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• 1843 Emergence (1843 - John Stuart Mill - A System of Logic)

• 1921 Emergent Evolution (1923 - Lloyd Morgan - Emergent Evolution)

• 1940s Cybernetics (1952 - Ashby - Design for a Brain) 

• 1995 Book: Major Transitions in Evolution



The Major Transition in Evolution
Maynard Smith and Szathmáry identified several 
properties common to the transitions:
• Smaller entities have often come about together to 

form larger entities. e.g. Chromosomes, eukaryotes, 
sex multicellular colonies.

• Smaller entities often become differentiated as part of a 
larger entity. e.g. DNA & protein, organelles, anisogamy, 
tissues, castes

• The smaller entities are often unable to replicate in the 
absence of the larger entity. e.g. DNA, chromosomes, 
Organelles, tissues, castes

• The smaller entities can sometimes disrupt the 
development of the larger entity, e.g. Meiotic drive 
(selfish non-Mendelian genes), parthenogenesis, 
cancers, coup d’état

• New ways of transmitting information have arisen.e.g. 
DNA-protein, cell heredity, epigenesis, universal 
grammar.

https://en.wikipedia.org/wiki/The_Major_Transitions_in_Evolution



The Major Evolutionary Transitions



• 1843 Emergence (1843 - John Stuart Mill - A System of Logic) 

• 1921 Emergent Evolution (1923 - Lloyd Morgan - Emergent Evolution) 

• Control Theory 

• 1940s Cybernetics (1952 - Ashby - Design for a Brain)  

• 1956 Artificial Intelligence 

• Self Organised Criticality

• 1963 Chaotic Theory (1987 James Gleick - Chaos: The Making of a new Science)

• - Robotics (1984 - Braitenberg Vehicles)

• 1984 Complex Systems (1995 - M Gell Mann - What is Complexity)

• 1986 Artificial Life (1991 - Thomas Ray - Tierra)

• 1977 Artificial Chemistries (1996 - Walter Fontana - The Barrier of Objects)

• 2001 Chemical Organisation Theory (2007 - Dittrich, Speroni - Chemical Organisation Theory)





Polymer Chemistry 
on Tape

Polymer Chemistry 
on Tape

Artificial Chemistry

from RNA model

Abstraction



Constructive 
Dynamical 
Systems

Constructing the Molecules

Constructing the “Objects”



Historical Problems:  
We use Ordinary Differential Equations to model the world  

In an ODE there is no novelty



Artificial Chemistry as 
a crude abstraction of 

a Constructive 
Dynamical System

Infinite Molecular Types

All Reaction Catalytic

Out-flux from each Molecule

Well Stirred

No Conservation of Mass
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dx1 /dt = k2 x2 x2 - x1 Φ  

dx2 /dt = k1 x1 x2 – x2 Φ

k1

k2

dilution flux Φ
(catalytic)
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Artificial Chemistry as 
a crude abstraction of 

a Constructive 
Dynamical System

Infinite Molecular Types

All Reaction Catalytic

Out-flux from each Molecule

Well Stirred

No Conservation of Mass



Organisations as 
Emerging Objects

An Organisation is defined 
as a Closed and Self 

Maintaining set

Closed: all the reactions 
recreate elements inside

Self Maintaining: There is 
an internal reaction that 
recreate each Molecule



What would be conserved if the “tape were played twice”

We develop an abstract chemistry 
[…]  
the following features are generic to this 
particular abstraction of chemistry;  
hence, they would be expected to reappear if 
"the tape were run twice”: 

• hypercycles of self-reproducing objects arise;  
• if self-replication is inhibited, self-maintaining 

organisations arise; 
• self maintaining organisations, once 

established, can combine into higher-order 
self-maintaining organisations.



Organisations as 
Hierarchical Structures

A

B

C

A

B

C



Organisations as 
Partially Ordered 

Structures

A

B

C

D

Not all Organisations 
are comparable



Closure and  
Self Maintenance  

in  
Catalytic Flow Systems



Closed Sets

If given a set of element S,  
each interaction will just create elements of that set we 
say that the set is closed: 

∀ x,y ∊ S x(y) ⇒ S 
then S is closed



Self Maintaining Sets

If given a set of element S,  
each element (x) is created by a reaction pathway inside 
the set (y,z),  
then the set is self maintaining: 

∀ x ∊ S      ∃ y, z ∊ S          such that        x = y(z)



Organisations

A set who is both closed and self 
maintaining is an Organisation
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A set who is both closed and self 
maintaining is a Organization



An Example

• Each molecule has also a first order outflow:

1 32

4
➢ 1 
→∅ 

➢ 2 
→∅ 

➢ 3 
→∅ 

➢ 4 
→∅



Network

Node: molecular species 

Arc: „If molecule 1 and 3 is 
present, then 4 can/will be 
produced“.  

