
Verifying Array Programs by
Transforming Verification Conditions

Emanuele De Angelis1, Fabio Fioravanti1,
Alberto Pettorossi2, and Maurizio Proietti3

1 DEC, University ‘G. D’Annunzio’, Pescara, Italy
{emanuele.deangelis,fioravanti}@unich.it

2 DICII, University of Rome Tor Vergata, Rome, Italy
pettorossi@disp.uniroma2.it

3 IASI-CNR, Rome, Italy maurizio.proietti@iasi.cnr.it

Abstract. We present a method for verifying properties of imperative
programs manipulating integer arrays. We assume that we are given a
program and a property to be verified. The interpreter (that is, the op-
erational semantics) of the program is specified as a set of Horn clauses
with constraints in the domain of integer arrays, also called constraint
logic programs over integer arrays, denoted CLP(Array). Then, by spe-
cializing the interpreter with respect to the given program and property,
we generate a set of verification conditions (expressed as a CLP(Array)
program) whose satisfiability implies that the program verifies the given
property. Our verification method is based on transformations that pre-
serve the least model semantics of CLP(Array) programs, and hence the
satisfiability of the verification conditions. In particular, we apply the
usual rules for CLP transformation, such as unfolding, folding, and con-
straint replacement, tailored to the specific domain of integer arrays. We
propose an automatic strategy that guides the application of those rules
with the objective of deriving a new set of verification conditions which
is either trivially satisfiable (because it contains no constrained facts)
or is trivially unsatisfiable (because it contains the fact false). Our ap-
proach provides a very rich program verification framework where one
can compose together several verification strategies, each of them being
implemented by transformations of CLP(Array) programs.

1 Introduction

Horn clauses and constraints have been advocated by many researchers as suit-
able logical formalisms for the automated verification of imperative programs [2,
19, 34]. Indeed, the verification conditions that express the correctness of a given
program, can often be expressed as constrained Horn clauses [3], that is, Horn
clauses extended with constraints in specific domains such as the integers or the
rationals. For instance, consider the following C-like program prog :

x=0; y=0;
while (x<n) {x=x+1; y=y+2}

and assume that we want to prove the following Hoare triple: {n≥1} prog {y>x}.
This triple is valid if we find a predicate P such that the following three verifi-
cation conditions hold:

1. x=0 ∧∧ y=0 ∧∧ n≥1 → P (x, y, n)
2. P (x, y, n) ∧∧ x<n → P (x+ 1, y + 2, n)
3. P (x, y, n) ∧∧ x≥n → y>x

Constraints such as the equalities and inequalities in clauses 1–3, are formu-
las defined in a background (possibly non-Horn) theory. The use of constraints
makes it easier to express the properties of interest and enables us to apply
ad-hoc theorem provers, or solvers, for reasoning over those properties.

Verification conditions can be automatically generated either from a formal
specification of the operational semantics of the programs [34] or from the proof
rules that formalize program correctness in an axiomatic way [19].

The correctness of a program is implied by the satisfiability of the verification
conditions. Various methods and tools for Satisfiability Modulo Theory (see, for
instance, [11]) prove the correctness of a given program by finding an interpre-
tation (that is, a relation specified by constraints) that makes the verification
conditions true. For instance, in our example, one such interpretation is:

P (x, y, n) ≡ (x=0 ∧∧ y=0 ∧∧ n≥1) ∨∨ y>x
It has been noted (see, for instance, [3]) that verification conditions can be viewed
as constraint logic programs, also called CLP programs [22]. Indeed, clauses 1
and 2 above can be considered as clauses of a CLP program over the integers,
and clause 3 can be rewritten as the following goal (by moving the conclusion
to the premises):
4. P (x, y, n) ∧∧ x≥n ∧∧ y≤x → false
Various verification methods based on constraint logic programming have been
proposed in the literature (see, for instance, [8, 10, 34]). These methods consist
of two steps: (i) the first step is the translation of the verification task into a
CLP program, and (ii) the second step is the analysis of that CLP program. In
particular, as indicated in [8], in many cases it is helpful for the analysis step to
transform a CLP program (expressing a set of verification conditions) into an
equisatisfiable program whose satisfiability is easier to show.

For instance, if we propagate, according to the transformations described
in [8], the two constraints representing the initialization condition (x=0 ∧∧ y=0
∧∧ n≥ 1) and the error condition (x≥ n ∧∧ y≤ x), then from clauses 1, 2, and 4
we derive the following new verification conditions:
5. Q(x, y, n) ∧∧ x<n ∧∧ x>y ∧∧ y≥0 → Q(x+ 1, y + 2, n)
6. Q(x, y, n) ∧∧ x≥n ∧∧ x≥y ∧∧ y≥0 ∧∧ n≥1 → false
This propagation of constraints preserves the least model, and hence, by ex-
tending the van Emden-Kowalski Theorem [38] to constrained Horn clauses, the
verification conditions expressed by clauses 5–6 are satisfiable iff clauses 1–3 are
satisfiable. Now, proving the satisfiability of clauses 5–6 is trivial because none
of them is a constrained fact (that is, a clause of the form c→ Q(x, y, n), where
c is a satisfiable constraint). Thus, clauses 5-6 are made true by simply taking
Q(x, y, n) to be false.

The approach presented in [8] shows that the transformational verification
method briefly presented in the example above, is quite general. According to
that method, in fact, one starts from a program prog on integers and a safety

2

property ϕ to be verified. Then, following [34], one specifies the interpreter of
the program as a CLP program whose constraints are in the domain of inte-
ger arrays. Next, by specializing the interpreter with respect to prog and ϕ, a
new CLP program, call it VC , is derived. This program consists of the clauses
that express the verification conditions (hence the name VC) which guarantee
that prog satisfies ϕ. Program VC (and the corresponding set of verification
conditions) is repeatedly specialized with respect to the constraints occurring
in its clauses with the objective of deriving either (i) a CLP program without
constrained facts, hence proving that prog satisfies ϕ, or (ii) a CLP program
containing the fact false, hence proving that prog does not satisfy ϕ (in this case
a counterexample to ϕ can be extracted from the derivation of the specialized
program).

