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Abstract

Periodic orbits play a central role in the n-body problem. In the
attempt of understanding them, in the sense of computing their
existence, qualitative and quantitative properties, and classifying
such orbits and symmetries, computers have been extensively
used in many ways since decades. I will focus on some very
special symmetric orbits, which occur as symmetric critical points
of the gravitational Lagrangean action functional. The
exploration of the realm where such critical points live, i.e. the
loop space of the n-point configuration space, raised
computational, epistemological and mathematical questions that
needed to be addressed and that I have found interesting. The aim
of the talk is to explain how such questions and issues were (more
or less naively) considered in the development of a software
package that combined symbolic algebra, numerical and scientific
libraries, human interaction and visualization.



1 Poincaré, topology and the n-body problem

2 Periodic orbits, symmetries, geometry and Lagrangean mini-
mizers

3 Qualitative features, analysis, modeling and computing

4 Explorations and crawlers: symmetry groups, loop spaces,
critical points and interactive distributed computing

5 Human interaction: visualization, CLI and interfaces, 3D ma-
nipulation and remote computations

6 Conclusions



1. The beginning

Ô Geometry and computing. A very old story.
Ô As a story I will tell, it will be partial and partially

fictional.
Ô Henry Poincaré.
Ô Born in 1854, PhD in 1879, soon after mining engineer

and lecturer.
Ô 1879-1881: double annus mirabilis.
Ô 1885: Lecturer at Paris University; 1886: professor.
Ô December 1885: King Oscar II of Sweden announced

in Acta Mathematica an award of a gold medal and
2500 golden crowns.
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2. The King’s prize

Ô The committee granting the prize was made of Weierstrass,
Hermite and Mittag-Leffler (former student of Weierstrass
and Hermite).

Ô Deadline: June 1st, 1888.
Ô May 1888: Poincaré (anonymous) submission entitled Sur

le problème des trois corps et les équations de la dynamique
(epigraph: Numquam præscriptos transibunt sidera fines).

Ô The award was given to Poincaré, since “It is the deep and
original work of a mathematical genius whose position is
among the greatest mathematicians of the century. The
most important and difficult questions, like the stability of
the world system, are treated using methods which open a
new era in celestial mechanics”.

Ô The memoir was to be published in Acta Mathematica.
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3. A problem

Ô But there was a problem.
Ô Some parts of the manuscript were not clear to the editor of

the journal, Edvard Phragmén.
Ô In December 1888 he wrote, about the manuscript, “If the

author were not what he is, I would not for a moment hesitate to
say that he has made a great mistake here.”

Ô He was actually right. There was a mistake.
Ô Poincaré had to get back all the printed issues of the

journal to be destroyed, to submit a new corrected memoir
(he did it in June 1890 — 270 pages long) and to pay for the
new printing (the cost was more than the 2500 crowns of
the prize).

Ô This is a self-applied butterfly effect, as he put it:
It may happen that small differences in the initial
conditions produce great ones in the final phenomena.
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4. Consequences

Ô Méthodes nouvelles de la mécanique céleste (1892–1899).
Ô Motivated by the study of nonlinear ordinary differential

equations and the three-body problem, between 1892 and
1901 he published the six memoirs on Analysis situs, where
basically topology and algebraic topology were created.

Ô Two Poincaré conjectures, both based on a first wrong
statement: the (now Perelman’s Theorem) uniqueness of
the topology of 3-spheres among simply-connected closed
3-manifolds, and the density of periodic
orbits in the phase space for the (restricted) 3-body problem.

If a particular solution of the restricted problem is
given, one can always find a periodic solution (with a
period which might be very long) such that the
difference between these two solutions is as small as
desired for any given length of time.
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5. King Oscar’s prize

Given a system of arbitrarily many mass points that attract each other
according to Newton’s laws, under the assumption that no two points
ever collide, try to find a representation of the coordinates of each point
as a series in a variable that is some known function of time and for all
of whose values the series converges uniformly.
This problem, whose solution would considerably extend our under-
standing of the solar system, seems capable of solution using analytic
methods now at our disposal; we can at least suppose as much, since
Lejeune Dirichlet communicated shortly before his death to a geometer
of his acquaintance [Leopold Kronecker] that he had discovered a method
for integrating the differential equations of Mechanics, and that by ap-
plying this method, he had succeeded in demonstrating the stability of
our planetary system in an absolutely rigorous manner. Unfortunately,
we know nothing about this method, except that the theory of small os-
cillations would appear to have served as his point of departure for this
discovery. We can nevertheless suppose, almost with certainty, that