1

32

4
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An Example

  self-maintaining set
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An Example

  self-maintaining set
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An Example

organisation = closed and self-maintaining 
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organisation = closed and self-maintaining 



An Example

1 32
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organisation = closed and self-maintaining 



An Example

set of all organisations

1 32

4



Lattice of  organisations

Given the set of all  organization (O),  
given the operation  organizational union (⊔), 
given the operation  organizational intersection (⊓),  

  

<O, ⊔, ⊓ > is a Lattice.



Lattice of  organisations

{1}

{2, 3}

{1,2,3,4}

{ }
1 32

4



Closed set generated by a set

• Given any set is possible to generate its closure. The 
smallest closed set containing it.

A B

C
D

E
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Self Maintaining Set generated 
by a set.

Given any set is possible to reduce to its self maintaining 
subset.
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Organisation generated by a 
subset

• In the same way given any set it uniquely 
generates a Organisation. 

• This is done by first taking the closure of the 
set 

• then the biggest   self maintaining set in the 
closed set. 



Organisation generated by a 
subset

Closure

Self Maintainance
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Organisation generated by a 
subset



Organisation generated by a 
subset

Of course if the starting subset is already a  organization the we 
will just regenerate the same  organization. 
So  organisations are the fixed point  
of the “generate  organization” operator.



Intersection of  
Organisation 

• Of course given two  organisations it is 
uniquely defined the  organization generated 
by their intersection
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Union of  organisations 

• Of course given two  organisations it is 
uniquely defined the  organization generated 
by their union



Self Organisation in a System of Binary Strings

NTop
Boolean strings folded into matrix; 
Matrix multiplication; 
Result unfolded;
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Self Organisation in a System of Binary Strings

NTop
Boolean strings folded into matrix; 
Matrix multiplication; 
Result unfolded;

15 Molecules

53 Organisations
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Toward a Theory of Organisations

Organisations form an algebra,  
a  Lattice in particular

Given any set of molecules you 
can define the organisation 
generated by this set

for all sets of molecules T, 
exists OT  

(that can be generated in this way….)  
such that OT is an Organisation.  

If T, S sets, with T>S 
Then OT ≥ OS



Peter Dittrich - FSU & JCB Jena 103

The Lattice of Organizations

5 July 2004 Dagstuhl
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Lattice of Organizations

Given the set of all organization (O),  
given the operation organizational union (∪), 
given the operation organizational intersection (∩), 

  

<O, ∪, ∩ > is a Lattice.

5 July 2004 Dagstuhl



Example of Lattice

BA

C

D
B

A
C = A ⨆ B

D = A ⨅ B



Example of not a Lattice

BA

C

D

C



NTop

15 Molecules

53 Organisations

54 Organisations



Artificial Chemistry’s Global Dynamic.
Movements in the Lattice of Organisation

…we consider the set of all possible organisations in an 
artificial chemistry. 

…this set generates a lattice.  

We consider the dynamical movement of a system in 
this lattice, under the influence of its inner dynamic and 

random noise.  

We notice that some organisations, while being 
algebraically closed, are not stable under the influence 

of random external noise. While others, while being 
algebraically self-maintaining, do not dynamically self-
maintain all their elements. This leads to a definition of 

attractive organisations.



Problems: Find the Lattice of organisations



Chemical Organisation Theory

Formal Definition of Organisation 
that can be applied to 
-Chemistry 
-Biology 
-Systems Biology 
-Atmospheric Chemistry 
-Engineering 
-…

When is it a Lattice  
When it is not



Chemical Organisation Theory



Understanding an Artificial Chemistry

Understanding an Artificial Chemistry means at least: 

• know the lattice of Organisations: 

• know all the organisations; 
• given any two organisations A, B,  

know what is: A ⨆ B, A ⨅ B

Problems: Find the Lattice of organisations

A list, and 2 tables



Applying the Lattice

• Start with a set of organisations. 
• Calculate all the union and intersections and add them; 
• Until you cannot add anything anymore;  

• Now you have a sub-lattice 
• Take an Org, add some molecules to find a new Organisation 

• Go from sub lattice to sub lattice  

• …until you have found all the organisations.



Theorem 1

BA

S

In a lattice: 
(A U B) U C = A U (B U C);  
 
We have 2 Organisations S, C; 
We are looking for T with T = S U C,  

If exist 2 Organisations A, B 
such that S = A U B  
 
Then: 
T = A U (B U C). 

