
Univalent foundations of mathematics

Benedikt Ahrens



Outline

1 Univalent foundations — an overview

2 The syntax of type theory and an interpretation in sets

3 An interpretation of type theory in propositions

4 Univalent foundations: an interpretation of type theory in
simplicial sets

Interpretation of type theory in simplicial sets
Univalence Axiom: invariance under equivalence of types

5 Features
Computer theorem proving
Synthetic homotopy theory
Equivalence principle



Outline

1 Univalent foundations — an overview

2 The syntax of type theory and an interpretation in sets

3 An interpretation of type theory in propositions

4 Univalent foundations: an interpretation of type theory in
simplicial sets

Interpretation of type theory in simplicial sets
Univalence Axiom: invariance under equivalence of types

5 Features
Computer theorem proving
Synthetic homotopy theory
Equivalence principle



What is a foundation of mathematics?

• syntax for mathematical objects
• notion of proposition and proof
• interpretation of the syntax into the world of mathematical
objects

In this talk, I present one such foundation: univalent
foundations (a.k.a univalent type theory)



Moving from classical foundations to
univalent foundations

• Mathematics is the study of structures on sets and their
higher analogs.

• Set-theoretic mathematics constitutes a subset of the
mathematics that can be expressed in univalent
foundations.

• Classical mathematics is a subset of univalent mathematics
consisting of the results that require LEM and/or AC
among their assumptions.

see Voevodsky, Talk at HLF, Sept 2016



Outline

1 Univalent foundations — an overview

2 The syntax of type theory and an interpretation in sets

3 An interpretation of type theory in propositions

4 Univalent foundations: an interpretation of type theory in
simplicial sets

Interpretation of type theory in simplicial sets
Univalence Axiom: invariance under equivalence of types

5 Features
Computer theorem proving
Synthetic homotopy theory
Equivalence principle



Univalent foundations

Syntax/Language

• Language of dependent types, a.k.a., a type theory
• Logic and mathematical constructions are treated uniformly
• Developed by Per Martin-Löf starting from the 1970’s

Semantics/Models

• Semantics in spaces (simplicial sets), developed by
Vladimir Voevodsky from 2006 on

• Other interpretations are possible, e.g., in sets



Syntax of type theory
Fundamental: judgment

context ` conclusion

Contexts & judgments

Γ sequence of variable declarations
x1 : A1, x2 : A2(x1), . . . , xn : An(~xi)

Γ ` A A is well–formed type in context Γ

Γ ` a : A term a is well-formed and of type A
Γ ` A ≡ B types A and B are convertible
Γ ` a ≡ b : A a is convertible to b in type A

(x : Nat), (f : Nat→ Nat) ` x+ x : Nat



Rules and derivations

• A rule is an implication of judgments,

J1 ∧ J2 ∧ . . . ∧ Jn =⇒ J

e.g.,
Γ ` a ≡ b : A =⇒ Γ ` b ≡ a : A

(often written as inference rule with horizontal bar)

• We sometimes omit the context when writing judgments.

• We abbreviate the above to
If a ≡ b, then b ≡ a.

• There is a different equality (identity) that can be proved
or disproved, see later.



About well-typedness

There is no way to derive a typing judgment of the form

(b : Bool), (f : Nat→ A) ` f(b) : ??

We are hence not allowed to write f(b) here.

Some differences to set-theoretic membership

• the judgment a : A is not a statement that can be proved
or disproved

• term a does not exist independently of the type A
• a valid term has exactly one type up to ≡



Declaring types & terms

Any type (and corresponding term) construction is declared by
giving 4 (groups of) rules:
Formation a way to construct new types

Introduction ways to construct terms of these types

Elimination ways to use them to construct other terms

Computation what happens when one does Introduction
followed by Elimination



A singleton type

Formation 1 is a type

Introduction t : 1

Elimination If A is a type and a : A and x : 1, then
r(A, a, x) : A

Computation r(A, a, t) ≡ a

Interpretation in sets

a one-element set, t ∈ 1



The type of pairs A×B

Formation If A and B are types, then A×B is a type

Introduction If a : A and b : B, then pair(a, b) : A×B

Elimination If t : A×B, then fst(t) : A and snd(t) : B

Computation fst(pair(a, b)) ≡ a and snd(pair(a, b)) ≡ b

Interpretation in sets

Cartesian product of sets A and B



The type of functions A→ B

Formation If A and B are types, then A→ B is a type

Introduction If (x : A) ` b(x) : B, then ` λx.b(x) : A→ B

Elimination If f : A→ B and a : A, then f(a) : B

Computation (λx.b)(a) ≡ b[x := a]

• λx.b corresponds to x 7→ b(x)

• Substitution b[x := a] is built-in

• Example: ∅ ` λx.x2 : Nat→ Nat

Interpretation in sets

Set of functions from A to B



Type dependency

In particular: dependent type B over A

x : A ` B(x)

“family B of types indexed by A”