5. King Oscar’s prize (cont.)

this method was based not on long and complicated calculations, but on
the development of a fundamental and simple idea that one could rea-
sonably hope to recover through persevering and penetrating research.
In the event that this problem remains unsolved at the close of the con-
test, the prize may also be awarded for a work in which some other prob-
lem of Mechanics is treated as indicated and solved completely.



6. Long story

Ô Long after Aristarchus of Samos (3̃10–2̃30 BCE), the
heliocentric planetary model was formulated by Nicolaus
Copernicus (1473–1543) in a note in 1513, and finally
published with mathematical details in De revolutionibus
orbium coelestium (1543).

Ô Founding his speculations on years of astronomical data
collected by Tycho Brahe (1546–1601), Kepler (1571–1630)
discovered the laws governing the motion of planets
around the sun, now called Kepler’s three laws of
planetary motion.

Ô After a few years, in 1632 Galileo Galilei (1564–1642)
improved astronomical observations with telescope, and
published the Dialogo sopra i massimi sistemi.



6. Long story (cont.)

Ô One year after Galileo died, Isaac Newton (1642–1727) was
born. He is the one who found the reason of Kepler’s laws,
namely the law of universal gravitation. Newton’s
Philosophiæ Naturalis Principia Mathematica was published
in 1687.

Ô With Laws of Dynamics and Universal Gravitation, the
problem can simply be stated, in modern words, as a
second-order differential Newton equation:

d2q
dt2 = ∇U(q),

where q(t) is the configuration at time t ∈ R, and U is the
gravitational potential force function

U(q) = ∑
i<j

mimj

|qi − qj|
,



6. Long story (cont.)

where mi are the masses (in a unit such that the
gravitational constant is 1) adn qi are the positions of the
point masses in the euclidean space Rd (d = 2, 3).

Ô Newton solved the two-body problem in the first book of
Principia (propositions 1-17, 57-60). The conical nature of
Kepler orbits can also be derived by purely geometrical
means To predict the position positions of planets one has
to use an approximation of solutions of Kepler equation
and its generalizations. Then, in propositions 65-66,
Newton describes some qualitative features of the
three-body problem, and speculated that and exact
solution “exceeds, if I am not mistaken, the force of any
human mind”.



6. (Long story)

After Newton, Johann Bernoulli (1667–1748) and Leonhard Eu-
ler (1707–1783) studied Newton’s equation for some simplified
problems: they could integrate the the one-center and two fixed-
centers problem, which can be seen as an intermediate (inte-
grable) approximation of the restricted three-body problem. In
1762, Euler considered the circular restricted three-body problem,
which is related to the two-centers problem: consider Earth as
rotation on a circle around the Sun, and consider the Moon as a
negligible-mass body orbiting around the Earth, in rotating co-
ordinates frame, and studied the collinear problem for generic
masses (and found Euler central solutions).



6. (Long story)

Joseph-Louis Lagrange (born Giuseppe Lodovico Lagrangia, 1736–
1813) expanded and generalized the results of Euler, and, with
much more impact, later founded the analytical approach to me-
chanics, now called Lagrangean mechanics, published in subse-
quence editions the Mécanique analytique (1811,1815). In short, so-
lutions Newton equations are local minimizers (critical points)
of the Lagrangean action functional

A[q] =
∫ t1

t0

1
2 ∑

j
mj|

qj

dt
|2 + U(q)

defined on a suitable class of trajectories q(t). Lagrange found
some particular periodic orbits (homographic central configura-
tions for the (non-restricted) three-body problem, now termed
Lagrange configurations) in his Essai sur le problème des trois corps
(1772); also, he introduced the concepts of stability (1776) and po-
tential (1773).



7. Before Poincaré

Ô Changes of variables, and search for integrals and
reductions of the degrees of freedom.