We might know R = B U C. 
In which case  
T = S U C = A U R

C

T
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Theorem 2

B

C

A

In a lattice:

A, B, C, R are 
Organisations  
A < B < C  
 
We want to find T = B U R  
 
If A U R = C U R 

Then B U R = A U R = C U R  

T

R



Theorem 2

B

C

A

In a lattice: 

A, B, C, R are Organisations  
A < B < C  
 
We want to find T = B U R  
 
If A U R = C U R

Then B U R = A U R = C U R  

T

R



Theorem 2

C

A
If A U R = C U R

Anything in between 
just goes there.

T

RB



Theorem 2

C

But T U R = T = C U R

Thus

T

R

B



Theorem 3

BA

S

C D

If A U B = S;  
if C, A ≤ C ≤ S;  
if D, B ≤ D ≤ S; 

then:  
C U D = S.



Theorem 3

BA

S

C D

If A U B = S; 
if C, A ≤ C ≤ S;  
if D, B ≤ D ≤ S; 

then:  
C U D = S.



Theorem 3

BA

S

C D

If A U B = S; 
if C, A ≤ C ≤ S;  
if D, B ≤ D ≤ S; 

then:  
C U D = S.



Theorem 3

BA

S

C D

If A U B = S; 
if C, A ≤ C ≤ S;  
if D, B ≤ D ≤ S; 

then: 
C U D = S.



How many Union and Intersections 
are Calculated vs Demonstrated

organisations found



Problem

A

B

B \ A

what molecules to ignore

what subsets of 
molecules to ignore

f



Problem

A

B

B \ A

what molecules to ignore

what subsets of 
molecules to ignore

f
A

Bf



4 options

A

B

B \ A
what subsets of 

molecules to ignore

f
A

Bf

Af —> B > A 
Af —> C with B > C > A, f ∈ C 
Af —> D with B > D > A, f ∉ D 
Af —> ADownward
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4 options

A

B

B \ A
what subsets of 

molecules to ignore

f
A

Bf

Af —> B > A 
Af —> C with B > C > A, f ∈ C 
Af —> D with B > D > A, f ∉ D
Af —> A

C

Upward

Downward

C
f

Upward

D

D

Sideward



Applying the Lattice  
one molecule at a time

• Start with a set of organisations. 
• Calculate all the union and intersections and add them; 
• Until you cannot add anything anymore;  

• Now you have a sub-lattice 
• Take an Org, add ONE molecule to find a new Organisation 

• Go from sub lattice to sub lattice  

• …until you have found all the organisations.



 4  3 options

A

B

what subsets of 
molecules to ignore

f
A

Bf

Af —> B > A 
Af —> D with B > D > A, f ∉ D 
Af —> ADownward

Upward

D

Sideward

B \ A

D



A

B

A sideward molecule of an organisation 
is always a downward molecule 

of another organisation

f
A

Bf

Af —> D with B > D > A, f ∉ D 
Df —> DDownward

D

Sideward

B \ A

D

We don’t need to study the sidewards



 4  3  2 options

A

B

what subsets of 
molecules to ignore

f
A

Bf

Af —> B > A 
Af —> ADownward

Upward

B \ A



Taking 2 molecules at a time

A

B

what subsets of 
molecules to ignore

f

Downward

Upward
D

Sideward

e

B \ A

cases
e goes

up down

f goes
up 1 2

down 2 3



Case 1, 2: If one molecule goes upward

A

B

f

Upward

e

B \ A

cases
e goes

up down

f goes
up 1 2

down 2 3
We need to calculate  
GO(A U f U e) = GSM(GC(A U f U e))  
 
We know that  
A U f ≤ GO(A U f) = B ≤ GC(A U f); 
thus GO(A U f) = GC(A U f) 
 
GO(A U f U e) =  
= GSM(GC(A U f U e)) =   
= GSM(GC(GC(A U f) U e)) = 
= GSM(GC(GO(A U f) U e)) = 
= GO(B U e)  

Which is something we obtained before.  
So cases 1, 2, will not lead to anything 
new. We don’t need to calculate them 



Problem

A

B

Solved 
Theorem: No Organisation Left Behind

what molecules to ignore

what sets of molecules to ignore? 
Any subset where at least a subset of molecules of it goes upward  f

cases
e goes

up down

f goes
up

down



Take away message

If something has a mathematical property: 
use it



Note:
The code is available on git hub

https://github.com/pietrosperoni/LatticeOfChemicalOrganisations/tree/Public

https://github.com/pietrosperoni

https://github.com/pietrosperoni


Thank You

pietrosperoni.it

http://pietrosperoni.it