• A type can depend on several variables
• Example: type of vectors of Booleans of length n

n : Nat ` Vec(n) (= Booln)



The type of dependent functions
∏

(x:A) B

Formation If x : A ` B(x), then
∏

(x:A)B(x) is a type

Introduction If (x : A) ` b : B, then λx.b :
∏

(x:A)B

Elimination If f :
∏

(x:A)B and a : A, then f(a) : B[x := a]

Computation (λx.b)(a) ≡ b[x := a]

• The case A→ B is a special case, where B does not depend
on x : A

Interpretation in sets

The product
∏

(x:A)B



The type of dependent pairs
∑

(x:A) B

Formation If x : A ` B(x), then
∑

(x:A)B(x) is a type

Introduction If a : A and b : B(a), then pair(a, b) :
∑

(x:A)B(x)

Elimination If t :
∑

(x:A)B, then fst(t) : A and snd(t) : B(fst(t))

Computation fst(pair(a, b)) ≡ a and snd(pair(a, b)) ≡ b

• The case A×B is a special case, where B does not depend
on x : A

Interpretation in sets

The disjoint union
∐

x:AB



The identity type
Formation If a : A and b : A, then IdA(a, b) is a type

Introduction If a : A, then refla : IdA(a, a)

Elimination If
(x, y : A), (p : IdA(x, y)) ` C(x, y, p)
and
(x : A) ` t(x) : C(x, x, reflx)
then
(x, y : A), (p : IdA(x, y) ` recId(t;x, y, p) : C(x, y, p)

Computation . . .

We also write a =A b and a = b for IdA(a, b)

Interpretation in sets

Equality a = b



More about identities

Can construct terms of type
• (a = b) → (b = a)

• (a = b)× (b = c) → (a = c)

• B(a)× (a = b) → B(b)

Can not construct a term UIP of type

(x : A), (p : x = x) ` UIP : p =(x=x) reflx

but can construct a term

(x : A), (p :
∑
y:A

x = y) ` contr : p = pair(x, reflx)



Interpreting types as sets

Syntax Set interpretation

A set A
a : A a ∈ A
A×B cartesian product
A→ B set of functions A→ B
A+B disjoint union AqB
x : A ` B(x) family B of sets indexed by A∑

(x:A)B(x) disjoint union qx:AB(x)∏
(x:A)B(x) dependent function

IdA(a, b) equality a = b



Outline

1 Univalent foundations — an overview

2 The syntax of type theory and an interpretation in sets

3 An interpretation of type theory in propositions

4 Univalent foundations: an interpretation of type theory in
simplicial sets

Interpretation of type theory in simplicial sets
Univalence Axiom: invariance under equivalence of types

5 Features
Computer theorem proving
Synthetic homotopy theory
Equivalence principle



Interpreting types as propositions

Syntax Logic

A proposition A
a : A a is a proof of A
A×B A ∧B
A→ B A⇒ B
A+B A ∨B
x : A ` B(x) predicate B on A∑

(x:A)B(x) ∃x ∈ A,B(x)∏
(x:A)B(x) ∀x ∈ A,B(x)

IdA(a, b) equality a = b

• The connectives ∨ and ∃ thus obtained behave
constructively, not classically.

• One can also obtain the classical variants, see HoTT book
(references)



Logic in type theory

Curry-Howard isomorphism resp. Brouwer-Heyting-Kolmogorov
interpretation:
• propositions are types
• proofs of P are terms of type P

Hence
• In principle, all types could be called propositions.
• To prove a proposition P means to construct a term of type
P .

• In UF, only some types are called ‘propositions’, cf later.



Outline

1 Univalent foundations — an overview

2 The syntax of type theory and an interpretation in sets

3 An interpretation of type theory in propositions

4 Univalent foundations: an interpretation of type theory in
simplicial sets

Interpretation of type theory in simplicial sets
Univalence Axiom: invariance under equivalence of types

5 Features
Computer theorem proving
Synthetic homotopy theory
Equivalence principle



Types are ω-groupoids

Garner, van den Berg

(A, IdA, IdIdA , . . .)

forms ω-groupoid, i.e., groupoid laws hold up to “higher”
identities

• gives rise to model of type theory in simplicial sets
(Voevodsky)

• this model motivates (and justifies) the univalence axiom,
cf later



Interpreting types as simplicial sets

Syntax Simpl. set interpretation

(A, IdA, IdIdA , . . .) Kan complex A
a : A a ∈ A0

A×B binary product
A→ B space of maps
A+B binary coproduct
x : A ` B(x) fibration B → A with fibers B(x)∑

(x:A)B(x) total space of fibration B → A∏
(x:A)B(x) space of sections of fibration B → A



Interpreting types as topological spaces?

Intuition
The Quillen equivalence between simplicial sets and topological
spaces gives rise to an intuition of ‘types as (topological) spaces’.

