
LEARNING-ASSISTED

THEOREM PROVING AND FORMALIZATION

Josef Urban

Czech Technical University in Prague

1 / 47

Outline

Motivation, Learning and Reasoning

Formal Math, Theorem Proving, Machine Learning

Demo

High-level Reasoning Guidance: Premise Selection and Hammers

Low-level Reasoning Guidance

Combined inductive/deductive metasystems

AI/ATP Assisted Informal to Formal Translation

Further AI Challenges and Connections

2 / 47

How Do We Automate Math and Science?

� What is mathematical and scientific thinking?
� Pattern-matching, analogy, induction from examples
� Deductive reasoning
� Complicated feedback loops between induction and deduction
� Using a lot of previous knowledge - both for induction and deduction

� We need to develop such methods on computers
� Are there any large corpora suitable for nontrivial deduction?
� Yes! Large libraries of formal proofs and theories
� So let’s develop strong AI on them!

3 / 47

Induction/Learning vs Reasoning – Henri Poincaré

� Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

� “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

� I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

4 / 47

Learning vs Reasoning – Alan Turing 1950 – AI

� 1950: Computing machinery and intelligence – AI, Turing test
� “We may hope that machines will eventually compete with men in all

purely intellectual fields.” (regardless of his 1936 undecidability result!)
� last section on Learning Machines:
� “But which are the best ones [fields] to start [learning on] with?”
� “... Even this is a difficult decision. Many people think that a very abstract

activity, like the playing of chess, would be best.”
� Why not try with math? It is much more (universally?) expressive ...

5 / 47

Why Combine Learning and Reasoning Today?

1 It practically helps!
� Automated theorem proving for large formal verification is useful:

� Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
� Formal Proof of the Feit-Thompson Theorem (2012 – Gonthier)
� Verification of compilers (CompCert) and microkernels (seL4)
� ...

� But good learning/AI methods needed to cope with large theories!

2 Blue Sky AI Visions:
� Get strong AI by learning/reasoning over large KBs of human thought?
� Big formal theories: good semantic approximation of such thinking KBs?
� Deep non-contradictory semantics – better than scanning books?
� Gradually try learning math/science:

� What are the components (inductive/deductive thinking)?
� How to combine them together?

6 / 47

The Plan

1 Make large “formal thought” (Mizar/MML, Isabelle/HOL/AFP,
HOL/Flyspeck ...) accessible to strong reasoning and learning AI tools –
DONE (or well under way)

2 Test/Use/Evolve existing AI and ATP tools on such large corpora

3 Build custom/combined inductive/deductive tools/metasystems

4 Continuously test performance, define harder AI tasks as the
performance grows

7 / 47

What is Formal Mathematics?

� Conceptually very simple:
� Write all your axioms and theorems so that computer understands them
� Write all your inference rules so that computer understands them
� Use the computer to check that your proofs follow the rules
� But in practice, it turns out not to be so simple

8 / 47

Irrationality of 2 (informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem).
p

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

p
2

is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a; b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is
also even, contrary to the hypothesis that (a; b) = 1. �

9 / 47

Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;

10 / 47

Irrationality of 2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

11 / 47

Irrationality of 2 in Coq

Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H H0; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
[idtac | unfold Div2.double; ring].
case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Qed.

12 / 47

Irrationality of 2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
��IURP�QBQRQ]HUR�DQG�VTUWBUDW�KDYH��UHDO�P� �hVTUW��UHDO���h�
�UHDO�Q��E\�VLPS
��WKHQ�KDYH��UHDO��Pt�� ��VTUW��UHDO����t�
�UHDO��Qt��
����E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�
��DOVR�KDYH���VTUW��UHDO����t� �UHDO����E\�VLPS
��DOVR�KDYH������
�UHDO��Pt�� �UHDO����
�Qt���E\�VLPS
��ILQDOO\�KDYH�HT���Pt� ���
�Qt����
��KHQFH����GYG�Pt����
��ZLWK�WZRBLVBSULPH�KDYH�GYGBP�����GYG�P��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��WKHQ�REWDLQ�N�ZKHUH��P� ���
�N����
��ZLWK�HT�KDYH����
�Qt� ��t�
�Nt��E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�PXOWBDF�
��KHQFH��Qt� ���
�Nt��E\�VLPS
��KHQFH����GYG�Qt����
��ZLWK�WZRBLVBSULPH�KDYH����GYG�Q��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��ZLWK�GYGBP�KDYH����GYG�JFG�P�Q��E\��UXOH�JFGBJUHDWHVW�
��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG

13 / 47

Big Example: The Flyspeck project

� Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V =
�p
18

� 74%

� Formal proof finished in 2014
� 20000 lemmas in geometry, analysis, graph theory
� All of it at https://code.google.com/p/flyspeck/
� All of it computer-understandable and verified in HOL Light:
� polyhedron s /\ c face_of s ==> polyhedron c

� However, this took 20 – 30 person-years!