Ô Jacobi (1804–1851) and Hamilton (1805–1865) :
Hamilton-Jacobi formalism (with Poisson and Lagrange
brackets and canonical transformations).

Ô The Jacobi integral for the three-dimensional restricted
three-body problem was published in 1836.

Ô Delaunay (1816–1872) treatise on lunar theory, in 1860 and
1867. The main procedure was to expand the Hamiltonian
as Fourier series with respect to position coordinates and
apply suitable canonical transformations.

Ô After 57 iterations and 20 years of calculations, Delaunay
could accurately predict the orbit of the Moon up to 1 arc
second.



7. Before Poincaré (cont.)

Ô The approach via series seemed promising: in 1874 Simon
Newcomb proved that the three-body problem can be
formally solved by infinite series of purely periodic terms;

Ô in 1883, Lindstedt again showed that such a series existed,
in Lagrange coordinates.

Ü The first problem is: a formal series might not converge.
Ü The second problem is: a convergent series might converge

so slowly to be practically useless.



7. (Before Poincaré)

Ô But, actually, what is exactly the problem?
Ô And, given the problem, what does it mean to solve it?
Ô Newton equations in which space? Sobolev space H1? C1?

C∞. Cω?
Ô And, when an equation is “solved”? Contructively giving

the solution? Weierstrass mentioned “a method for
integrating the differential equations of Mechanics”. Why
integration and not computing? Aren’t they the same
thing?

Ô Singularies and collisions.
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8. Integrable systems

Ô As with the integrability of Kepler problem, the first line of
attack had been the one of “integrating” the equations, that
is to find as many first integrals as necessary to express the
solutions in terms of arbitrary constants. This approach,
which is the starting point of the theory of integrable
systems, did not work well.

Ô Bruns (1848-1919) showed that the series solutions of
Lagrange can be divergent for the three-body problem
(1884), and in 1887 he proved that there are no first
integrals as algebraic (beyond those coming from known
symmetries: the six of the centre of gravity, the three of
angular momentum and the energy/Hamiltonian)
functions in the phase space (positions and velocities of the
bodies).

Ô In 1889 Poincaré proved that the Jacobi integral is the only
integral for the restricted three-body problem, and in ...
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8. (Integrable systems)

Ô ... 1890 King’s Prize memoir in Acta Mathematica he proved
the non-existence of new integrals analytic in positions and
the small parameter of mass-ratios of planets.

Ô Later, in 1896-98 Painlevé showed that there are no
unknown first integrals which are algebric only in
momenta.

Ô Still, the search of new integrals continues, with some
non-existence theorems and approximating Hamiltonians,
until to-day.
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9. After Poincaré

The ideas developed in Poincaré’s Les Méthodes nouvelles de la mé-
canique celeste (1892-1899) contained seeds of innovation in many
fields:

Ô global approach to dynamical system
Ô qualitative
Ô Poincaré-Birkhoff recurrence theorem,
Ô or the analogy introduced by Poincaré (see also Jacques

Hadamard, E.T. Whittaker, G.D. Birkhoff, J. Moser) of
periodic orbits as closed geodesics,

Ô the topological approach to stability
Ô and periodic orbits as fixed points of Poincaré section
Ô (and the existence of infinitely many periodic orbits in the

restricted circular three-body problem, the Last Geometric
Theorem of Poincaré proved).
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6. Celestial Mechanics

Substitution into Kepler’s third law yields

4π2 R2

v2
c

= 4π2 R3

G(m1 +m2)
.

From this we can solve the velocity vc in a circular orbit
of radius R:

vc =
√

G(m1 +m2)

R
. (6.42)

Comparing this with the expression (6.41) of the escape
velocity, we see that

ve =
√

2vc . (6.43)

6.10 Virial Theorem
If a system consists of more than two objects, the equa-
tions of motion cannot in general be solved analytically
(Fig. 6.12). Given some initial values, the orbits can, of
course, be found by numerical integration, but this does
not tell us anything about the general properties of all
possible orbits. The only integration constants available
for an arbitrary system are the total momentum, angular
momentum and energy. In addition to these, it is pos-
sible to derive certain statistical results, like the virial
theorem. It concerns time averages only, but does not
say anything about the actual state of the system at some
specified moment.

