An Introduction to Artificial Chemistries:

Algebra
applied to Informatics applied to Biology

Algebra (Informatics (Chemistry n Biology))

Sietro Speroni di FTenizio

Dublin City University
Coimbra University
Jena Center of Bioinformatics

- 1843 Emergence (1843 - John Stuart Mill - A System of Logic)

1921 Emergent Evolution (1923 - Lloyd Morgan - Emergent Evolution)

- 1940s Cybernetics (1952 - Ashby - Design for a Brain)

1995 Book: Major Transitions in Evolution

The Major Transition in Evolution

Maynard Smith and Szathmáry identified several properties common to the transitions:

- Smaller entities have often come about together to form larger entities. e.g. Chromosomes, eukaryotes, sex multicellular colonies.
- Smaller entities often become differentiated as part of a larger entity. e.g. DNA \& protein, organelles, anisogamy, tissues, castes
- The smaller entities are often unable to replicate in the absence of the larger entity. e.g. DNA, chromosomes, Organelles, tissues, castes
- The smaller entities can sometimes disrupt the development of the larger entity, e.g. Meiotic drive (selfish non-Mendelian genes), parthenogenesis, cancers, coup d'état
- New ways of transmitting information have arisen.e.g. DNA-protein, cell heredity, epigenesis, universal grammar.

The Major Evolutionary Transitions

The major evolutionary transitions

TABLE 1 The major transitions ${ }^{1}$

Replicating molecules to populations of molecules in compartments Unlinked replicators to chromosomes
RNA as gene and enzyme to DNA and protein (genetic code) Prokaryotes to eukaryotes
Asexual clones to sexual populations
Protists to animals, plants and fungi (cell differentiation)
Solitary individuals to colonies (non-reproductive castes)
Primate societies to human societies (language)

- 1843 Emergence (1843 - John Stuart Mill - A System of Logic)
- 1921 Emergent Evolution (1923 - Lloyd Morgan - Emergent Evolution)
- Control Theory
- 1940s Cybernetics (1952 - Ashby - Design for a Brain)
- 1956 Artificial Intelligence

Self Organised Criticality
1963 Chaotic Theory (1987 James Gleick - Chaos: The Making of a new Science)

- Robotics (1984 - Braitenberg Vehicles)

1984 Complex Systems (1995-M Gell Mann - What is Complexity)
1986 Artificial Life (1991 - Thomas Ray - Tierra)

- 1977 Artificial Chemistries (1996 - Walter Fontana - The Barrier of Objects)

2001 Chemical Organisation Theory (2007 - Dittrich, Speroni - Chemical Organisation Theory)

M.Eigen P.Schuster

The Hypericycte
A Principle of Natural Self-Organization

Fig. 4. The catalytic cycle represents a higher level of organization in the hierarchy of catalytic schemes. The constituents of the cycle $\mathrm{E}_{1} \rightarrow \mathrm{E}_{n}$ are themselves catalysts which are formed from some en-ergy-rich substrates (S), whereby each intermediate E_{i} is a catalyst for the formation of E_{i+1}. The catalytic cycle seen as an entity is equivalent to an autocatalyst, which instructs its own reproduction. To be a catalytic cycle it is sufficient, that only one of the intermediates formed is a catalyst for one of the subsequent reac-

Fig. 7. A catalytic hypercycle consists of self-instructive units I_{i} with two-fold catalytic functions. As autocatalysts or - more gener-ally-as catalytic cycles the intermediates I_{i} are able to instruct their own reproduction and, in addition, provide catalytic support for the reproduction of the subsequent intermediate (using the energy-rich building material X). The simplified graph (b) indicates the cyclic hierarchy

POLYMER CHEMISTRY ON TAPE:
a computational model
FOR EMERGENT GENETICS
by J.S.M CASKILL

Max-Planck-Institut fuir biophysikalische Chemle
Nikolausberg am Fabberg D-3400 Göttingen