• a =A b as the space of paths from a to b in A

• Failure of UIP says that one can have non-trivial loop
spaces

• The space of paths in A with one endpoint fixed to a ∈ A is
contractible: any such path is homotopic to the constant
path on a

No interpretation in topological spaces

It seems impossible to give a formal interpretation of type
theory in the category of topological spaces.



Contractible types, propositions and sets

Definitions:

• A is contractible if we can construct a term of type

isContr(A)
def
=

∑
(x:A)

∏
(y:A)

y = x

• A is a proposition if
∏

(x y:A) x = y is inhabited

• A is a set if, for any x, y : A, x = y is a proposition

These are just the first instances of a recursive definition of
homotopy level of a type.



Equivalences

Definition
A map f : A→ B is an equivalence if it has contractible
fibers, i.e.,

isequiv(f)
def
=

∏
b:B

isContr

(∑
a:A

f(a) = b

)

The type of equivalences:

A ' B def
=

∑
f :A→B

isequiv(f)



Characterizing some identity types

Can construct equivalences (i.e., terms of type)
• for pair(a, b) : A×B,(

pair(a, b) = pair(a′, b′)
)
'
(

(a = a′)× (b = b′)
)

• for f, g : A→ B(
f = g

)
'
(∏
a:A

f(a) = g(a)
)

• . . .



Universes

Universes
There is also a type U that contains all types, i.e., A : U .

• Actually, hierarchy (Ui)i∈I to avoid paradoxes.
• a dependent type

x : A ` B : U

can be considered as a function

λx.B : A→ U

Question

What is
IdU (A,B) ?



Voevodsky’s Univalence Axiom
Answer 1

univalence : (A =U B) ' (A ' B)

More controlled:

Answer 2
Define

idtoeqv :
∏

A,B:U
(A = B)→ (A ' B)

reflA 7→ idA

univalence :
∏

A,B:U
isequiv(idtoeqvA,B)



Summary: Univalent Foundations
• A language of dependent types, a.k.a. a type theory

• With an interpretation in spaces (precisely: Kan complexes)

Type theory Interpretation

A type space A

a : A (term a of type A) point a in space A

f : A→ B map from A to B

p : a =A b path (1-morphism) from a to b in A

α : p =a=Ab q homotopy from p to q in A

• Universe of sets given by discrete spaces

• Logic and mathematical constructions are treated
uniformly in UF



Outline

1 Univalent foundations — an overview

2 The syntax of type theory and an interpretation in sets

3 An interpretation of type theory in propositions

4 Univalent foundations: an interpretation of type theory in
simplicial sets

Interpretation of type theory in simplicial sets
Univalence Axiom: invariance under equivalence of types

5 Features
Computer theorem proving
Synthetic homotopy theory
Equivalence principle



Computer theorem proving

• Type theory is particularly well-suited as a basis for
computer proof assistants.

• Several such proof assistants based on type theory exist
(Coq, Agda).

• A new proof assistant is developed specifically to integrate
Voevodsky’s Univalence Axiom natively. It is based on an
interpretation of type theory in cubical sets (Bezem,
Coquand, and Huber).



Higher Inductive Types

• The type constructors presented so far do not allow the
construction of a type with ‘non-trivial homotopy’.

• The extension of type theory with ‘Higher Inductive Types’
(homotopy pushouts) allows the construction of such types,
for instance the circle and the torus.

• Assuming the existence of such types, one can reason about
their homotopy groups. Various homotopy groups have
been computed in HoTT.



Equivalence principle

• The equivalence principle (EP) says that reasoning in
mathematics should be invariant under an appropriate
notion of equivalence, e.g., under isomorphism of groups,
equivalence of categories, etc.

• EP is generally false in set-theoretic foundations, e.g.,
1 ∈ Nat is not invariant under isomorphism of sets.

• EP has been proved in UF for many mathematical
structures, such as groups, fields, categories,. . .



Some references
Syntax of type theory and the Univalence Axiom
• Univalent Foundations Program: Homotopy Type
Theory—Univalent Foundations of Mathematics (freely—as
in speech—available online)

Interpretation of type theory:
• Bezem, Coquand, Huber: A model of type theory in cubical

sets
• Gambino, van den Berg: Types are weak ω-groupoids
• Kapulkin, Lumsdaine: The Simplicial Model of Univalent

Foundations (after Voevodsky)
Proof assistants:
• http://github.com/UniMath/UniMath
• http://github.com/HoTT/HoTT
• http://github.com/mortberg/cubicaltt

More on
https://ncatlab.org/homotopytypetheory/show/References

http://github.com/UniMath/UniMath
http://github.com/HoTT/HoTT
http://github.com/mortberg/cubicaltt
https://ncatlab.org/homotopytypetheory/show/References

	Univalent foundations — an overview
	The syntax of type theory and an interpretation in sets
	An interpretation of type theory in propositions
	Univalent foundations: an interpretation of type theory in simplicial sets
	Interpretation of type theory in simplicial sets
	Univalence Axiom: invariance under equivalence of types

	Features
	Computer theorem proving
	Synthetic homotopy theory
	Equivalence principle