In this paper we extend the method presented in [8] to the proof of par-
tial correctness properties of programs manipulating integer arrays. In order to
specify verification conditions for array programs, in Section 2 we introduce the
class of CLP(Array) programs, that is, logic programs with constraints in the
domain of integer arrays. In particular, CLP(Array) programs may contain oc-
currences of read and write predicates that are interpreted as the input and
output relations of the usual read and write operations on arrays. Then, in Sec-
tion 3 we introduce some transformation rules for manipulating CLP(Array)
programs. Besides the usual unfolding and folding rules, we consider the con-
straint replacement rule, which allows us to replace constraints by equivalent
ones in the theory of arrays [4, 17, 30]. In Section 4 we show how to generate the
verification conditions via specialization of CLP(Array) programs. In Section 5
we present an automatic strategy designed for applying the transformation rules
with the objective of obtaining a proof (or a disproof) of the properties of in-
terest. In particular, similarly to [8], the strategy aims at deriving either (i) a
CLP(Array) program that has no constrained facts (hence proving satisfiability
of the verification conditions and partial correctness of the program), or (ii) a
CLP(Array) program containing the fact false (hence proving that the verifi-
cation conditions are unsatisfiable and the program does not satisfy the given
property). The transformation strategy may introduce some auxiliary predicates
by using a generalization strategy that extends to CLP(Array) the generaliza-
tion strategies for CLP programs over integers or reals [14]. Finally, as reported
in Section 6, we have implemented our transformation strategy on the MAP
transformation system [29] and we have tested the verification method using the
strategy we have proposed on a set of array programs taken from the literature.

2 Constraint Logic Programs on Arrays

In this section we recall some basic notions and terminology concerning Con-
straint Logic Programming (CLP), and we introduce the set CLP(Array) of
CLP programs with constraints in the domain of integer arrays. For details on
CLP the reader may refer to [22].

If p1 and p2 are linear polynomials with integer variables and coefficients, then
p1=p2, p1≥p2, and p1>p2 are atomic integer constraints. The dimension n of

3

an array a is represented as a binary relation by the predicate dim(a, n). For
reasons of simplicity we consider one-dimensional arrays only. The read and
write operations on arrays are represented by the predicates read and write,
respectively, as follows: read(a, i, v) denotes that the i-th element of array a
is the value v, and write(a, i, v, b) denotes that the array b that is equal to
the array a except that its i-th element is v. We assume that both indexes and
values are integers, but our method is parametric with respect to the index and
value domains. (Note, however, that the result of a verification task may depend
on the constraint solver used, and hence on the constraint domain.)

An atomic array constraint is an atom of the following form: either dim(a, n),
or read(a, i, v), or write(a, i, v, b). A constraint is either true, or an atomic
(integer or array) constraint, or a conjunction of constraints. An atom is an
atomic formula of the form p(t1,...,tm), where p is a predicate symbol not in
{=,≥, >, dim, read, write} and t1, . . . , tm are terms constructed out of variables,
constants, and function symbols different from + and *.

A CLP(Array) program is a finite set of clauses of the form A :- c, B, where
A is an atom, c is a constraint, and B is a (possibly empty) conjunction of atoms.
A is called the head and c, B is called the body of the clause. We assume that in
every clause all integer arguments in its head are distinct variables. The clause
A :- c is called a constrained fact. When c is true then it is omitted and the
constrained fact is called a fact. A goal is a formula of the form :- c, B (standing
for c ∧∧B → false or, equivalently, ¬(c ∧∧B)). A CLP(Array) program is said to
be linear if all its clauses are of the form A :- c, B, where B consists of at most
one atom.

We say that a predicate p depends on a predicate q in a program P if either
in P there is a clause of the form p(...) :- c, B such that q occurs in B, or there
exists a predicate r such that p depends on r in P and r depends on q in P .
We say that a predicate p in a linear program P is useless if in P there are
constrained facts neither for p nor for each predicate q on which q depends.

Now we define the semantics of CLP(Array) programs. An A-interpretation
is an interpretation I, that is, a set D, a function in Dn → D for each function
symbol of arity n, and a relation on Dn for each predicate symbol of arity n,
such that:
(i) the set D is the Herbrand universe [28] constructed out of the set Z of the

integers, the constants, and the function symbols different from + and *,
(ii) I assigns to +, *, =,≥, > the usual meaning in Z,
(iii) for all sequences a0 . . . an−1, for all integers d,

dim(a0 . . . an−1, d) is true in I iff d=n
(iv) I interprets the predicates read and write as follows: for all sequences

a0 . . . an−1 and b0 . . . bm−1 of integers, for all integers i and v,
read(a0 . . . an−1, i, v) is true in I iff 0≤i≤n−1 and v=ai, and
write(a0 . . . an−1, i, v, b0 . . . bm−1) is true in I iff

0≤i≤n−1, n=m, bi=v, and for j=0, . . . , n−1, if j 6=i then aj=bj
(v) I is an Herbrand interpretation [28] for function and predicate symbols dif-

ferent from +, *, =,≥, >, dim, read, and write.

4

We can identify an A-interpretation I with the set of ground atoms that are true
in I, and hence A-interpretations are partially ordered by set inclusion.

We write A |= ϕ if ϕ is true in every A-interpretation. A constraint c is
satisfiable if A |= ∃(c), where in general, for every formula ϕ, ∃(ϕ) denotes the
existential closure of ϕ. Likewise, ∀(ϕ) denotes the universal closure of ϕ. A con-
straint is unsatisfiable if it is not satisfiable. A constraint c entails a constraint d,
denoted c v d, if A |= ∀(c→ d). By vars(ϕ) we denote the free variables of ϕ.

We assume that we are given a solver to check the satisfiability and the
entailment of constrains in A. To this aim we can use any solver that implements
algorithms for satisfiability and entailment in the theory of integer arrays [4, 17].

The semantics of a CLP(Array) program P is defined to be the least A-model
of P , denoted M(P), that is, the least A-interpretation I such that every clause
of P is true in I.

Given a CLP(Array) program P and a ground goal G of the form :-A, P ∪{G}
is satisfiable (or, equivalently, P 6|=A) if and only if A 6∈M(P). This property is a
straightforward extension to CLP(Array) programs of van Emden and Kowalski’s
result [38].

3 Transformation Rules for CLP(Array) Programs
Our verification method is based on the application of transformations that,
under suitable conditions, preserve the least A-model semantics of CLP(Array)
programs. In particular, we apply the following transformation rules, collectively
called unfold/fold rules: (i) definition, (ii) unfolding, (iii) constraint replacement,
and (iv) folding. These rules are an adaptation to CLP(Array) programs of the
unfold/fold rules for a generic CLP language (see, for instance, [13]).

Let P be a CLP(Array) program.
Definition Rule. By this rule we introduce a clause of the form newp(X) :- c,A,
where newp is a new predicate symbol (occurring neither in P nor in a clause
introduced by the definition rule), X is the tuple of variables occurring in the
atom A, and c is a constraint.
Unfolding Rule. Given a clause C of the form H :- c,L,A,R, where H and A are
atoms, c is a constraint, and L and R are (possibly empty) conjunctions of atoms,
let us consider the set {Ki :- ci,Bi | i = 1, . . . ,m} made out of the (renamed
apart) clauses of P such that, for i=1, . . . ,m, A is unifiable with Ki via the most
general unifier ϑi and (c,ci)ϑi is satisfiable. By unfolding C w.r.t. A using P ,
we derive the set {(H :- c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.
Constraint Replacement Rule. If a constraint c0 occurs in the body of a clause C
and, for some constraints c1, . . . , cn,
A |= ∀ ((∃X0 c0)↔(∃X1 c1 ∨∨ . . . ∨∨ ∃Xn cn))

where, for i = 0, . . . , n, Xi = vars(C)−vars(ci), then we derive n new clauses
C1, . . . , Cn by replacing c0 by c1, . . . , cn, respectively, in the body of C.