Intemal Report

Max-Planck-1shitut for biophysikalische Chemie
Getingen 1968
from RNA model

Abstraction
Artificial Chemistry

Constructive Dynamical Systems

The barrier of objects:

From dynamical systems to bounded ORGANIZATIONS

This work has appeared without appendices in: "Boundaries and Barriers"
John Casti \& Anders Karlqvist, eds.
pp. 56-116, Addison-Wesley, Reading MA, 1996

Constructing the Molecules

Constructing the "Objects"

Historical Problems:

We use Ordinary Differential Equations to model the world In an ODE there is no novelty

Artificial Chemistry as a crude abstraction of a Constructive Dynamical System

The barrier of objects:
From dynamical systems to bounded ORGANIZATIONS

This work has appeared without appendices in:
"Boundaries and Barriers"
John Casti \& Anders Karlqvist, eds.
pp. 56-116, Addison-Wesley, Reading MA, 1996

Infinite Molecular Types
All Reaction Catalytic
No Conservation of Mass
Out-flux from each Molecule
Well Stirred

$+\bullet \longrightarrow$
$+\bullet \longrightarrow \bullet$

(catalytic)
$+\bullet \longrightarrow$
$+\bullet \longrightarrow \bullet$

(catalytic)
$+\bullet \longrightarrow$
$+\bullet \longrightarrow \bullet$

(catalytic)

- $+\frac{k}{n}$
- + or
(catalytic)

$$
\begin{aligned}
& d x_{1} / d t=k_{2} x_{2} x_{2} \\
& d x_{2} / d t=k_{1} x_{1} x_{2}
\end{aligned}
$$

(catalytic)

$$
\begin{aligned}
& d x_{1} / d t=k_{2} x_{2} x_{2}-x_{1} \Phi \\
& d x_{2} / d t=k_{1} x_{1} x_{2}-x_{2} \Phi
\end{aligned}
$$

$s_{1} s_{2}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
1	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
2	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
3	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
4	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
5	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
6	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
7	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15
8	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
9	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
10	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15
11	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
12	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
13	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15
14	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
15	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15

| $s_{1} s_{2}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 1 | 4 | 0 | 0 | 7 | 4 | 1 | 7 | 1 | 4 | 7 | 4 | 7 |
| 1 | 2 | 3 | 2 | 3 | 8 | 2 | 2 | 10 | 8 | 3 | 10 | 3 | 8 | 10 | 8 | 10 |
| 2 | 0 | 1 | 0 | 1 | 4 | 0 | 0 | 7 | 4 | 1 | 7 | 1 | 4 | 7 | 4 | 7 |
| 3 | 2 | 3 | 2 | 3 | 8 | 2 | 2 | 10 | 8 | 3 | 10 | 3 | 8 | 10 | 8 | 10 |
| 4 | 5 | 9 | 5 | 9 | 12 | 5 | 5 | 13 | 12 | 9 | 13 | 9 | 12 | 13 | 12 | 13 |
| 5 | 0 | 1 | 0 | 1 | 4 | | | | | | | | | 7 | 4 | 7 |
| 6 | 0 | 1 | 0 | 1 | | | | 3 | | | | | | 7 | 4 | 7 |
| 7 | 6 | 11 | 6 | 11 | | | | | | | | | | | | |
| | | | | | | | | | | 11 | | 14 | 15 | | | |
| 8 | 5 | 9 | 5 | 9 | | | | | | | | | | 13 | 12 | 13 |
| 9 | 2 | 3 | 2 | 3 | 8 | | | | 7 | | | | | 10 | 8 | 10 |
| 10 | 6 | 11 | 6 | 11 | 14 | | | | | | | | | 15 | 14 | 15 |
| 11 | 2 | 3 | 2 | 3 | 8 | 2 | 2 | 10 | 8 | 3 | 10 | 3 | 8 | 10 | 8 | 10 |
| 12 | 5 | 9 | 5 | 9 | 12 | 5 | 5 | 13 | 12 | 9 | 13 | 9 | 12 | 13 | 12 | 13 |
| 13 | 6 | 11 | 6 | 11 | 14 | 6 | 6 | 15 | 14 | 11 | 15 | 11 | 14 | 15 | 14 | 15 |
| 14 | 5 | 9 | 5 | 9 | 12 | 5 | 5 | 13 | 12 | 9 | 13 | 9 | 12 | 13 | 12 | 13 |
| 15 | 6 | 11 | 6 | 11 | 14 | 6 | 6 | 15 | 14 | 11 | 15 | 11 | 14 | 15 | 14 | 15 |