Suppose we have a system of n point masses mi with
radius vectors ri and velocities ṙi . We define a quantity A
(the “virial” of the system) as follows:

A =
n∑

i = 1

mi ṙi · ri . (6.44)

The time derivative of this is

Ȧ =
n∑

i = 1

(mi ṙi · ṙi +mi r̈i · ri) . (6.45)

The first term equals twice the kinetic energy of the
ith particle, and the second term contains a factor mi r̈i

which, according to Newton’s laws, equals the force
applied to the ith particle. Thus we have

Ȧ = 2T +
n∑

i = 1

Fi · ri , (6.46)

Fig. 6.12. When a system consists of more than two bodies, the
equations of motion cannot be solved analytically. In the solar
system the mutual disturbances of the planets are usually small
and can be taken into account as small perturbations in the or-
bital elements. K.F. Sundman designed a machine to carry out
the tedious integration of the perturbation equations. This ma-
chine, called the perturbograph, is one of the earliest analogue
computers; unfortunately it was never built. Shown is a design
for one component that evaluates a certain integral occurring in
the equations. (The picture appeared in K.F. Sundman’s paper
in Festskrift tillegnad Anders Donner in 1915.)

where T is the total kinetic energy of the system. If ⟨x⟩
denotes the time average of x in the time interval [0, τ],
we have

⟨ Ȧ⟩ = 1
τ

τ∫

0

Ȧ dt = ⟨2T ⟩+
〈

n∑

i = 1

Fi · ri

〉
. (6.47)

Figure: Sundman Contraption: the
(never built) perturbograph

1913: Karl Sundman. Solutions
by series in terms of t1/3 for the
full three-body problem.
Regularization of binary
collisions, but not for triple
collisions.
1991: A generalization of
Sundman’s result to n-body
was found by Quidong Wang.
Compare with:

Ô Solve polynomial
equations (Galois theory
and Abel-Ruffini theorem).

Ô Compute digits of π.
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mi ṙi · ri . (6.44)

The time derivative of this is
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Ȧ = 2T +
n∑

i = 1

Fi · ri , (6.46)

Fig. 6.12. When a system consists of more than two bodies, the
equations of motion cannot be solved analytically. In the solar
system the mutual disturbances of the planets are usually small
and can be taken into account as small perturbations in the or-
bital elements. K.F. Sundman designed a machine to carry out
the tedious integration of the perturbation equations. This ma-
chine, called the perturbograph, is one of the earliest analogue
computers; unfortunately it was never built. Shown is a design
for one component that evaluates a certain integral occurring in
the equations. (The picture appeared in K.F. Sundman’s paper
in Festskrift tillegnad Anders Donner in 1915.)

where T is the total kinetic energy of the system. If ⟨x⟩
denotes the time average of x in the time interval [0, τ],
we have
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1 Poincaré, topology and the n-body problem

2 Periodic orbits, symmetries, geometry and Lagrangean mini-
mizers

3 Qualitative features, analysis, modeling and computing

4 Explorations and crawlers: symmetry groups, loop spaces,
critical points and interactive distributed computing

5 Human interaction: visualization, CLI and interfaces, 3D ma-
nipulation and remote computations

6 Conclusions



14. What?

Ô Last geometric theorem (Poincaré-Birkhoff Theorem: every
area-preserving, orientation-preserving homeomorphism
of an annulus that rotates the two boundaries in opposite
directions has at least two fixed points) =⇒ in the
PCR3BP periodic orbits are infinite.

Ô But, in the general problem, proven to exist: Euler and
Lagrange orbits.

Ô And rotating central configurations.
Ô Chenciner-Montgomery remarkable figure-eight.
Ô Find: Symmetric Lagrangean minimizers
Ô Avoiding going to infinity (coercivity) and collision

singularities.
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15. Symmetry and choreographies

Chenciner–Montgomery Eight Choreography [�]
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16. Computers and geometry of orbits

Ô Computing (periodic) orbits: simulations, ODE, qualitative
features. Restricted 3BP and perturbations: Copenhagen
(Stromgren) mechanical, Karl Sundman (perturbographe),
electronic Hénon (Nice), Broucke, Szebehely, Bruno, Carles
Simó, Stuchi, Alessandra Celletti, Luigi Chierchia
(Computer-assisted proofs), Krakow School, Hans Koch).