14 / 47

https://code.google.com/p/flyspeck/

What Are Automated Theorem Provers?

� Computer programs that (try to) determine if
� A conjecture C is a logical consequence of a set of axioms Ax

� 1957 - Robinson: exploring the Herbrand universe as a generalization of
exploring geometric constructions

� Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
� Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
� Human-designed heuristics for pruning of the search space
� Combinatorial blow-up on large knowledge bases like Flyspeck and Mizar
� Need to be equipped with good domain-specific inference guidance ...
� ... and that is what I try to do ...
� ... typically by learning in various ways from the knowledge bases ...
� ... functions in high-dimensional meaning/explanation spaces ...

15 / 47

Machine Learning – Approaches

� Statistical (geometric?) – encode objects using features in Rn

� neural networks (backpropagation – gradient descent, deep learning)
� support vector machines (find a good classifying hyperplane), possibly after

non-linear transformation of the data (kernel methods)
� decision trees, random forests – find classifying attributes
� k-nearest neighbor – find the k nearest neighbors to the query
� naive Bayes – compute probabilities of outcomes (independence of features)
� features extremely important: weighting schemes (TF-IDF), dimensionality

reduction to generalize (PCA, LSA, word2vec, neural embeddings, ...)
� Symbolic – usually more complicated representation of objects

� inductive logic programming (ILP) – generate logical explanation (program)
from a set of ground clauses by generalization

� genetic algorithms – evolve objects by mutation and crossover

16 / 47

Mizar demo

http://grid01.ciirc.cvut.cz/~mptp/out4.ogv

17 / 47

http://grid01.ciirc.cvut.cz/~mptp/out4.ogv

High-level ATP guidance: Premise Selection

� Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

� About 80000 nontrivial math facts at that time – impossible to use them all
� Is good premise selection for proving a new conjecture possible at all?
� Or is it a mysterious power of mathematicians? (Penrose)
� Today: Premise selection is not a mysterious property of mathematicians!
� Reasonably good algorithms started to appear (more below).
� Will extensive human (math) knowledge get obsolete?? (cf. Watson)

18 / 47

Example system: Mizar Proof Advisor (2003)

� train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
� input features: conjecture symbols; output labels: names of facts
� recommend relevant facts when proving new conjectures
� First results over the whole Mizar library in 2003:

� about 70% coverage in the first 100 recommended premises
� chain the recommendations with strong ATPs to get full proofs
� about 14% of the Mizar theorems were then automatically provable (SPASS)

� Today’s methods: about 45-50% (and we are still just beginning!)

19 / 47

ML Evaluation of methods on MPTP2078 – recall

� Coverage (recall) of facts needed for the Mizar proof in first n predictions
� MOR-CG – kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
� SINe, Aprils - heuristic (non-learning) fact selectors

20 / 47

ATP Evaluation of methods on MPTP2078

� Number of the problems proved by ATP when given n best-ranked facts
� Good machine learning on previous proofs really matters for ATP!

21 / 47

Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Isabelle (Auth, Jinja) – Sledgehammer
� Flyspeck (+ HOL Light and Multivariate), HOL4 – HOL(y)Hammer
� Mizar / MML – MizAR

� 45% success rate

22 / 47

Recent Improvements

� Semantic features encoding term matching
� Distance-weighted k-nearest neighbor, TF-IDF, LSI, better ensembles

(MePo)
� Matching and transfering concepts and theorems between libraries

(Gauthier & Kaliszyk)
� Lemmatization – extracting and considering millions of low-level lemmas
� Neural sequence models, definitional embeddings (Google Research)

23 / 47

FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;

24 / 47

FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX:
Face t of a convex set s is equal to the intersection of s with the affine hull of t .