$s_{1} s_{2}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
1	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
2	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
3	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
4	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
5	0	1	0	1										7	4	7
6	0	1	0	1										7	4	7
7	6	11	6	11										15	14	15
8	5	9	5	9										13	12	13
9	2	3	2	3												
10	6	11	6	11	14											
11	2	3	2	3	8	2	2	10	8							
12	5	9	5	9	12	5	5	13	12							
13	6	11	6	11	14	6	6	15	14							
14	5	9	5	9	12	5	5	13	12							
15	6	11	6	11	14	6	6	15	14							

Artificial Chemistry as a crude abstraction of a Constructive Dynamical System

The barrier of objects:
From dynamical systems to bounded ORGANIZATIONS

This work has appeared without appendices in:
"Boundaries and Barriers"
John Casti \& Anders Karlqvist, eds.
pp. 56-116, Addison-Wesley, Reading MA, 1996

Infinite Molecular Types
All Reaction Catalytic
No Conservation of Mass
Out-flux from each Molecule
Well Stirred

Organisations as Emerging Objects

An Organisation is defined as a Closed and Self Maintaining set

Closed: all the reactions recreate elements inside

Self Maintaining: There is an internal reaction that recreate each Molecule

What would be conserved if the "tape were played twice"

We develop an abstract chemistry [...]
the following features are generic to this particular abstraction of chemistry; hence, they would be expected to reappear if "the tape were run twice":

- hypercycles of self-reproducing objects arise;
- if self-replication is inhibited, self-maintaining organisations arise;
- self maintaining organisations, once established, can combine into higher-order self-maintaining organisations.

Organisations as Hierarchical Structures

Closure and Self Maintenance

in
Catalytic Flow Systems

Closed Sets

If given a set of element S, each interaction will just create elements of that set we say that the set is closed:
$\forall x, y \in S x(y) \Rightarrow S$
then S is closed

Self Maintaining Sets

If given a set of element S,
each element (x) is created by a reaction pathway inside the set (y, z),
then the set is self maintaining:
$\forall x \in S \quad \exists y, z \in S \quad$ such that $\quad x=y(z)$

Organisations

A set who is both closed and self maintaining is an Organisation

organisations

A set who is both closed and self maintaining is a Organization

organisations

A set who is both closed and self maintaining is a Organization

organisations

A set who is both closed and self maintaining is a Organization

An Example

- Each molecule has also a first order outflow:

$$
\begin{aligned}
= & 1 \\
& \rightarrow \varnothing \\
= & 2 \\
& \rightarrow \varnothing \\
= & 3 \\
& \rightarrow \varnothing \\
= & 4 \\
& \rightarrow \varnothing
\end{aligned}
$$

Network

Node: molecular species

Arc: „If molecule 1 and 3 is present, then 4 can/will be produced".

An Example

closed set

An Example

self-maintaining set

An Example

self-maintaining set

An Example

$\underline{\text { organisation }}=$ closed and self-maintaining

An Example

$\underline{\text { organisation }}=$ closed and self-maintaining

An Example

$\underline{\text { organisation }}=$ closed and self-maintaining

An Example

set of all organisations

[^0]
Lattice of organisations

Given the set of all organization (O), given the operation organizational union (\sqcup), given the operation organizational intersection (п),

$$
<\mathbf{O}, \sqcup, \sqcap>\text { is a Lattice. }
$$

Lattice of organisations

Closed set generated by a set

- Given any set is possible to generate its closure. The smallest closed set containing it.