The equivalences needed for constraint replacements are shown to hold in
A by using a relational version of the theory of arrays with dimension [4, 17].
In particular, the constraint replacements we apply during the transformations

5

described in Section 5 follow from the following axioms where all variables are
universally quantified at the front:

(A1) I=J, read(A, I, U), read(A, J, V) → U=V

(A2) I=J, write(A, I, U, B), read(B, J, V) → U=V

(A3) I 6=J, write(A, I, U, B), read(B, J, V) → read(A, J, V)

Axiom (A1) is often called array congruence and axioms (A2) and (A3) are
collectively called read-over-write. We omit the usual axioms for dim.

Folding Rule. Given a clause E: H :- e, L, A, R and a clause D: K :- d, D intro-
duced by the definition rule. Suppose that, for some substitution ϑ, (i) A = Dϑ,
and (ii) ∀ (e→dϑ). Then by folding E using D we derive H :- e, L, Kϑ, R.

From P we can derive a new program TransfP by: (i) selecting a clause C
in P , (ii) deriving a new set TransfC of clauses by applying one or more trans-
formation rules, and (iii) replacing C by TransfC in P . Clearly, we can apply
a new sequence of transformation rules starting from TransfP and iterate this
process at will.

The correctness results for the unfold/fold transformations of CLP programs
proved in [13] can be instantiated to our context as stated in the following
theorem.

Theorem 1. (Correctness of the Transformation Rules) Let the CLP(Array)
program TransfP be derived from P by a sequence of applications of the trans-
formation rules. Suppose that every clause introduced by the definition rule is
unfolded at least once in this sequence. Then, for every ground atom A in the
language of P , A∈M(P) iff A∈M(TransfP).

The assumption that the unfolding rule should be applied at least once is
required for technical reasons (see the details in [13]). Informally, this assumption
avoids the replacement of a definition clause A :- B with the clause A :- A obtained
by folding A :- B using itself. This replacement may not preserve the least model
semantics.

4 Generating Verification Conditions via Specialization

We consider an imperative C-like programming language with integer and array
variables, assignments (=), sequential compositions (;), conditionals (if else),
while-loops (while), and jumps (goto). A program is a sequence of (labeled)
commands, and in each program there is a unique halt command which, when
executed, causes program termination.

The semantics of our language is defined by a transition relation, denoted
=⇒, between configurations. Each configuration is a pair 〈〈c, δ〉〉 of a command c
and an environment δ. An environment δ is a function that maps: (i) every
integer variable identifier x to its value v, and (ii) every integer array identifier
a to a finite sequence a0, . . . , an−1 of integers, where n is the dimension of the
array a. The definition of the relation =⇒ is similar to the ‘small step’ operational
semantics given in [36], and is omitted.

6

Given an imperative program prog , we address the problem of verifying
whether or not, starting from any initial configuration that satisfies the prop-
erty ϕinit , the execution of prog eventually leads to a final configuration that
satisfies the property ϕerror , also called an error configuration. This problem is
formalized by defining an incorrectness triple of the form {{ϕinit}} prog {{ϕerror}},
where ϕinit and ϕerror are constraints. We say that a program prog is in-
correct with respect to ϕinit and ϕerror , whose free variables are assumed to
be among the program variables z1, . . . , zr, if there exist environments δinit

and δh such that: (i) ϕinit(δinit(z1), . . . , δinit(zr)) holds, (ii) 〈〈`0 :c0, δinit〉〉 =⇒∗
〈〈`h :halt, δh〉〉, and (iii) ϕerror (δh(z1), . . . , δh(zr)) holds, where `0 :c0 is the first
labeled command of prog and `h : halt is the unique halt command of prog .
A program is said to be correct with respect to ϕinit and ϕerror iff it is not
incorrect with respect to ϕinit and ϕerror . Note that our notion of correctness is
equivalent to the usual notion of partial correctness specified by the Hoare triple
{ϕinit} prog {¬ϕerror}. In this paper we assume that the properties ϕinit and
ϕerror can be expressed as conjunctions of (integer and array) constraints.

We translate the problem of checking whether or not the program prog is
incorrect with respect to the properties ϕinit and ϕerror into the problem of
checking whether or not the nullary predicate incorrect (standing for false) is
a consequence of the CLP(Array) program T defined by the following clauses:

incorrect :- errorConf(X), reach(X).
reach(Y) :- tr(X, Y), reach(X).
reach(Y) :- initConf(Y).

together with the clauses for the predicates initConf(X), errorConf(X), and
tr(X, Y). Those clauses are defined as follows: (i) initConf(X) encodes an initial
configuration satisfying the property ϕinit , (ii) errorConf(X) encodes an error
configuration satisfying the property ϕerror , and (iii) tr(X, Y) encodes the tran-
sition relation =⇒ between pairs of configurations, which depends on the given
program prog. For instance, the following clause encodes the transition relation
for the array assignment ` : a[ie] = e (here a configuration pair of the form:
〈〈` :c, δ〉〉 for the command c at label ` and the environment δ, is denoted by the
term cf(cmd(L, C), D)):

tr(cf(cmd(L, asgn(arrayelem(A, IE), E)), D), cf(cmd(L1, C), D1)) :-
eval(IE, D, I), eval(E, D, V), lookup(D, array(A), FA), write(FA, I, V, FA1),
update(D, array(A), FA1, D1), nextlab(L, L1), at(L1, C).

(L1 is the label following L in the encoding of the given program.) The predicate
reach(Y) holds if a configuration Y can be reached from an initial configuration.

The imperative program prog is correct with respect to the properties ϕinit

and ϕerror iff incorrect 6∈M(T) (or, equivalently, T 6|=incorrect), whereM(T)
is the least A-model of program T (see Section 2). Our verification method
performs a sequence of applications of the unfold/fold rules presented in Section
3 starting from program T . By Theorem 1 we have that, for each program U
obtained from T by a sequence of applications of the rules, incorrect∈M(T)
iff incorrect∈M(U).

7

Our verification method is made out of the following two steps, each of which
is realized by a sequence of applications of the unfold/fold transformation rules:
Step (A): Generation of Verification Conditions, and Step (B): Transformation
of Verification Conditions.