Ô What to expect on an orbit? Detecting chaos and instability.
Ô Existence.
Ô Symmetry group.
Ô Approximation.
Ô Stability.
Ô Global flow.
Ô Try to put together a stratified singular infinitely

dimensional Morse theory (computationally first).
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18. Predicting planetary orbits

Ô circa 200BCE: Antikythera Mechanism (earliest known
mechanical computer).

Ô Mechanical (orrery)
Ô After the Great Patriotic World War II: Fermi, Pasta and

Ulam (and their numerical paradox) on Los Alamos
MANIAC computer; and Nikolay Brusentsov with Sergei
Lvovich Sobolev, who built the ternary balanced computer
SETUN in 1958. Sobolev recalled, about the 50’s: “Working
in the Institute of Atomic Energy, I got a taste of computational
mathematics and realized its exceptional potential. Thus, I
accepted with great pleasure an offer by I.G. Petrovskii to head
the Chair of Computational Mathematics of Moscow State
University, the first chair in this area in our country”.

Ô Digital Orrery (Caltech and MIT, 1984): special-purpose
computer: G.J. Sussman & al.

Ô Jacques Laskar (BdL Paris): perturbation expansions.



18. Predicting planetary orbits

Ô circa 200BCE: Antikythera Mechanism (earliest known
mechanical computer).

Ô Mechanical (orrery)
Ô After the Great Patriotic World War II: Fermi, Pasta and

Ulam (and their numerical paradox) on Los Alamos
MANIAC computer; and Nikolay Brusentsov with Sergei
Lvovich Sobolev, who built the ternary balanced computer
SETUN in 1958. Sobolev recalled, about the 50’s: “Working
in the Institute of Atomic Energy, I got a taste of computational
mathematics and realized its exceptional potential. Thus, I
accepted with great pleasure an offer by I.G. Petrovskii to head
the Chair of Computational Mathematics of Moscow State
University, the first chair in this area in our country”.

Ô Digital Orrery (Caltech and MIT, 1984): special-purpose
computer: G.J. Sussman & al.

Ô Jacques Laskar (BdL Paris): perturbation expansions.



18. Predicting planetary orbits

Ô circa 200BCE: Antikythera Mechanism (earliest known
mechanical computer).

Ô Mechanical (orrery)
Ô After the Great Patriotic World War II: Fermi, Pasta and

Ulam (and their numerical paradox) on Los Alamos
MANIAC computer; and Nikolay Brusentsov with Sergei
Lvovich Sobolev, who built the ternary balanced computer
SETUN in 1958. Sobolev recalled, about the 50’s: “Working
in the Institute of Atomic Energy, I got a taste of computational
mathematics and realized its exceptional potential. Thus, I
accepted with great pleasure an offer by I.G. Petrovskii to head
the Chair of Computational Mathematics of Moscow State
University, the first chair in this area in our country”.

Ô Digital Orrery (Caltech and MIT, 1984): special-purpose
computer: G.J. Sussman & al.

Ô Jacques Laskar (BdL Paris): perturbation expansions.



18. Predicting planetary orbits

Ô circa 200BCE: Antikythera Mechanism (earliest known
mechanical computer).

Ô Mechanical (orrery)
Ô After the Great Patriotic World War II: Fermi, Pasta and

Ulam (and their numerical paradox) on Los Alamos
MANIAC computer; and Nikolay Brusentsov with Sergei
Lvovich Sobolev, who built the ternary balanced computer
SETUN in 1958. Sobolev recalled, about the 50’s: “Working
in the Institute of Atomic Energy, I got a taste of computational
mathematics and realized its exceptional potential. Thus, I
accepted with great pleasure an offer by I.G. Petrovskii to head
the Chair of Computational Mathematics of Moscow State
University, the first chair in this area in our country”.

Ô Digital Orrery (Caltech and MIT, 1984): special-purpose
computer: G.J. Sussman & al.

Ô Jacques Laskar (BdL Paris): perturbation expansions.



18. Predicting planetary orbits

Ô circa 200BCE: Antikythera Mechanism (earliest known
mechanical computer).