Closed set generated by a set

- Given any set is possible to generate its closure. The smallest closed set containing it.

Closed set generated by a set

- Given any set is possible to generate its closure. The smallest closed set containing it.

Closed set generated by a set

- Given any set is possible to generate its closure. The smallest closed set containing it.

Self Maintaining Set generated by a set.

Given any set is possible to reduce to its self maintaining subset.

Self Maintaining Set generated by a set.

Given any set is possible to reduce to its self maintaining subset.

Self Maintaining Set generated by a set.

Given any set is possible to reduce to its self maintaining subset.

Self Maintaining Set generated by a set.

Given any set is possible to reduce to its self maintaining subset.

Self Maintaining Set generated by a set.

Given any set is possible to reduce to its self maintaining subset.

Self Maintaining Set generated by a set.

Given any set is possible to reduce to its self maintaining subset.

Organisation generated by a subset

- In the same way given any set it uniquely generates a Organisation.
- This is done by first taking the closure of the set
- then the biggest self maintaining set in the closed set.

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

\qquad Closure
Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure
\qquad Self Maintainance

Organisation generated by a subset

Closure
\qquad Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure

Self Maintainance

Organisation generated by a subset

Closure
Self Maintainance

Organisation generated by a subset

Organisation generated by a subset

Of course if the starting subset is already a organization the we will just regenerate the same organization. So organisations are the fixed point of the "generate organization" operator.

Intersection of Organisation

- Of course given two organisations it is uniquely defined the organization generated by their intersection

Intersection of organisations

- Of course given two organisations it is uniquely defined the organization generated by their intersection

Intersection of organisations

- Of course given two organisations it is uniquely defined the organization generated by their intersection

Intersection of organisations

- Of course given two organisations it is uniquely defined the organization generated by their intersection

Union of organisations

- Of course given two organisations it is uniquely defined the organization generated by their union

Union of organisations

- Of course given two organisations it is uniquely defined the organization generated by their union

Union of organisations

- Of course given two organisations it is uniquely defined the organization generated by their union

Union of organisations

- Of course given two organisations it is uniquely defined the organization generated by their union

Self Organisation in a System of Binary Strings

Self Organisation in a System of Binary Strings

NTop

Boolean strings folded into matrix;
Matrix multiplication;
Result unfolded;

15 Molecules

53 Organisations

$s_{1} s_{2}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
1	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
2	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
3	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
4	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
5	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
6	0	1	0	1	4	0	0	7	4	1	7	1	4	7	4	7
7	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15
8	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
9	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
10	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15
11	2	3	2	3	8	2	2	10	8	3	10	3	8	10	8	10
12	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
13	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15
14	5	9	5	9	12	5	5	13	12	9	13	9	12	13	12	13
15	6	11	6	11	14	6	6	15	14	11	15	11	14	15	14	15

Toward a Theory of Organisations

Towasciz a Theory of Orgnnizations

1 Introduction
The term ogsocisetion is widdy sed is seience, starting from social siesces and ccosony to

 Tis paper this to defor the term organination mine perise mathomatiol asd ajebtricic state-

 with nitems that are able to create new conponents.
 dheribtry that in the 1 tedis coestribsted to the formation of the fiedd Artijfriaf L ise (A.), an

Given any set of molecules you can define the organisation generated by this set

```
    for all sets of molecules T,
                                    exists OT
(that can be generated in this way....)
    such that OT is an Organisation.
    If T, S sets, with T>S
    Then Ot \geq Os
```

Organisations form an algebra, a Lattice in particular

The Lattice of Organizations

Lattice of Organizations

Given the set of all organization (0), given the operation organizational union (\cup), given the operation organizational intersection (\cap),

$<0, \cup, \cap>$ is a Lattice.