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)

POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)

25 / 47

Low-level guidance for tableau:
Machine Learning Connection Prover (MaLeCoP)

� MaLeCoP: put the AI methods inside a tableau ATP
� the learning/deduction feedback loop runs across problems and inside

problems
� The more problems/branches you solve/close, the more solutions you

can learn from
� The more solutions you can learn from, the more problems you solve
� first prototype (2011): very slow learning-based advice (1000 times

slower than inference steps)
� already about 20-time proof search shortening on MPTP Challenge

compared to leanCoP
� second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
� about 15% improvement over untrained leanCoP on the MPTP problems
� recent research: Monte Carlo Connection Prover

26 / 47

Low-level guidance for superposition: ENIGMA

� Train a fast classifier distinguishing good and bad generated clauses
� Plug it into a superposition prover (E prover) as a clause evaluation

heuristic
� Combine it with various ways with more standard (common-sense)

guiding methods
� Very recent work, 86% improvement of the best tactic on an algebraic

benchmark (AIM)

27 / 47

Examples of self-evolving metasystems

� Various positive feedback loops
� Machine Learner for Automated Reasoning (MaLARea)
� Blind Strategymaker (BliStr)

28 / 47

Machine Learner for Automated Reasoning
Feedback loop interleaving ATP with learning premise selection

29 / 47

MaLARea

� MaLARea 0.4 (CASC@Turing) - unordered mode, explore & exploit, etc.
� The more problems you solve (and fail to solve), the more solutions (and

failures) you can learn from
� The more you can learn from, the more you solve
� In some sense also conjecturing (omiting definitions)
� The CASC@Turing performance curve flat for quite a while:
� http://www.cs.miami.edu/~tptp/CASC/J6/TuringWWWFiles/
ResultsPlots.html#MRTProblems

� CASC 2013, MaLARea 0.5 (ordered mode, many changes): solved 77%
more problems than the second system

� http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/
DivisionSummary1.html

30 / 47

http://www.cs.miami.edu/~tptp/CASC/J6/TuringWWWFiles/ResultsPlots.html#MRTProblems
http://www.cs.miami.edu/~tptp/CASC/J6/TuringWWWFiles/ResultsPlots.html#MRTProblems
http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/DivisionSummary1.html
http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/DivisionSummary1.html

BliStr: Blind Strategymaker

� Problem: how do we put all the sophisticated ATP techniques together?
� E.g., Is conjecture-based guidance better than proof-trace guidance?
� Grow a population of diverse strategies by iterative local search and

evolution!
� Dawkins: The Blind Watchmaker

31 / 47

BliStr: Blind Strategymaker

� The strategies are like giraffes, the problems are their food
� The better the giraffe specializes for eating problems unsolvable by

others, the more it gets fed and further evolved

32 / 47

BliStr: Blind Strategymaker

� Use clusters of similar solvable problems to train for unsolved problems
� Interleave low-time training with high-time evaluation
� Thus co-evolve the strategies and their training problems
� In the end, learn which strategy to use on which problem
� Recently improved by dividing the invention into hierarchies of parameters
� About 25% improvement on unseen problems
� Be lazy, don’t do "hard" theory-driven ATP research (a.k.a: thinking)
� Larry Wall (Programming Perl): "We will encourage you to develop the

three great virtues of a programmer: laziness, impatience, and hubris"

33 / 47

BliStr on 1000 Mizar@Turing training problems

 560

 580

 600

 620

 640

 660

 680

 700

 720

 1 2 4 8 16 32 64 128

T
ot

al
 S

ol
ve

d
P

ro
bl

em
s

Iterations

BliStrTune (new weights)
BliStrTune (old weights)

BliStr

34 / 47

BliStr on 400 Mizar@Turing testing problems

 160

 180

 200

 220

 240

 260

 280

 1 2 4 8 16 32 64

S
ol

ve
d

P
ro

bl
em

s
C

ou
nt

Time [s]

E 1.9 (BliStrTune)
Vampire 4.0

E 1.9 (auto-schedule)

35 / 47

Learning Informal to Formal Translation

� Dense Sphere Packings: A Blueprint for Formal Proofs
� 400 theorems and 200 concepts mapped [Hales13]
� simple wiki

� Feit-Thompson theorem by Gonthier [Gonthier13]

� Two graduate books
� Compendium of Continuous Lattices (CCL)

� 60% formalized in Mizar [BancerekRudnicki02]
� high-level concepts and theorems aligned

� ProofWiki with detailed proofs and symbol linking
� General topology corresponence with Mizar
� Similar projects (PlanetMath, ...)