Ô Mechanical (orrery)
Ô After the Great Patriotic World War II: Fermi, Pasta and

Ulam (and their numerical paradox) on Los Alamos
MANIAC computer; and Nikolay Brusentsov with Sergei
Lvovich Sobolev, who built the ternary balanced computer
SETUN in 1958. Sobolev recalled, about the 50’s: “Working
in the Institute of Atomic Energy, I got a taste of computational
mathematics and realized its exceptional potential. Thus, I
accepted with great pleasure an offer by I.G. Petrovskii to head
the Chair of Computational Mathematics of Moscow State
University, the first chair in this area in our country”.

Ô Digital Orrery (Caltech and MIT, 1984): special-purpose
computer: G.J. Sussman & al.

Ô Jacques Laskar (BdL Paris): perturbation expansions.



19. What to add?

Ô A template numerical optimization search with symbolic
data (O(d), Σn, ...)

Ô Collisions: what to do about near-colliding trajectories?
Strong-force trick? Smoothing? Regularizations like
Sundman or Levi-Civita or McGehee?

Ô Coercivity: what to do of minima or critical points at
infinity?

Ô Visibility of critical points: when the finite-dimensional
approximations are close to real solutions?

Ô Closure: when the infinite-dimensional critical point can
be approximate by finite-dimensional approximations?

Ô Ingredients: Sobolev spaces, geometry and topology,
calculus of variations, numerical analysis and scientific
computing, computer algebra.
=⇒ A mixture of GAP, F95 and scientific libraries (IMSL,

gsl, slatec, minuit, minpack, ...). Glued with paper clips,
python and duct tape. Kind of a minor sage-math?



19. What to add?

Ô A template numerical optimization search with symbolic
data (O(d), Σn, ...)

Ô Collisions: what to do about near-colliding trajectories?
Strong-force trick? Smoothing? Regularizations like
Sundman or Levi-Civita or McGehee?

Ô Coercivity: what to do of minima or critical points at
infinity?

Ô Visibility of critical points: when the finite-dimensional
approximations are close to real solutions?

Ô Closure: when the infinite-dimensional critical point can
be approximate by finite-dimensional approximations?

Ô Ingredients: Sobolev spaces, geometry and topology,
calculus of variations, numerical analysis and scientific
computing, computer algebra.
=⇒ A mixture of GAP, F95 and scientific libraries (IMSL,

gsl, slatec, minuit, minpack, ...). Glued with paper clips,
python and duct tape. Kind of a minor sage-math?



19. What to add?

Ô A template numerical optimization search with symbolic
data (O(d), Σn, ...)

Ô Collisions: what to do about near-colliding trajectories?
Strong-force trick? Smoothing? Regularizations like
Sundman or Levi-Civita or McGehee?

Ô Coercivity: what to do of minima or critical points at
infinity?

Ô Visibility of critical points: when the finite-dimensional
approximations are close to real solutions?

Ô Closure: when the infinite-dimensional critical point can
be approximate by finite-dimensional approximations?

Ô Ingredients: Sobolev spaces, geometry and topology,
calculus of variations, numerical analysis and scientific
computing, computer algebra.
=⇒ A mixture of GAP, F95 and scientific libraries (IMSL,

gsl, slatec, minuit, minpack, ...). Glued with paper clips,
python and duct tape. Kind of a minor sage-math?



19. What to add?

Ô A template numerical optimization search with symbolic
data (O(d), Σn, ...)

Ô Collisions: what to do about near-colliding trajectories?
Strong-force trick? Smoothing? Regularizations like
Sundman or Levi-Civita or McGehee?

Ô Coercivity: what to do of minima or critical points at
infinity?

Ô Visibility of critical points: when the finite-dimensional
approximations are close to real solutions?

Ô Closure: when the infinite-dimensional critical point can
be approximate by finite-dimensional approximations?

Ô Ingredients: Sobolev spaces, geometry and topology,
calculus of variations, numerical analysis and scientific
computing, computer algebra.
=⇒ A mixture of GAP, F95 and scientific libraries (IMSL,

gsl, slatec, minuit, minpack, ...). Glued with paper clips,
python and duct tape. Kind of a minor sage-math?



19. What to add?

Ô A template numerical optimization search with symbolic
data (O(d), Σn, ...)