Example of Lattice

Example of not a Lattice

NTop

15 Molecules

53 Organisations

54 Organisations

Artificial Chemistry's Global Dynamic. Movements in the Lattice of Organisation

Artificial Chemistry's Global Dynamic.
Movements in the Lattice of Organisation
PYetro Speroni di Fenizio'and Peter Dittrich'
Demail: pietretpletrosporosi. it, dittricheca. uni-jesa.de
www: ww. Informatik. uni-jena.de/csb

As artificisel Whe is the stody of life us it could be, artiferial chemitry can be meen as the stady molectiles internet to genente inw molectios, pos.
 exuthiciel chenlatries: In this appeosech we cor-

 its inser dynamic asd randoem nolee. We notike
 cloed, see not thaste under the inforocce of raxgetraically self-maintuining, do sot dyzamically silf-nniantain all their elemments. This leads to a defnition of attractive ergmanisations.

1 Introduction
Artiticial chemistries (AC) are a way to model
naturnl mitems. The her naturen spytems. They heme been seed to model

 When that can be docribed loy there perter to A mpien that cen be dacribed by there perts the
moleculos M, the cperation e , and the dyuulc The molocediss are a set of elements'. Depesilis.

...we consider the set of all possible organisations in an artificial chemistry. ...this set generates a lattice.

We consider the dynamical movement of a system in this lattice, under the influence of its inner dynamic and random noise.

We notice that some organisations, while being algebraically closed, are not stable under the influence of random external noise. While others, while being algebraically self-maintaining, do not dynamically selfmaintain all their elements. This leads to a definition of attractive organisations.

Problems: Find the Lattice of organisations

Chemical Organisation Theory

Balletin of Mambemanial Biology (2007)69:1199-123
DOI $101007 / 11538.066-9930$ -
ORIGINAL ARTICLE

Chemical Organisation Theory
Peter Dittrich*, Pietro Speroni di Fenizio
Bio Systems Analysis Group, Jena Centre for Bioinformatics and Department
of Marhematics and Computer Science, Friedrich Schiller Universiry Jena, D. 07743 Jene, Germany

Abstract Complex dynamical reaction networks consisting of many components that interact and produce each other are difficult to understand, especially, when new component types may appear and present component types may vanish completely. Inspired by Fontana and Buss (Bull. Math. Biol, S6, 1-64) we outline a theory to deal with such systems. The theory consists of two parts. The first part set of components. This concept allows to map a complex (reaction) network to the set of organisations, providing a new view on the system's structure. The second part connects dynamics with the set of organisations, which allows to map a movement of the system in state space to a movement in the set of organisations. The relevancy of our theory is underlined by a theorem that says that given a differential equation describing the chemical dynamies of the network, then every stationary state is an instance of an organisation. For demonstration, the theory is applied to a small model of HIV-immune system interaction by Wodarz and Nowak (Proc. Natt. Acad. USA, 96, 14464-14469) and to a large model of the sugar metabolism of E. Coli by Puchalka and Kierzek (Biophys. J., 86, 1357-1372).

Keywords Reaction networks - Constraint based network analysis - Hierarchical decomposition - Constructive dyaamical systems

1. Constructive dynamical systems

Our world is changing, qualitatively and quantitatively. The characteristics of its dynamies can be as simple as in the case of a frietion-less swinging pendulum, or as complex as the dynamical process that results in the creative apparition of

Boch muthors contributed equally

Carresponding authoe.
Comesponing nuthor.

Formal Definition of Organisation that can be applied to
 -Chemistry
 -Biology
 -Systems Biology
 -Atmospheric Chemistry
 -Engineering
 -...

