
Biometrics to Enhance Smartcard Security
Simulating MOC using TOC ?

Giampaolo Bella1,2, Stefano Bistarelli3,4, and Fabio Martinelli4

1 Computer Laboratory, University of Cambridge, UK
giampaolo.bella@cl.cam.ac.uk

2 Dipartimento di Matematica e Informatica, Università di Catania, Italy
giamp@dmi.unict.it

3 Dipartimento di Scienze, Università “G. D’annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it

4 Istituto di Informatica e Telematica, CNR, Pisa, Italy
{stefano.bistarelli,fabio.martinelli}@iit.cnr.it

Abstract. A novel protocol is proposed to address the problem of user
authentication to smartcards using devices that are currently inexpen-
sive. The protocol emulates expensive Match On Card (MOC) smart-
cards, which can compute a biometric match, by cheap Template on Card
(TOC) smartcards, which only store a biometric template. The actual
match is delegated to an extension of the cryptographic module running
on the card host, which is called Cryptoki according to the PKCS#11[9]
standard. Compliance to such a standard increases the portability of the
protocol. Informal reasoning confirms the protocol strenghts, though its
formal verification in terms of established equational techniques appears
to be at hand.

1 Overview

Smartcards are currently used as a secure and tamper-proof device to store
sensitive information such as digital certificates, private keys and personal infor-
mation. Access to smartcards has historically been regulated by a trivial means
of authentication: the Personal Identification Number (PIN). A user gains access
to a card if he enters the right PIN.

Experience shows that PINs are weak secrets [6] in the sense that they are
often poorly chosen, and that they are easy to loose. Moreover, many actual
implementation that use the PIN, consider the channel between host and smart-
card secure. So, they simply send the PIN in a clear communication. This imply
many easy attacks [6]. A simple Trojan on the host could easily sniff the PIN
and store it for future usage1.

? This work has been partially supported by MIUR project “Constraint-based Veri-
fication of Reactive Systems (COVER)”; by MIUR project “Tools, techniques and
methodologies for the information society” and by a CSP grant for the project “Se-
TAPS II”.

1 We check four different brand of cryptographic smartcards using each his Cryptoki
implementation and we was able to capture the PIN of all of them.

Biometric technologies have been proposed to strengthen authentication
mechanisms in general by matching a stored biometric template to a live bio-
metric template [3, 2, 4]. In the case of authentication to smartcards, intuition
imposes the match to be performed by the smartcard. But this is not always
possible because of the complexity of biometric information such as fingerprints
or iris scans, and because of the yet limited computational resourses offered by
currently available smartcards.

In general, three strategies of biometric authentication can be identified.

Template on Card (TOC). The biometric template is stored on a hardware
security module (smartcard or USB token). It must be retrieved and trans-
mitted to a different system that matches it to the live template acquired
by special scanners from the user. Cheap memory-cards with no or small
operating systems and onboard applications are generally sufficient for this
purpose.

Match on Card (MOC). The biometric template is stored on a hardware se-
curity module, which also performs the matching with the live template.
Therefore, a microprocessor smartcard is necessary, which must be endowed
with an operating system running suitable match applications.

System on Card (SOC). This is a combination of the previous two technolo-
gies. The biometric template is stored on a hardware security module, which
also performs the matching with the live template, and hosts the biometric
scanner to acquire, select, and process the live template.

Our research aims at the development of a viable and easy-to-deploy protocol
to allow secure authentication of users to smartcards, enforced by biometric
matching. Clearly, if we could cast a spell, we would choose the third of the
strategies sketched above. Indeed SOC cards appear to be the best in terms of
security, as everything takes place on card. Unfortunately, the existence of SOC
cards is still confined to research laboratories at present [8, 11]. The benefits
deriving from MOC cards are valuable themselves, although these cards must
be still considered rare and expensive. Reasonably cheap microprocessor cards
do come with a cryptographic processor, which unfortunately is too specialised
to perform biometric matches. Going down the hierarchy of prices, we find that
TOC cards are obviously inadequate.