In Step (A) program T is specialized with respect to the given tr (which de-
pends on prog), initConf, and errorConf, thereby deriving a new program T1
such that: (i) incorrect ∈ M(T) iff incorrect ∈ M(T1), and (ii) tr does not
occur explicitly in T1. The specialization of T is obtained by applying a variant
of the strategy for interpreter removal presented in [8]. The main difference with
respect to [8] is that the CLP programs considered in this paper contain read,
write, and dim predicates. The read and write predicates are never unfolded
during specialization and they occur in the residual CLP(Array) program T1.
All occurrences of the dim predicate are eliminated by replacing them by suit-
able integer constraints on indexes. The clauses of T1 are called the verification
conditions for prog, and we say that they are satisfiable iff incorrect 6∈M(T1)
(or equivalently T1 6|=incorrect). Thus, the satisfiability of the verification con-
ditions for prog guarantees that prog is correct with respect to ϕinit and ϕerror .

Step (B) has the objective of checking, through further transformations, the
satisfiability of the verification conditions generated by Step (A). We will de-
scribe this step in detail in Section 5.

Let us consider, for example, the following program SeqInit which initializes
a given array a of n integers by the sequence: a[0], a[0]+1, . . . , a[0]+n−1:

SeqInit : `0 : i = 1;
`1 : while (i<n) { a[i] = a[i−1] + 1; i = i+ 1; };
`h : halt

We consider the following incorrectness triple:

{{ϕinit(i, n, a)}} SeqInit {{ϕerror (n, a)}}
where:
(i) ϕinit(i, n, a) is i≥0 ∧∧ n=dim(a) ∧∧ n≥1, and
(ii) ϕerror (n, a) is ∃j (0≤j ∧∧ j + 1<n ∧∧ a[j]≥a[j+1]).

First, the above incorrectness triple is translated into a CLP(Array) program T .
In particular, the properties ϕinit and ϕerror are defined by the following clauses,
respectively:

1. phiInit(I, N, A) :- I≥0, dim(A, N), N≥1.
2. phiError(N, A) :- Z=W+1, W≥0, W+1<N, U≥V, read(A, W, U), read(A, Z, V).
The clauses defining the predicates initConf and errorConf which specify the
initial and the error configurations, respectively, are as follows:

3. initConf(cf(cmd(l0,Cmd), Ps)):-at(l0,Cmd), progState(Ps), phiInit(Ps).
4. errorConf(cf(cmd(lh,Cmd), Ps)):-at(lh,Cmd), progState(Ps), phiError(Ps).

The predicates at and progState are defined by: ‘at(l0, asgn(int(i), int(1))).’,
‘at(lh, halt).’, and ‘progState([[int(i), I], [int(n), N], [array(a), A]]).’.

Now we apply Step (A) of our verification method, which consists in the removal
of the interpreter. From program T we obtain the following program T1:

8

5. incorrect :- Z=W+1, W≥0, W+1<N, U≥V, N≤I,
read(A, W, U), read(A, Z, V), p(I, N, A).

6. p(I1, N, B) :- 1≤I, I<N, D=I−1, I1=I+1, V=U+1,
read(A, D, U), write(A, I, V, B), p(I, N, A).

7. p(I, N, A) :- I=1, N≥1.
The CLP(Array) program T1 expresses the verification conditions for SeqInit .
Indeed, predicate p is an invariant for the while loop. For reasons of simplicity,
the predicates expressing the assertions associated with assignments and con-
ditionals have been unfolded away during the removal of the interpreter. (The
strategy for removing the interpreter can be customized.)

Due to the presence of integer and array variables, the least A-model M(T1)
may be infinite, and both the bottom-up and top-down evaluation of the goal
:- incorrect may not terminate (indeed, this is the case in our example above).
Thus, we cannot directly use the standard CLP systems to prove program cor-
rectness. In order to cope with this difficulty, we use a method based on CLP
program transformations, which allows us to avoid the exhaustive exploration of
the possibly infinite space of reachable configurations.

5 A Transformation Strategy for Verification
As mentioned above, the verification conditions expressed as the CLP(Array)
program T1 generated by Step (A) are satisfiable iff incorrect 6∈ M(T1). Our
verification method is based on the fact that by transforming the CLP(Array)
program T1 using rules that preserve the least A-model, we get a new
CLP(Array) program T2 that expresses equisatisfiable verification conditions.

Step (B) has the objective of showing, through further transformations, that
either the verification conditions generated by Step (A) are satisfiable (that is,
incorrect 6∈M(T1) and hence prog is correct with respect to ϕinit and ϕerror),
or they are unsatisfiable (that is, incorrect ∈M(T1) and hence prog is not
correct with respect to ϕinit and ϕerror). To this aim, Step (B) propagates the
initial and/or the error properties so as to derive from program T1 a program
T2 where the predicate incorrect is defined by either (α) the fact ‘incorrect’
(in which case the verification conditions are unsatisfiable and prog is incorrect),
or (β) the empty set of clauses (in which case the verification conditions are
satisfiable and prog is correct). In the case where neither (α) nor (β) holds, that
is, in program T2 the predicate incorrect is defined by a non-empty set of
clauses not containing the fact ‘incorrect’, we cannot conclude anything about
the correctness of prog. However, similarly to what has been proposed in [8], in
this case we can iterate Step (B), alternating the propagation of the initial and
error properties, in the hope of deriving a program where either (α) or (β) holds.
Obviously, due to undecidability limitations, it may be the case that we never
get a program where either (α) or (β) holds.

Step (B) is performed by applying the unfold/fold transformation rules ac-
cording to the Transform strategy shown in Figure 1. Transform can be viewed
as a backward propagation of the error property. The forward propagation of
the initial property can be obtained by combining Transform with the Reversal

9

transformation described in [8]. For lack of space we do not present this extra
transformation here.

Input : A linear CLP(Array) program T1.
Output : Program T2 such that incorrect∈M(T1) iff incorrect∈M(T2).

Initialization:
Let InDefs be the set of all clauses of T1 whose head is the atom incorrect;
T2:=∅ ; Defs :=InDefs ;

while in InDefs there is a clause C do
Unfolding: Unfold C w.r.t. the unique atom in its body using T1, and derive

a set U(C) of clauses;
Constraint Replacement: Apply a sequence of constraint replacements by

using the Laws of Arrays, and derive from U(C) a set R(C) of clauses;
Clause Removal: Remove from R(C) all clauses whose body contains an un-

satisfiable constraint;
Definition&Folding: Introduce a (possibly empty) set of new predicate def-

initions and add them to Defs and to InDefs;
Fold the clauses in R(C) different from constrained facts by using the clauses
in Defs, and derive a set F(C) of clauses;

InDefs := InDefs− {C}; T2 := T2 ∪ F(C);
end-while;
Removal of Useless Clauses:
Remove from T2 all clauses with head predicate p, if in T2 there is no constrained fact
q(. . .) :- c where q is either p or a predicate on which p depends.

Fig. 1. The Transform strategy.