Ô Collisions: what to do about near-colliding trajectories?
Strong-force trick? Smoothing? Regularizations like
Sundman or Levi-Civita or McGehee?

Ô Coercivity: what to do of minima or critical points at
infinity?

Ô Visibility of critical points: when the finite-dimensional
approximations are close to real solutions?

Ô Closure: when the infinite-dimensional critical point can
be approximate by finite-dimensional approximations?

Ô Ingredients: Sobolev spaces, geometry and topology,
calculus of variations, numerical analysis and scientific
computing, computer algebra.
=⇒ A mixture of GAP, F95 and scientific libraries (IMSL,

gsl, slatec, minuit, minpack, ...). Glued with paper clips,
python and duct tape. Kind of a minor sage-math?



19. What to add?

Ô A template numerical optimization search with symbolic
data (O(d), Σn, ...)

Ô Collisions: what to do about near-colliding trajectories?
Strong-force trick? Smoothing? Regularizations like
Sundman or Levi-Civita or McGehee?

Ô Coercivity: what to do of minima or critical points at
infinity?

Ô Visibility of critical points: when the finite-dimensional
approximations are close to real solutions?

Ô Closure: when the infinite-dimensional critical point can
be approximate by finite-dimensional approximations?

Ô Ingredients: Sobolev spaces, geometry and topology,
calculus of variations, numerical analysis and scientific
computing, computer algebra.
=⇒ A mixture of GAP, F95 and scientific libraries (IMSL,

gsl, slatec, minuit, minpack, ...). Glued with paper clips,
python and duct tape. Kind of a minor sage-math?



1 Poincaré, topology and the n-body problem

2 Periodic orbits, symmetries, geometry and Lagrangean mini-
mizers

3 Qualitative features, analysis, modeling and computing

4 Explorations and crawlers: symmetry groups, loop spaces,
critical points and interactive distributed computing

5 Human interaction: visualization, CLI and interfaces, 3D ma-
nipulation and remote computations

6 Conclusions



20. Preparing initial data

Ô The basic module: given initial data (random or given), a
level of approximation (number of Fourier coefficients and
intermediate steps for integral approximations of the
potential), find the closest local minimum, or the closest
critical point (with modified conjugate gradients, or
Newton-Powell, or other standard schemes). Output the
periodic orbit.

Ô Then: reshape and repeat, or change some parameters and
use continuation methods.

Ô Thousands and thousands of periodic orbits found (as
expected), with many symmetry groups.

Ô Next step: Crawling in the space of all groups. Explore the
set of all possible symmetry groups, and classify them
(according to features of the symmetric configuration
space).

Ô Features of a group: representation theory and
permutations. Again: GAP and some wrapping scripts.
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21. Tools

Ô Visualization: geomview, OpenGL, gnuplot, pdf+eps.
Graphical interface, manipulate the camera, the object,
point and click.

Ô About the minimization, a CLI with mini-language and
python interactive shell. Remote 3D manipulation: sends
commands to geomview via OOGL.

Ô Mobile manipulator/visualizator + remote connection (to
a server or a cluster). It works with good open networks.

Ô Remote interacively usage of a cluster. MPI (OpenMPI),
pytthon and ssh, pyRPC, objectify initial data, symmetry
groups and periodic orbits.

Ô Calculate attributes: norm of gradient, Floquet multipliers,
shooting, multi-shooting, stability, ...

Ô Then, use the cluster for frame rendering and video
encoding. Fun part.
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22. Example session

RequirePackage("symorb");
dim:=3;

phi:=(Sqrt(5)-1)/2;

mat1:=[[phi/2,(1+phi)/2,1/2],[(1+phi)/2,-1/2,phi/2],
[1/2,phi/2,-(1+phi)/2]];;

mat2:=[[0,1,0],[0,0,1],[1,0,0]];;
K:=GroupWithGenerators([mat1,mat2]);;
hom:=ActionHomomorphism(K,K,OnRight);
s1:=Image(hom,mat1);
s2:=Image(hom,mat2);
matrot:=[ [ 0, -1, 0 ], [ 1, 0, 0 ], [ 0, 0, -1 ] ];
a:=[[-1,0,0],[0,-1,0],[0,0,-1]];
mat3:=mat1*mat2*a;