36 / 47

Aligned Formal and Informal Math - Flyspeck [CICM13, ITP’13]

Document:

Informal Formal

Definition of [fan, blade] DSKAGVP (fan) [fan FAN]

Let be a pair consisting of a set and a set of unordered pairs of distinct elements
of . The pair is said to be a fan if the following properties hold.

(CARDINALITY) is finite and nonempty. [cardinality fan1]1.
(ORIGIN) . [origin fan2]2.
(NONPARALLEL) If , then and are not parallel. [nonparallel fan6]3.
(INTERSECTION) For all , [intersection fan7]4.

When , call or a blade of the fan.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial
consequence of the definition.

Informal Formal

Lemma [] CTVTAQA (subset-fan)

If is a fan, then for every , is also a fan.

Proof

This proof is elementary.

Informal Formal

Lemma [fan cyclic] XOHLED

[set_of_edge] Let be a fan. For each , the set

is cyclic with respect to .

Proof

If , then and are not parallel. Also, if , then

Article Raw Log in

↔

(V , E) V ⊂ R3 E
V

V ↔
0 ∉ V ↔

{v, w} ∈ E v w ↔
ε, ∈ E ∪ {{v} : v ∈ V }ε′ ↔

C(ε) ∩ C() = C(ε ∩).ε′ ε′

ε ∈ E (ε)C0 C(ε)

(V , E) ⊂ EE ′ (V ,)E ′

E(v) ↔ (V , E) v ∈ V

E(v) = {w ∈ V : {v, w} ∈ E}

(0, v)

w ∈ E(v) v w w ≠ ∈ E(v)w′

Document:

Informal Formal

#DSKAGVP?

let FAN=new_definition`FAN(x,V,E) <=> ((UNIONS E) SUBSET V) /\ graph(E) /\ fan1(x,V,E) /\ fan2(x,V,E)/\
fan6(x,V,E)/\ fan7(x,V,E)`;;

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of
the definition.

Informal Formal

let CTVTAQA=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (E1:(real^3->bool)->bool).
FAN(x,V,E) /\ E1 SUBSET E
==>
FAN(x,V,E1)`,

REPEAT GEN_TAC
THEN REWRITE_TAC[FAN;fan1;fan2;fan6;fan7;graph]
THEN ASM_SET_TAC[]);;

Informal Formal

let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (v:real^3).
FAN(x,V,E) /\ v IN V
==> cyclic_set (set_of_edge v V E) x v`,

MESON_TAC[CYCLIC_SET_EDGE_FAN]);;

Informal Formal

Remark [easy consequences of the definition] WCXASPV (fan)

Let be a fan.

The pair is a graph with nodes and edges . The set

is the set of edges at node . There is an evident symmetry: if and only if .

1.

[sigma_fan] [inverse1_sigma_fan] Since is cyclic, each has an azimuth
cycle . The set can reduce to a

2.

singleton. If so, is the identity map on . To make the notation less cumbersome,
denotes the value of the map at .

The property (NONPARALLEL) implies that the graph has no loops: .1.

The property (INTERSECTION) implies that distinct sets do not meet. This property of fans
is eventually related to the planarity of hypermaps.

2.

Article Raw Log in

(V , E)

(V , E) V E

{{v, w} : w ∈ E(v)}

v w ∈ E(v) v ∈ E(w)
σ ↔ σ(v)−1 ↔ E(v) v ∈ V

σ(v) : E(v) → E(v) E(v)

σ(v) E(v) σ(v, w)
σ(v) w

{v, v} ∉ E

(ε)C0

37 / 47

Statistical Parsing of Informalized HOL

� Experiments with the CYK chart parser linked to semantic methods
� Training and testing examples exported form Flyspeck formulas

� Along with their informalized versions
� Grammar parse trees

� Annotate each (nonterminal) symbol with its HOL type
� Also “semantic (formal)” nonterminals annotate overloaded terminals
� guiding analogy: word-sense disambiguation using CYK is common

� Terminals exactly compose the textual form, for example:
� REAL_NEGNEG: 8x :��x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

� becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))

38 / 47

Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

39 / 47

CYK Learning and Parsing

� Induce PCFG (probabilistic context-free grammar) from the trees
� Grammar rules obtained from the inner nodes of each grammar tree
� Probabilities are computed from the frequencies

� The PCFG grammar is binarized for efficiency
� New nonterminals as shortcuts for multiple nonterminals