The input program T1 is a linear CLP(Array) program (we can show, in fact,
that Step (A) always generates a linear program).
Unfolding performs one inference step backward from the error property.
The Constraint Replacement phase by applying the theory of arrays, infers
new constraints on the variables of the only atom that occurs in the body of
each clause obtained by the Unfolding phase. It works as follows. We select a
clause, say H :- c, G, in the set U(C) of the clauses obtained by unfolding, and
we replace that clause by the one(s) obtained by applying as long as possible
the following rules. Note that this process always terminates and, in general, it
is nondeterministic.

(RR1) If c v (I=J) then
replace: read(A, I, U), read(A, J, V) by: U=V, read(A, I, U)

(RR2) If c ≡ (read(A, I, U), read(A, J, V), d), d 6v (I 6=J), and d v (U 6=V) then
add to c the constraint: I 6=J

(WR1) If c v (I=J) then
replace: write(A, I, U, B), read(B, J, V)
by: U=V, write(A, I, U, B)

10

(WR2) If c v (I 6=J) then
replace: write(A, I, U, B), read(B, J, V)
by: write(A, I, U, B), read(A, J, V)

(WR3) If c 6v I=J and c 6v I 6=J then
replace: H :- c, write(A, I, U, B), read(B, J, V), G
by: H :- c, I=J, U=V, write(A, I, U, B), G

and H :- c, I 6=J, write(A, I, U, B), read(A, J, V), G

Rules RR1 and RR2 are derived from the array axiom A1 (see Section 3), and
rules WR1–WR3 are derived from the array axioms A2 and A3 (see Section 3).

The Definition&Folding phase introduces new predicate definitions by suit-
able generalizations of the constraints. These generalizations guarantee the ter-
mination of Transform, but at the same time they should be as specific as possible
in order to achieve maximal precision. This phase works as follows. Let C1 in
R(C) be a clause of the form H :- c, p(X). We assume that Defs is structured
as a tree of clauses, where clause A is the parent of clause B if B has been
introduced for folding a clause in R(A). If in Defs there is (a variant of) a clause
D: newp(X) :- d, p(X) such that vars(d) ⊆ vars(c) and c v d, then we fold
C1 using D. Otherwise, we introduce a clause of the form newp(X) :- gen, p(X)
where: (i) newp is a predicate symbol occurring neither in the initial program
nor in Defs, and (ii) gen is a constraint such that vars(gen) ⊆ vars(c) and
c v gen. The constraint gen is called a generalization of the constraint c and is
constructed as follows.

Let c be of the form i1, rw1, where i1 is an integer constraint and rw1 is a
conjunction of read and write constraints.
(1) Delete all write constraints from rw1, hence deriving r1.
(2) Rewrite i1, r1 so that all occurrences of integers in read constraints are
distinct variables not appearing in X (this can be achieved by possibly adding
some integer equalities to r1), hence deriving i2, r2.
(3) Compute the projection i3 (in the rationals) of the constraint i2 onto
vars(r2) ∪ {X} (thus i2 v i3 in the domain of the integers).
(4) Delete from r2 all read(A, I, V) constraints such that either (i) A does not
occur in X or (ii) V does not occur in i3, thereby deriving a new value for r2. If
at least one read has been deleted from r2 then go to step (3).
Let i3, r3 be the constraint obtained after the applications of steps (3)–(4).
(5) If in Defs there is an ancestor (defined as the reflexive, transitive closure of

the parent relation) of C of the form H0 :- i0, r0, p(X) such that r0, p(X) is
a subconjunction of r3, p(X),

Then compute a generalization g of the constraints i3 and i0 such that i3 v g,
by using a generalization operator for linear constraints (we refer to [7,
14, 33] for generalization operators based on widening, convex hull, and
well-quasi orderings). Define the constraint gen as g, r0;

Else define the constraint gen as i3, r3.
The correctness of the strategy with respect to the least A-model semantics

follows from Theorem 1, by observing that every clause defining a new predicate

11

introduced by Definition&Folding is unfolded once during the execution of
the strategy (indeed every such clause is added to InDefs).

The termination of the Transform strategy is based on the following facts:
(i) Constraint satisfiability and entailment are checked by a terminating solver
(note that completeness is not necessary for the termination of Transform).
(ii) Constraint Replacement terminates (see above).
(iii) The set of new clauses that, during the execution of the Transform strategy,
can be introduced by Definition&Folding steps is finite. Indeed, by construc-
tion, they are all of the form H :- i, r, p(X), where: (1) X is a tuple of variables,
(2) i is an integer constraint, (3) r is a conjunction of array constraints of the
form read(A, I, V), where A is a variable in X and the variables I and V occur
in i only, (4) the cardinality of r is bounded, because generalization does not
introduce a clause newp(X) :- i3, r3, p(X) if there exists an ancestor clause of the
form H0 :- i0, r0, p(X) such that r0, p(X) is a subconjunction of r3, p(X), (5) we
assume that the generalization operator on integer constraints has the follow-
ing finiteness property: only finite chains of generalizations of any given integer
constraint can be generated by applying the operator. The already mentioned
generalization operators presented in [7, 14, 33] satisfy this finiteness property.

Theorem 2. (Termination and Correctness of the Transform strategy) (i) The
Transform strategy terminates. (ii) Let program T2 be the output of the Trans-
form strategy applied on the input program T1. Then, incorrect ∈M(T1) iff
incorrect∈M(T2).

Let us now consider again the SeqInit example of Section 4 and perform
Step (B). We apply the Transform strategy starting from program T1.

Unfolding. First, we unfold clause 5 w.r.t. the atom p(I, N, A), and we get:

8. incorrect :- Z=W+1, W≥0, Z≤I, D=I−1, N=I+1, Y=X+1, U≥V,
read(B, W, U), read(B, Z, V), read(A, D, X), write(A, I, Y, B), p(I, N, A).

Constraint Replacement. Then, by applying the replacement rules WR2,
WR3, and RR1 to clause 8, we get the following clause:

9. incorrect :- Z=W+1, W≥0, Z<I, D=I−1, N=I+1, Y=X+1, U≥V,
read(A, W, U), read(A, Z, V), read(A, D, X), write(A, I, Y, B), p(I, N, A).

In particular, since W 6=I is entailed by the constraint in clause 8, we apply rule
WR2 and we obtain a new clause, say 8.1, where read(B, W, U), write(A, I, Y, B)
is replaced by read(A, W, U), write(A, I, Y, B). Then, since neither Z=I nor Z 6=I
is entailed by the constraint in clause 8.1, we apply rule WR3 and we obtain
two clauses 8.2 and 8.3, where the constraint read(B, Z, V), write(A, I, Y, B) is re-
placed by Z = I, Y = V, write(A, I, Y, B) and Z 6= I, read(A, Z, U), write(A, I, Y, B),
respectively. Finally, since D = W is entailed by the constraint in clause 8.2, we ap-
ply rule RR1 to clause 8.2 and we add the constraint X = U to its body, hence de-
riving the unsatisfiable constraint X = U, Y = X + 1, Y = V, U≥V. Thus, the clause
derived by the latter replacement is removed. Clause 9 is derived from 8.3 by
rewriting Z≤I, Z 6= I as Z<I.

12

Definition&Folding. In order to fold clause 9 we introduce a new definition
by applying Steps (1)–(5) of the Definition&Folding phase. In particular,
by deleting the write constraint (Step 1) and projecting the integer constraint
(Step 3), we get a constraint where the variable X occurs in read(A, D, X) only.
Thus, we delete read(A, D, X) (Step 4). Finally, we compute a generalization of
the constraints occurring in clauses 5 and 9 by using the convex hull opera-
tor (Step 5). We get:

10. new1(I, N, A) :- Z=W+1, W≥0, N≤I+1, N≥W+2, W≤I−2, U≥V,
read(A, W, U), read(A, Z, V), p(I, N, A).

By folding clause 9 using clause 10, we get:

11. incorrect :- Z=W+1, W≥0, Z<I, D=I−1, N=I+1, Y=X+1, U≥V,
read(A, W, U), read(A, Z, V), read(A, D, X), write(A, I, Y, B), new1(I, N, A).

Now we proceed by performing a second iteration of the body of the while-loop
of the Transform strategy because InDefs is not empty (indeed, at this point
clause 10 belongs to InDefs).

Unfolding. After unfolding clause 10 we get the following clause:

12. new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2, I≥1,
Z≤I, Z≥1, N>I, U≥V, read(B, W, U), read(B, Z, V),
read(A, D, X), write(A, I, Y, B), p(I, N, A).

Constraint Replacement. Then, by applying rules RR1, WR2, and WR3 to
clause 12, we get the following clause:

13. new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), p(I, N, A).

Definition&Folding. In order to fold clause 13 we introduce the following
clause, whose body is derived by computing the widening [5, 7] of the integer
constraints in the ancestor clause 10 with respect to the integer constraints in
clause 13:

14. new2(I, N, A) :- Z=W+1, W≥0, W≤I−1, N>Z, U≥V,
read(A, W, U), read(A, Z, V), p(I, N, A).

By folding clause 13 using clause 14, we get:

15. new1(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, N≤I+2, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

Now we perform the third iteration of the body of the while-loop of the strategy
starting from the newly introduced definition, that is, clause 14. After some
unfolding and constraint replacement steps, followed by a final folding step,
from clause 14 we get:

16. new2(I1, N, B) :- I1=I+1, Z=W+1, Y=X+1, D=I−1, I≥1,
Z<I, Z≥1, N>I, U≥V, read(A, W, U), read(A, Z, V),
read(A, D, X), write(A, I, Y, B), new2(I, N, A).

13

The final transformed program is made out of clauses 11, 15, and 16. Since this
program has no constrained facts, by the last step of the Transform procedure
we derive the empty program T2, and we conclude that the program SeqInit is
correct with respect to the given ϕinit and ϕerror properties.

6 Experimental Evaluation
We have performed an experimental evaluation of our method on a benchmark
set of programs acting on arrays, mostly taken from the literature [3, 12, 21, 27].
The results of our experiments, which are summarized in Tables 1 and 2, show
that our approach is effective and quite efficient in practice.

Our verifier consists of a module, based on the C Intermediate Language
(CIL) [32], which translates a C program together with the initial and error
configurations, into a set of CLP(Array) facts, and a module for CLP(Array)
program transformation that removes the interpreter and applies the Transform
strategy. The latter module is implemented using the MAP system [29], a tool
for transforming constraint logic programs written in SICStus Prolog.

We now briefly discuss the programs we have used for our experimental eval-
uation (see Table 1 where we have also indicated the properties we have verified).

Some programs deal with array initialization: program init initializes all the
elements of the array to a constant, while init-non-constant and init-sequence
use expressions which depend on the element position and on the preceding
element, respectively. Program init-partial initializes only an initial portion of
the array. Program copy performs the element-wise copy of an entire array to
another array, while copy-partial copies only an initial portion of the array,
and the program copy-reverse copies the array in reverse order. The program
max computes the maximum of an array. The programs sum and difference
perform the element-wise sum and difference, respectively, of two input arrays.
The program find looks for a particular value inside an array and returns the
position of its first occurrence, if any, or a negative value otherwise. The programs
find-first-non-null and first-not-null are two programs which return the position
of the first non-zero element. For these programs, differently from [12, 21], we
prove that when the search succeeds, the returned position contains a non-zero
element and we also proved that all the preceding elements are zero elements.
The program partition copies non-negative and negative elements of the array
into two distinct arrays. The programs insertionsort-inner, bubblesort-inner, and
selectionsort-inner are based on textbook implementations of sorting algorithms.
The source code of all the verification problems we have considered is available
at http://map.uniroma2.it/smc/.

For verifying the above programs we have applied the Transform strategy
using different generalization operators, which are based on the widening and
convex hull operators. In particular the GenW and GenS operators use theWiden
and CHWidenSum operators between constraints [14].

14

Program Code Verified Property
init for(i=0; i<n; i++)

a[i]=c;
∀i. (0≤ i ∧ i<n)
→ a[i]=c

init-partial for(i=0; i<k; i++)
a[i]=0;

∀i. (0≤ i ∧ i<k ∧ k≤n)
→ a[i]=0

init-
non-constant

for(i=0; i<n; i++)
a[i]=2*i+c;

∀i. (0≤ i ∧ i<n)
→ a[i]=2∗i+c

init-sequence a[0]=7; i=1; while(i<n) {
a[i]=a[i-1]+1; i++;}

∀i. (1≤ i ∧ i<n)
→ a[i]=a[i−1]+1

copy for(i=0; i<n; i++)
a[i]=b[i];

∀i. (0≤ i ∧ i<n)
→ a[i]=b[i]

copy-partial for(i=0; i<k; i++)
a[i]=b[i];

∀i. (0≤ i ∧ i<k ∧ k≤n)
→ a[i] = b[i]

copy-reverse for(i=0; i<n; i++) b[i]=a[i];
for(i=0; i<n; i++) a[i]=b[n-i-1];

∀i. (0≤ i ∧ i<n)
→ a[i]=b[n−i−1]

max m=a[0]; i=1; while(i<n) {
if(a[i]>m) m=a[i]; i++; }

∀i. (0≤ i ∧ i<n ∧ n≥1)
→ m≥a[i]

sum for(i=0; i<n; i++)
c[i]=a[i]+b[i];

∀i. (0≤ i ∧ i<n)
→ c[i]=a[i]+b[i]

difference for(i=0; i<n; i++)
c[i]=a[i]-b[i];

∀i. (0≤ i ∧ i<n)
→ c[i]= a[i]−b[i]

find p=-1; for(i=0; i<n; i++)
if(a[i]==e) { p=i; break; }

(0≤p ∧ p<n)
→ a[p]=e

first-not-null s=n; for(i=0; i<n; ++i)
if(s==n && a[i]!=0) s=i;