When is it a Lattice When it is not

Chemical Organisation Theory

Chemical Organization Theory

seit 1558

Dissertation
zur Erlangung des akademischen Grades
orgelegt dem Rat der Fakuleăt für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena
won Dottore in Matematica
MSc. in Evolutionary and Adaptive Systems

Pietro Speroni di Fenizio
geboren am 15.10.1970 in Mailand (Italien)

Understanding an Artificial Chemistry

Problems: Find the Lattice of organisations

Understanding an Artificial Chemistry means at least:

- know the lattice of Organisations:
- know all the organisations;
- given any two organisations A, B, know what is: $A \sqcup B, A \sqcap B$

Applying the Lattice

- Start with a set of organisations.
- Calculate all the union and intersections and add them;
- Until you cannot add anything anymore;
- Now you have a sub-lattice
- Take an Org, add some molecules to find a new Organisation
- Go from sub lattice to sub lattice
- ...until you have found all the organisations.

Theorem 1

In a lattice:
 ($\mathrm{A} \mathbf{U} \mathrm{B}$) $\mathrm{UC}=\mathrm{A} \mathbf{U}(\mathrm{B} \mathrm{U} \mathrm{C);}$

We have 2 Organisations S, C;
We are looking for T with $T=S \cup C$,

If exist 2 Organisations A, B such that $S=A \cup B$

Then:
$T=A \cup(B \cup C)$.
We might know $\mathrm{R}=\mathrm{B} \cup \mathrm{C}$. In which case
$\mathrm{T}=\mathrm{S} \cup \mathrm{C}=\mathrm{A} \cup \mathrm{R}$

Theorem 1

In a lattice:
(A U B) U C = A U (B U C);
We have 2 Organisations S, C;
We are looking for T with $\mathrm{T}=\mathrm{S}$ U C

If exist 2 Organisations A, B such that $S=A \cup B$

Then:
$T=A \cup(B \cup C)$.
We might know $\mathrm{R}=\mathrm{B} \cup \mathrm{C}$.
In which case
$T=S \cup C=A \cup R$

Theorem 1

In a lattice:
$(A \cup B) \cup C=A \cup(B \cup C)$;
We have 2 Organisations S, C;
We are looking for T with $T=S \cup C$,

If exist 2 Organisations A, B such that S = A U B

Then:
$T=A \cup(B \cup C)$.
We might know $R=B \cup C$.
In which case
$T=S \cup C=A \cup R$

Theorem 1

In a lattice:
$(A \cup B) \cup C=A \cup(B \cup C)$;
We have 2 Organisations S, C;
We are looking for T with $T=S \cup C$,

If exist 2 Organisations A, B such that $S=A \cup B$

Then:
$T=A U(B U C)$.
We might know $\mathrm{R}=\mathrm{B} \cup \mathrm{C}$.
In which case
$T=S \cup C=A \cup R$

Theorem 1

In a lattice:

($\mathrm{A} \cup \mathrm{B}$) U C = A U (B U C);
We have 2 Organisations S, C;
We are looking for T with $T=S \cup C$,

If exist 2 Organisations A, B such that $S=A \cup B$

Then:
$T=A \cup(B \cup C)$.
We might know $R=B \cup C$. In which case
T=SUC=AUR

Theorem 2

In a lattice:
A, B, C, R are
Organisations A $<$ B $<C$

We want to find $T=B \operatorname{R}$
If $A \cup R=C \cup R$
Then $B \cup R=A \cup R=C \cup R$

Theorem 2

In a lattice:
A, B, C, R are Organisations $A<B<C$

We want to find $T=B \cup R$
If $\mathbf{A} \mathbf{U R}=\mathbf{C} \mathbf{U R}$
Then B U R = A U R = C U R

Theorem 3

If $\mathbf{A} \mathbf{U} \mathbf{B}=\mathbf{S}$;
if $\mathrm{C}, \mathrm{A} \leq \mathrm{C} \leq \mathrm{S}$;
if $D, B \leq D \leq S$;
then:
$C \cup D=S$.

Theorem 3

If $A \cup B=S$;
if $\mathrm{C}, \mathrm{A} \leq \mathrm{C} \leq \mathrm{S}$;
if $D, B \leq D \leq S$;
then:
$C \cup D=S$.

Theorem 3

If $A \cup B=S$;
if $C, A \leq C \leq S$;
if $D, B \leq D \leq S$;
then:
$C \cup D=S$.