� CYK: dynamic-programming algorithm for parsing ambiguous sentences
� input: sentence – a sequence of words and a binarized PCFG
� output: N most probable parse trees

� Additional semantic pruning
� Compatible types for free variables in subtrees

� Allow small probability for each symbol to be a variable
� Top parse trees are de-binarized to the original CFG

� Transformed to HOL parse trees (preterms, Hindley-Milner)

40 / 47

Experiments with Informalized Flyspeck

� 22000 Flyspeck theorem statements informalized
� 72 overloaded instances like “+” for vector_add
� 108 infix operators
� forget all “prefixes”

� real_, int_, vector_, nadd_, hreal_, matrix_, complex_
� ccos, cexp, clog, csin, ...
� vsum, rpow, nsum, list_sum, ...

� Deleting all brackets, type annotations, and casting functors
� Cx and real_of_num (which alone is used 17152 times).

� online parsing/proving demo system
� 100-fold cross-validation

41 / 47

Online parsing system

� “sin (0 * x) = cos pi / 2”

� produces 16 parses
� of which 11 get type-checked by HOL Light as follows
� with all but three being proved by HOL(y)Hammer

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

42 / 47

Results over Flyspeck

� First version (2015): In 39.4% of the 22,000 Flyspeck sentences the
correct (training) HOL parse tree is among the best 20 parses

� its average rank: 9.34
� Second version (2016): 67.7% success in top 20 and average rank 3.35
� 24% of them AITP provable

43 / 47

Pointers to Formal Parsing

� Demo of the probabilistic/semantic parser trained on informal/formal
Flyspeck pairs:

� http://colo12-c703.uibk.ac.at/hh/parse.html

� The linguistic/semantic methods explained in
http://dx.doi.org/10.1007/978-3-319-22102-1_15

� Compare with Wolfram Alpha:
� https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+
cos+pi+%2F+2

44 / 47

http://colo12-c703.uibk.ac.at/hh/parse.html
http://dx.doi.org/10.1007/978-3-319-22102-1_15
https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+cos+pi+%2F+2
https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+cos+pi+%2F+2

Further Challenges in AI over Large Formal KBs

� Refactoring of long ATP proofs for human consumption – 70k-long proof
by Bob Veroff & Prover9, 20k by David Stanovsky & Waldmeister, etc.

� Using strong AI/ATP to help automated disambiguation/understanding of
arXiv, Stacks, everything?

� Emulating the layer on which mathematicians think – learning from
natural language proofs and theories, concept and theory invention

� Conjecturing in large theories – several methods possible (recently tried
concept/theory matching)

� What will it take to prove Brouwer or Jordan fully automatically?
� Geometry: How to find the “magic function” used by Viazovska in solving

sphere packing in dim 8 (and 24)?

45 / 47

Acknowledgments

� Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
� Petr Stepanek, Jiri Vyskocil, Jan Jakubuv, Chad Brown, Martin Suda, Ondrej

Kuncar, David Stanovsky, Krystof Hoder, Petr Pudlak, ...
� HOL(y)Hammer group in Innsbruck:

� Cezary Kaliszyk, Thibault Gauthier, Michael Faerber
� ATP and ITP people:

� Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Jens Otten, Larry Paulson,
Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Mark Adams,
Ramana Kumar, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...

� Learning2Reason people at Radboud University Nijmegen:
� Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze, Herman Geuvers

� Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi,
Francois Chollet

� ... and many more ...
� Funding: Marie-Curie, NWO, ERC

46 / 47

http://arg.ciirc.cvut.cz/

Thanks and Advertisement

� Thanks for your attention!
� AITP: http://aitp-conference.org
� ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
� Two EU-funded PhD positions on the AI4REASON project
� http://ai4reason.org/ai4reasonphd.txt

� Good background in logic and programming
� Interest in AI, Automated/Formal Reasoning, Machine Learning or

Computational Linguistics
� Email to Josef.Urban@gmail.com

47 / 47

http://aitp-conference.org
http://ai4reason.org/ai4reasonphd.txt
Josef.Urban@gmail.com

	Motivation, Learning and Reasoning
	Formal Math, Theorem Proving, Machine Learning
	Demo
	High-level Reasoning Guidance: Premise Selection and Hammers
	Low-level Reasoning Guidance
	Combined inductive/deductive metasystems
	AI/ATP Assisted Informal to Formal Translation
	Further AI Challenges and Connections