(0≤s ∧ s<n)→ (a[s] 6= 0 ∧
(∀i. (0≤ i∧ i<s)→ a[i]=0))

find-first-
non-null

p=-1; for(i=0; i<n; i++)
if(a[i]!=0) { p=i; break; }

(0≤p ∧ p<n)
→ a[p] 6=0

partition i=0; j=0; k=0; while(i<n) {
if(a[i]>=0) {
b[j]=a[i]; j++; }

else {
c[k]=a[i]; k++; }

++i; }

(∀i. (0≤ i ∧ i<j)
→ b[i]≥0) ∧

(∀i. (0≤ i ∧ i<k)
→ c[i]<0)

insertionsort-
inner

x=a[i]; j=i-1;
while(j>=0 && a[j]>x) {
a[j+1]=a[j]; --j; }

∀k. (0≤ i∧i<n∧j+1<k∧k≤ i)
→ a[k]>x

bubblesort-
inner

for(j=0; j<n-i-1; j++) {
if(a[j] > a[j+1]) { tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp; } }

∀k. (0≤ i ∧ i< n∧
0≤k ∧ k<j ∧ j =n−i−1)
→ a[k]≤a[j]

selectionsort-
inner

for(j=i+1; j<n; j++) {
if(a[i]>a[j]) { tmp=a[i];
a[i]=a[j]; a[j]=tmp; } }

∀k.(0≤ i ∧ i≤k ∧ k<n)
→ a[k]≥a[i]

Table 1. Benchmark array programs. Variables a,b,c are arrays of integers of size n.

15

We have also combined these operators with a delay mechanism which, be-
fore starting the actual generalization process, introduces a definition which is
computed by using convex hull alone, without widening. We denote by GenWD
and GenSD the operators obtained by combining delayed generalization with the
Widen and CHWidenSum operators, respectively.

In Table 2 we report the results obtained by applying Transform with the four
generalization operators mentioned above. The first column contains references
to papers where the program verification example has been considered.

The last four columns are labeled with the name of the generalization oper-
ator. For each program proved correct we report the time in seconds taken to
verify the property of interest. By unknown we indicate that Transform derives
a CLP(Array) program containing constrained facts different from ‘incorrect’,
and hence the satisfiability (or the unsatisfiability) of the corresponding verifi-
cation conditions cannot be checked.

Program References GenW GenWD GenS GenSD

init [3, 12, 37] unknown 0.06 0.10 0.08
init-partial [3, 12] unknown 0.06 0.07 0.08
init-non-constant [3, 12, 27, 37] unknown 0.06 0.22 0.22
init-sequence [21, 27] unknown 0.80 unknown 1.20
copy [3, 12, 21, 27, 37] unknown 0.27 0.33 0.29
copy-partial [3, 12] unknown 0.29 0.34 0.34
copy-reverse [3, 12] unknown 0.27 0.46 0.45
max [21, 27] unknown 0.31 0.24 0.33
sum unknown 0.68 1.14 1.12
difference [3] unknown 0.66 1.15 1.11
find [3, 12] 0.25 0.43 0.46 0.45
first-not-null [21] 0.38 0.41 0.42 0.42
find-first-non-null [3, 12] 1.24 1.87 1.94 1.93
partition [12, 27, 37] 0.06 0.11 0.14 0.12
insertionsort-inner [21, 27, 37] 0.21 0.26 0.45 0.43
bubblesort-inner 2.46 2.71 2.45 2.75
selectionsort-inner [37] 7.20 6.40 7.23 7.16

precision 7 17 16 17
total time 11.80 15.65 17.14 18.48

average time 1.69 0.92 1.07 1.09

Table 2. Verification results using the MAP system with different generalization op-
erators. Times are in seconds.

We also report, for each generalization operator, the number of successfully
verified programs (which measures the precision of the operator), the total time
taken to run the whole benchmark and the average time per successful answer,
respectively.

All experiments have been performed on an Intel Core Duo E7300 2.66Ghz
processor with 4GB of memory under the GNU Linux operating system.

16

The data presented in Table 2 show that by using the GenW operator, which
applies the widening operator alone, our method is only able to prove 7 programs
out of 17. However, precision can be recovered by applying the convex hull
operator when introducing new definitions, possibly combined with widening.

The best trade-off between precision and performance is provided by the
GenWD operator which is able to prove all 17 programs with an average time of
0.92 s. In this case the use of the delay mechanism, which uses convex hull, suffices
to compensate the weakness demonstrated by the use of widening alone. Note
also that one program, init-sequence, can only be proved by applying operators
which use delayed generalization. This confirms the effectiveness of the convex
hull operator which may help inferring relations among program variables, and
may ease the discovery of useful program invariants, while determining (in our
set of examples) only a slight increase of verification times.

A detailed comparison of the performance of our system with respect to the
other verification systems referred to in Table 1 is difficult to make at this time
because the systems are not all readily available and also the results reported in
the literature do not refer to the same code for the input C programs.

7 Related Work and Conclusions

The verification method presented in this paper is an extension of the one in-
troduced in [8], where programs manipulating arrays were not considered. Some
examples suggesting how arrays and recursively defined properties can be dealt
with in our transformational approach were presented in [9], where, however, no
automatic strategy was presented. In this paper we have shown that by applying
a quite simple and general automated transformation strategy it is possible to
prove most of the examples found in the literature, with reasonable performance.
We are currently extending our strategy to deal with recursive programs, such
as quicksort.

The idea of encoding imperative programs into CLP programs for reasoning
about their properties was presented in various papers [15, 23, 34], which show
that through CLP programs one can express in a simple manner both (i) the
symbolic executions of imperative programs, and (ii) the invariants that hold
during their executions. The peculiarity of our work with respect to [15, 23, 34]
is that we use CLP program transformations to prove properties, instead of
(symbolic) execution or static analysis.

The verification method presented in this paper is also related to several
other methods that use abstract interpretation and theorem proving techniques.

Now we briefly report on related papers which use abstract interpretations
for finding invariants of programs that manipulate arrays. In [21], which builds
upon [18], invariants are discovered by partitioning the arrays into symbolic
slices and associating an abstract variable with each slice. A similar approach
is followed in [6] where a scalable, parameterized abstract interpretation frame-
work for the automatic analysis of array programs is introduced. In [16, 26] a
predicate abstraction for inferring universally quantified properties of array el-

17

ements is presented, and in [20] the authors present a similar technique which
uses template-based quantified abstract domains.

Methods based on abstract interpretation construct overapproximations, that
is, invariants implied by the program executions. This approach has the advan-
tage of being quite efficient because it fixes in advance a finite set of assertions
where the invariants are searched for, but for the same reason it may lack flexi-
bility as the abstraction should be re-designed when the verification fails.

Also theorem provers have been used for discovering invariants in programs
which manipulate arrays and prove verification conditions generated from the
programs. In particular, in [4] a satisfiability decision procedure for a decid-
able fragment of a theory of arrays is presented. That fragment is expressive
enough to prove properties such as sortedness of arrays. In [24, 25, 31] the au-
thors present some techniques based on theorem proving which may generate
array invariants. In [37] a backward reachability analysis based on predicate ab-
straction and abstraction refinement is used for verifying assertions which are
universally quantified over array indexes. Finally, we would like to mention that
techniques based on Satisfiability Modulo Theory (SMT) have been applied for
generating and verifying universally quantified properties over array variables
(see, for instance, [1, 27]).

The approaches based on theorem proving and SMT are more flexible with
respect to those based on abstract interpretation because no finite set of ab-
stractions is fixed in advance, but the suitable assertions needed by the proof
are generated on the fly.

Although the approach based on CLP program transformation shares many
ideas and techniques with abstract interpretation and automated theorem prov-
ing, we believe that it has some distinctive features that make it quite appealing.
Indeed, this paper and previous work (such as [8, 14, 34]) show that one can con-
struct a framework where the generation of verification conditions and their
verification can both be viewed as program transformations. The approach is
parametric with respect to the program syntax and semantics, because inter-
preters and proof systems can easily be written in CLP, and verification con-
ditions can automatically be generated by specialization. Moreover, optimizing
transformations can be applied to improve the efficiency of verification. Finally,
transformations can easily be composed together to derive very sophisticated
verification techniques. For instance, in [8] it is shown that the iteration of
specialization combined with the reversal of the direction used for constraint
propagation can significantly improve the precision of verification.

In order to further validate our approach, we plan to address the issue of
proving correctness of programs manipulating dynamic data structures such as
lists or heaps, looking for a set of suitable constraint replacement laws which
axiomatize those structures. For some specific theories we could also apply the
constraint replacement rule by exploiting the results obtained by external theo-
rem provers or Satisfiability Modulo Theory solvers.

An interesting direction for future research is also the combination of trans-
formations that guarantee equisatisfiability of verification conditions (like the

18

ones considered in this paper) together with other techniques for checking the
satisfiability of constrained Horn clauses.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and
constructive criticism.

References

1. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI:
SMT-based abstraction for arrays with interpolants. In CAV ’12, LNCS 7358.

2. N. Bjørner, K. McMillan, and A. Rybalchenko. Program verification as satisfiability
modulo theories. In SMT ’12, pages 3–11, 2012.

3. N. Bjørner, K. McMillan, and A. Rybalchenko. On solving universally quantified
Horn clauses. In SAS ’13, LNCS 7395, pages 105–125.

4. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
VMCAI ’06, LNCS 3855, pages 427–442.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In POPL ’77,
pages 238–252. ACM, 1977.

6. P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. In POPL ’11, pages 105–118.

7. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78, pages 84–96. ACM, 1978.

8. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying Programs
via Iterated Specialization. In PEPM ’13, pages 43–52. ACM, 2013

9. E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Verification of Im-
perative Programs by Constraint Logic Program Transformation. In SAIRP ’13,
Festschrift for Dave Schmidt, Electronic Proceedings in Theoretical Computer Sci-
ence, Vol. 129, pages 186–210.

10. G. Delzanno and A. Podelski. Model checking in CLP. In R. Cleaveland, editor,
TACAS ’99, LNCS 1579, pages 223–239.

11. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS ’08,
LNCS 4963, pages 337–340.

12. I. Dillig, T. Dillig, and A. Aiken. Fluid updates: beyond strong vs. weak updates.
In ESOP’10, 2010.

13. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101–146, 1996.

14. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies
for the verification of infinite state systems. Theory and Practice of Logic Pro-
gramming, 13(2):175–199, 2013.

15. C. Flanagan. Automatic software model checking via constraint logic. In Sci.
Comput. Program., 50(1–3):253–270, 2004.

16. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In
POPL ’02, pages 191–202, New York, NY, USA, 2002. ACM.

17. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for ex-
tensions of the theory of arrays. Ann. Math. Artif. Intell., 50(3-4):231–254, 2007.

19

18. D. Gopan, T. W. Reps, and S. Sagiv. A framework for numeric analysis of array
operations. In POPL ’05, pages 338–350. ACM, 2005.

19. S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea, and A. Rybalchenko.
HSF(C): A Software Verifier based on Horn Clauses. In TACAS ’12, LNCS 7214,
pages 549–551. Springer, 2012.

20. B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically
Refining Abstract Interpretations. In TACAS ’08, LNCS 4963, pages 443–458.
Springer, 2008.

21. N. Halbwachs and M. Péron. Discovering properties about arrays in simple pro-
grams. In PLDI ’08, pages 339–348, 2008.

22. J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

23. J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal.
In CP ’09, LNCS 5732, pages 454–469. Springer, 2009.

24. R. Jhala and K. L. McMillan. Array abstractions from proofs. In CAV ’07, LNCS
4590, pages 193–206, 2007.

25. L. Kovács and A. Voronkov. Finding loop invariants for programs over arrays using
a theorem prover. In FASE ’09, LNCS 5503, pages 470–485. Springer, 2009.

26. S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed predicates.
ACM Trans. Comput. Log., 9(1), 2007.

27. D. Larraz, E. Rodríguez-Carbonell, and A. Rubio. SMT-based array invariant
generation. In VMCAI 2013, LNCS 7737.

28. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second Edition.

29. The MAP transformation system. http://www.iasi.cnr.it/∼proietti/system.html.
30. J. McCarthy. Towards a mathematical science of computation. Information Pro-

cessing : Proc. of IFIP 1962, pages 21–28, Amsterdam, 1963. North Holland.
31. K. L. McMillan. Quantified invariant generation using an interpolating saturation

prover. In TACAS ’08, LNCS 4963, pages 413–427, 2008.
32. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In Compiler Construction,
LNCS 2304, pages 209–265. Springer, 2002.

33. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of
CLP programs. In LOPSTR ’02, LNCS 2664, pages 90–108. Springer, 2003.

34. J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of Imperative Programs
through Analysis of Constraint Logic Programs. In SAS ’98, LNCS 1503, pages
246–261. Springer, 1998.

35. A. Podelski and A. Rybalchenko. ARMC: The Logical Choice for Software Model
Checking with Abstraction Refinement. In PADL ’07, LNCS 4354, pages 245–259.

36. C. J. Reynolds. Theories of Programming Languages. Cambridge Univ.Press 1998.
37. M. N. Seghir, A. Podelski, and T. Wies. Abstraction refinement for quantified

array assertions. In SAS ’09, LNCS 5673, pages 3–18. Springer, 2009.
38. M. H. van Emden and R. Kowalski. The semantics of predicate logic as a pro-

gramming language. Journal of the ACM, 23(4):733–742, 1976.

20