GG:=GroupWithGenerators([mat1,mat2,mat3]);



22. Example session (cont.)

nhom:=ActionHomomorphism(GG,K,OnPoints);
Image(nhom,mat1);
Image(nhom,mat2);
rotS:=Image(nhom,mat3);

NOB:=Size(K);
kert:=GroupWithGenerators([ Tuple([mat1,s1 ]), Tuple([mat2,s2]) ] );
rotV:=mat3;

LSG:=LagSymmetryGroup(0,NOB,kert, rotV,rotS,rotV,rotS);
MakeMinorbSymFile("icosa-luminy",LSG);



22. Example session (cont.)

ferrario@lkl01 ~ $ minpath
minpath -- beginning at Tue Sep 10 12:09:55 CEST 2013

symfiles:

fourlag.sym
[...]
icosa-luminy.sym

MinorbShell > x=minpath()

1) fourlag.sym
[...]
19) icosa-luminy.sym
x) eXit

...Select a Number: > 19
You have selected file: icosa-luminy.sym



22. Example session (cont.)

MinorbShell > res=remjob(x,30,"new();relax(202)")
remjob called with nsol= 30
beginning the job...
tmpsSfPIk 100% 293KB 292.8KB/s 292.8KB/s 00:00
:: about to exec the following...:
/home/ferrario/local/symorb/py/par/parminpath --solutions=30
--output=/home/ferrario/.symorb/objsfile_100174581378807812.objs
--load=/home/ferrario/.symorb/obj_100174581378807812.obj Pypar (version 2.1.5)
initialised MPI OK with 1 processors
parminpath: we were called with args
['/home/ferrario/local/symorb/py/par/parminpath', '--solutions=30',
'--output=/home/ferrario/.symorb/objsfile_100174581378807812.objs',
'--load=/home/ferrario/.symorb/obj_100174581378807812.obj']
now starting parminpath on 31 nodes...
Pypar (version 2.1.5) initialised MPI OK with 31 processors
parminpath: we were called with args ['/home/ferrario/local/bin/parminpath',
'--parallel',
'--output=/home/ferrario/.symorb/objsfile_100174581378807812.objs',



22. Example session (cont.)

'--solutions=30', '--load=/home/ferrario/.symorb/obj_100174581378807812.obj']
...
[skip]
...
# relaxing...
# using IMSL DUMIDH
# Unconstrained Minimization with finite-Difference Hessian
# using NONLINEAR DNEQNJ
# Newton-Powell Analytic Jacobian
# writing out...
# done...
# dTOL= 1.491668146240041E-154
==> action: 1820.4218; howsol: 2.0671e-12
received from node 28: <minpath object; NOB=60, dim=3, steps=24>
[numCompleted= 20/30 -- numFailed=0]



22. Example session (cont.)

OUTPUT:

(Icosahedral 60-body with 10-adic hip-hop rotation: res-lum00.data)



1 Poincaré, topology and the n-body problem

2 Periodic orbits, symmetries, geometry and Lagrangean mini-
mizers

3 Qualitative features, analysis, modeling and computing

4 Explorations and crawlers: symmetry groups, loop spaces,
critical points and interactive distributed computing

5 Human interaction: visualization, CLI and interfaces, 3D ma-
nipulation and remote computations

6 Conclusions



23. Conclusions

Ô Naive gluing together different programming paradigms,
languages, fields and libraries from var contexts (symbolic
algebra, computer algebra systems, AI, visualization, ...).

Ô Novelty of approach is granted. At the same time: almost
nobody will fully understand or appreciate it, and not much
funding (cf. W. Stein).

Ô Why has there been a partial stigma on computational pure
mathematics? Why is that that if it is computational, then it has
to be applied to some real-world problem?

Ô What does it mean to assist computationally a qualitative
analysis? Just computer-assisted proofs? Computer-aided
proofs? Or, topological semantic data analysis? What does it
mean to analyze semantic data?

Ô And, epistemologically: what does it mean to let computer help
us understand? What does it mean to understand?

Ô MCQ-XeLaTeX (OMR and test lazy grading).
http://www.matapp.unimib.it/˜ferrario/var/mcqxelatex.html
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The end

https://github.com/dlfer/symorb

«Thank you !»
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