Theorem 3

> If $A \cup B=S$; if $C, A \leq C \leq S$; if $D, B \leq D \leq S$;
then:
$C U D=S$.

How many Union and Intersections

 are Calculated vs Demonstrated

Problem

what molecules to ignore

what subsets of molecules to ignore

Problem

what molecules to ignore

what subsets of molecules to ignore

4 options

4 options

Upward $\quad A f->B>A$
Af $\rightarrow C$ with $B>C>A, f \in C$
Af \rightarrow D with $B>D>A, f \notin D$
Downward Af $\longrightarrow A$

what subsets of molecules to ignore

4 options

Upward $A f \longrightarrow B>A$
Upward $\quad A f \rightarrow C$ with $B>C>A, f \in C$ Af $\longrightarrow D$ with $B>D>A, f \notin D$

Downward $A f \longrightarrow A$

what subsets of
molecules to ignore

4 options

Upward $A f \longrightarrow B>A$
Upward $\quad A f \longrightarrow C$ with $B>C>A, f \in C$
Sideward $\quad \mathbf{A f} \rightarrow \mathbf{D}$ with $\mathbf{B}>\mathbf{D}>\mathbf{A}, \mathbf{f} \notin \mathbf{D}$

what subsets of
molecules to ignore

Applying the Lattice one molecule at a time

- Start with a set of organisations.
- Calculate all the union and intersections and add them;
- Until you cannot add anything anymore;
- Now you have a sub-lattice
- Take an Org, add ONE molecule to find a new Organisation
- Go from sub lattice to sub lattice
- ...until you have found all the organisations.

-4-3 options

Upward $A f \longrightarrow B>A$

Sideward $A f \longrightarrow D$ with $B>D>A, f \notin D$

Downward Af \longrightarrow A

what subsets of
molecules to ignore

We don't need to study the sidewards

Sideward $A f \longrightarrow D$ with $B>D>A, f \notin D$
Downward Df $->D$

A sideward molecule of an organisation is always a downward molecule of another organisation

-4-3-2 options

Taking 2 molecules at a time

cases		e goes	
		up	down
f goes	up	1	2
	down	2	3

what subsets of molecules to ignore

Case 1, 2: If one molecule goes upward

cases		e goes	
		down	
f goes	up	$\mathbf{1}$	$\mathbf{2}$
	down	$\mathbf{2}$	3

We need to calculate $G o(A \cup f \cup e)=\operatorname{Gsm}\left(\operatorname{Gc}_{c}(\mathrm{~A} \cup f \cup e)\right)$

We know that
$A \cup f \leq G_{\circ}(A \cup f)=B \leq G_{c}(A \cup f)$; thus $G_{o}(A \cup f)=G_{c}(A \cup f)$

Go(A $\cup f \cup e)=$
$=\operatorname{Gsm}_{\mathrm{sm}}\left(\operatorname{Gc}_{c}(\mathrm{~A} \cup f \cup e)\right)=$
$=\operatorname{Gsm}_{s m}\left(\operatorname{Gac}_{c}\left(\operatorname{Gc}_{c}(A \cup f) \cup e\right)\right)=$
$=\operatorname{Gsm}_{s m}\left(\operatorname{Ga}_{c}\left(\operatorname{Go}_{o}(\mathrm{~A} \cup f) \cup e\right)\right)=$
$=G \circ(B \cup e)$
Which is something we obtained before. So cases 1, 2, will not lead to anything new. We don't need to calculate them

Problem

what molecules to ignore

what sets of molecules to ignore?
Any subset where at least a subset of molecules of it goes upward

Solved

Theorem: No Organisation Left Behind

Take away message

If something has a mathematical property:
use it

Note:

The code is available on git hub

https://github.com/pietrosperoni/LatticeOfChemicalOrganisations/tree/Public

https://github.com/pietrosperoni

Thank You

pietrosperoni.it

[^0]:

