➂ P2 does not subsume g1.

➜ (Asymmetric) complexity bound in O
(

n(l1m1 + l1m2 + l2m1)
)

.

R. Bagnara, P. M. Hill, E. Zaffanella.

Exact Join Detection for Convex Polyhedra and Other Numerical

Abstractions

CGTA 2010

IMPROVEMENT FOR CLOSED VH-POLYHEDRA (II) 92

EXACT JOINS FOR NNC POLYHEDRA (I)

➜ Problem never studied before by the literature

➜ More complex result (due to several awkward cases)

➜ Convexity recognition is no longer enough

O x1

x2

A B

CD

EQ1

Q2

(a) Not Exact
O x1

x2

A B

CD

Q1

Q
′

2

(b) Exact

EXACT JOINS FOR NNC POLYHEDRA (I) 93

LEMMA FOR NNC VH-POLYHEDRA

➜ Lemma: let P1,P2 ∈ Pn, non-empty

• β satisfied by P1, violated by P2,

• p ∈ C(P1) \ C(P2) saturates β

then P1 ⊎ P2 6= P1 ∪ P2.

β

β2

s1

p p2q

P1 P2

➜ s1 = (p, q) ∈ (P1 ⊎ P2) \ (P1 ∪ P2)

LEMMA FOR NNC VH-POLYHEDRA 94

AN ALGORITHM FOR NNC VH-POLYHEDRA

➜ Theorem: P1 ⊎ P2 6= P1 ∪ P2 iff

for some i, j ∈ {1, 2}, i 6= j, there exist gi ∈ Gi and βi ∈ Ci s.t.:

1. gi saturates βi

2. Pj violates βi

3. at least one of the following holds:

3.1. gi is a point, βi is non-strict and gi /∈ C(Pj)

3.2. gi is a ray or closure point not subsumed by Pj

3.3. βi is strict and saturated by a point p ∈ (P1 ⊎ P2) \ Pj

R. Bagnara, P. M. Hill, E. Zaffanella.

Exact Join Detection for Convex Polyhedra and Other Numerical

Abstractions

CGTA 2010

AN ALGORITHM FOR NNC VH-POLYHEDRA 95

AN ALGORITHM FOR NNC VH-POLYHEDRA (II)

➜ Theorem: P1 ⊎ P2 6= P1 ∪ P2 iff

for some i, j ∈ {1, 2}, i 6= j, there exist gi ∈ Gi and βi ∈ Ci s.t.:

1. gi saturates βi

2. Pj violates βi

3. at least one of the following holds:

3.1. gi is a point, βi is non-strict and gi /∈ C(Pj)

3.2. gi is a ray or closure point not subsumed by Pj

3.3. βi is strict and saturated by a point p ∈ (P1 ⊎ P2) \ Pj

AN ALGORITHM FOR NNC VH-POLYHEDRA (II) 96

AN ALGORITHM FOR NNC VH-POLYHEDRA (II)

➜ Theorem: P1 ⊎ P2 6= P1 ∪ P2 iff

for some i, j ∈ {1, 2}, i 6= j, there exist gi ∈ Gi and βi ∈ Ci s.t.:

1. gi saturates βi

2. Pj violates βi

3. at least one of the following holds:

3.1. gi is a point, βi is non-strict and gi /∈ C(Pj)

3.2. gi is a ray or closure point not subsumed by Pj

3.3. βi is strict and saturated by a point p ∈ (P1 ⊎ P2) \ Pj

AN ALGORITHM FOR NNC VH-POLYHEDRA (II) 97

EXACT JOINS FOR NNC POLYHEDRA: CASE 3.2

➜ gi = B is a ray or closure point of Pi = Q1 not subsumed by Pj = Q2

O x1

x2

A B

CD

EQ1

Q2

(c) Not Exact
O x1

x2

A B

CD

Q1

Q
′

2

(d) Exact

EXACT JOINS FOR NNC POLYHEDRA: CASE 3.2 98

AN ALGORITHM FOR NNC VH-POLYHEDRA (III)

➜ Theorem: P1 ⊎ P2 6= P1 ∪ P2 iff

for some i, j ∈ {1, 2}, i 6= j, there exist gi ∈ Gi and βi ∈ Ci s.t.:

1. gi saturates βi

2. Pj violates βi

3. at least one of the following holds:

3.1. gi is a point, βi is non-strict and gi /∈ C(Pj)

3.2. gi is a ray or closure point not subsumed by Pj

3.3. βi is strict and saturated by a point p ∈ (P1 ⊎ P2) \ Pj

AN ALGORITHM FOR NNC VH-POLYHEDRA (III) 99

EXACT JOINS FOR NNC POLYHEDRA: CASE 3.3

➜ βi ≡ (B,C) of Q3 is strict and saturated by point G ∈ (Q3 ⊎ Q4) \ Q4,

hence join is not exact

O x1

x2

A B

CD

E

F

Q3 Q4

(e) Not Exact
O x1

x2

A B

CD

E

F

G

Q3 ⊎ Q4

(f) Join

EXACT JOINS FOR NNC POLYHEDRA: CASE 3.3 100

EXACT JOINS FOR NNC POLYHEDRA: CASE 3.3

O x1

x2

A BE

C

D

F

G
Q5 Q6

(g) Exact
O x1

x2

A

C

D

F

G
Q5 ⊎ Q6

(h) Join

EXACT JOINS FOR NNC POLYHEDRA: CASE 3.3 101

EXACT JOINS FOR OTHER ABSTRACTIONS

➜ Efficient algorithms also for:

➜ attribute independent Cartesian products of simple domains such as

(rational or integer) intervals, congruence equations, modulo

intervals, circular linear progressions;

➜ (rational or integer) bounded difference shapes;

➜ (rational or integer) octagonal shapes.

R. Bagnara, P. M. Hill, E. Zaffanella.

Exact Join Detection for Convex Polyhedra and Other Numerical

Abstractions

CGTA 2010

EXACT JOINS FOR OTHER ABSTRACTIONS 102

EXAMPLE: EXACT JOIN FOR BD SHAPES

O x1

x2

p

P1 P2

(i) Rational Case: Not Exact

O x1

x2

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

P1 P2

(j) Integer Case: Exact

EXAMPLE: EXACT JOIN FOR BD SHAPES 103

CONCLUSION

➜ Polyhedral computations are very important in the field of analysis and

verification of computing systems.

➜ The complexity/precision tradeoff is particularly severe:

• giving up some precision is sometimes necessary

• giving up too much precision might be undesirable

➜ This is why researchers came up with such a variety of abstract

domains and approximate algorithms

➜ There still are a few open issues that need a satisfactory solution

➜ Tiny improvements on the theoretical side sometimes have huge effects

on the practical side

CONCLUSION 104