In the present setting, how can we implement biometric authentication on
smartcards that are commercially available? We address this issue by develop-
ing a novel protocol that employs inexpensive TOC cards as if they were MOC
cards. The actual match is carried out by a module added to the Cryptoki ap-
plication running on the card host according to the PKCS#11 standard defined
by RSA laboratories [9]. In principle, if we trust the Cryptoki module, then we
should protect the extra exchange that we expect is necessary to transmit the
stored template from the card to the Cryptoki. By doing so, the resulting pro-
tocol should not be more vulnerable than the corresponding protocol for MOC
cards. Our ongoing work on formally analysing the proposed protocol appears
to confirm such a claim.

The presentation of the protocol messages may reveal possible optimizations.
The current design is imposed by the restricted set of functions that we want
to implement in the applet we need to load on the smartcard. We have a work-
ing alpha implementation of the protocol, whose details will be published in
upcoming papers [1]. Another important remark is that our design is obtained
incrementally from a shorter design for MOC cards. Hence, it will be easy to
simplify the protocol into one for MOC cards, as these become more affordable.

After a brief introduction to PKCS#11 Cryptoki (§2), this paper describes
our novel protocol (§3), sketches its ongoing formal analysis (§4), and concludes
(§5).

2 PKCS#11: Cryptographic Token Interface Standard

The PKCS#11 standard specifies an API, called “Cryptoki” (cryptographic to-
ken interface), to devices that hold cryptographic information and perform cryp-
tographic functions [9]. Cryptoki follows a simple object-based approach, ad-
dressing the goals of technology independence (any kind of device) and resource
sharing (multiple applications accessing multiple devices), presenting to applica-
tions a common, logical view of the device called a “cryptographic token”. The
primary goal of Cryptoki is a lower-level programming interface that abstracts
the details of the devices, and presents to the application a common model of
the cryptographic device, called a cryptographic token (or simply token).

Cryptoki’s general model is illustrated in Figure 1. The model begins with
one or more applications that need to perform certain cryptographic opera-
tions, and ends with one or more cryptographic devices, on which some or all
of the operations are actually performed. A user may or may not be associated
with an application. Usually, a cryptographic device can perform some crypto-

Fig. 1. A general Cryptoki model.

graphic operations, following a certain command set. For example, a smartcard

can generate a nonce, but in practice cannot perform any operation by itself.
To have the smartcard generate a nonce, the application should invoke func-
tion C GenerateRandom(...) of the Cryptoki library. Figure 2 represents such
interactions. To let the smartcard able to interact by itself and follow the pro-

Fig. 2. The request-answer PKCS#11 model.

tocol rule, we used a javacard compliant smartcard and we load a small applet
responsible to run the protocol with the Cryptoki.

The most important operation that is requested using the PKCS#11 interface
is the login request. Following PKCS#11 standard, we implement a biometric
login starting the protocol when a login(NULL) request is performed from the
application.

3 Simulating MOC using TOC

This section presents our protocol.
We follow an incremental design. First, we build a (PKCS#11 compliant)

protocol for MOC cards. Then, we extend this protocol to function with the
cheaper TOC cards. The price paid is one extra round of messages. While the
latter protocol can be used at present, the former is its obvious “modification”
that will become mandatory when technology makes MOC cards cheaper.

3.1 A MOC protocol

A MOC protocol can be defined as in Figure 3. In short, when the application
send the login(NULL) request to the criptoky, it start the protocol with the
smartcard, by asking for a nonce. This will be used for a challenge-response
phase to authenticate the Cryptoki to the smartcard (messages 1 and 2 and 3). In
message 3 the Cryptoki also transmit the just-acquired live template to the card,
which check the match and acknowledges (message 4).The session key generated
by the smartcard could be used for all the next communication between the
host and the smartcard. The live template is sent encrypted with a session key
to ensure user privacy. A fuller description is given below, where this protocol is
extended to delegate the biometric match to the Cryptoki. The key Ksess is the

session key, NSC is the nonce, KCK and K−1

CK are the public and private key of
the Cryptoki, respectively.

1. Cryptoki → SmartCard : helloMOC

2. SmartCard → Cryptoki : {|{|NSC ,Ksess |}PIN
|}

KCK

3. Cryptoki → SmartCard : {|{|NSC ,Templatelive |}
K

−1

CK

|}
Ksess

4. SmartCard → Cryptoki : {|NSC ,Hash(Templatelive)|}KCK

Fig. 3. A MOC protocol.

3.2 A MOC-using-TOC protocol

While the previous protocol requires MOC cards, the protocol presented here
can do with cheap TOC cards. Figure 4 shows the new protocol, which extends
the previous with two additional steps between 3 and 4. The additional steps
essentially delegate the matching to a special Match Module of the Cryptoki.
The keys KMM and K−1

MM are the public and private key of the Match Module,
respectively.

1. Cryptoki → SmartCard : helloMOC

2. SmartCard → Cryptoki : {|{|NSC ,Ksess |}PIN
|}

KCK

3. Cryptoki → SmartCard : {|{|NSC ,Templatelive |}
K

−1

CK

|}
Ksess

31. SmartCard → Cryptokimatch : {|Templatelive ,TemplatestoredAC |}
KMM

32. Cryptokimatch → SmartCard : {|Hash(Templatelive ,TemplatestoredAC)|}
K

−1

MM

4. SmartCard → Cryptoki : {|NSC ,Hash(Templatelive)|}KCK

Fig. 4. A MOC-using-TOC protocol.

First phase: Cryptoki’s authentication to SmartCard, and
transmission of the Live Template

1. Cryptoki → SmartCard : helloMOC

2. SmartCard → Cryptoki : {|{|NSC ,Ksess |}PIN |}KCK

3. Cryptoki → SmartCard : {|{|NSC ,Templatelive |}K
−1

CK

|}
Ksess

In this phase a challenge-response authentication between SmartCard and
Cryptoki takes place. The SmartCard issues a fresh nonce and the Cryptoki

returns it. The challenge response phase implies the presence of the user that
know the PIN associated to the smartcard. In fact, only with the knowledge of
the PIN message 2 can be decrypted to obtain the nonce (this is a first step of
authentication where a what I know feature of the protocol is used).

The next step is to create a message representing the biometric information
of the user (a what I am feature). A live and trusted template is generated.
The idea is to accept biometric template only if coming from a trusted device
(the signature show this) and only if acquired during the current authentication
session (the presence of the nonce ensure this). We can assume that the Cryptoki
public key is already available to the smart card, otherwise the Cryptoki should
just send the appropriate digital certificate with message 1.

The session key sent to the Cryptoki from the SmartCard will be useful to
encrypt the biometric template for privacy reasons. The main reason to use a
session key is because the user may want to secure his biometric information
from eaves-droppers for a number of reasons. For example, one is that the fin-
gerprint can reveal certain diseases. The same session key could be used for all
the communication following the logon phase.

Second phase. SmartCard’s transmission of stored template to
Cryptokimatching module for the match.

31. SmartCard → Cryptokimatch : {|Templatelive ,TemplatestoredAC |}KMM

32. Cryptokimatch → SmartCard : {|Hash(Templatelive ,TemplatestoredAC)|}K
−1

MM

The SmartCard sends the stored template to the Cryptoki Matching Module,
who is delegated the responsibility of doing the match. This step is secured
under the key of the Cryptoki Matching Module for privacy reasons. If the live
template matches the one stored in the attribute certificate TemplatestoredAC

then the Match module issues a signed message confirming such a match 2. The
use of an Hash function ensure that no information related to the fingerprints
template is leaked (as before for privacy reasons).

Last phase: Successful login

4. SmartCard → Cryptoki : {|NSC ,Hash(Templatelive)|}KCK

2 If we also assume that the acquisition of the live template by the Cryptoki is
performed in a confidential way, this message may embody a nice form of chal-
lenge/response authentication, using the pair (Templatelive ,TemplatestoredAC) as a
nonce, due to the unpredictable nature of the Templatelive . Such a form of fresh-
ness, although is not crucial for the security of the protocol, since, in principle the
result of the matching among the live template and the stored should be always the
same (thus replay attacks are not worthy). However, in a real implementation, such
a form of freshness could be useful is we imagine that the accuracy of the matching
algorithm may change during time (e.g., due to same legislative acts).

If the SmartCard generate the last message, means that a successful bio-
metric match has been performed and the login is successful. The message 4
containing the nonce and the (hashed) live template is also used to respond to
the authentication challenge sent by the Cryptoki in message 3.

4 Towards a Formal Analysis of the MOC-using-TOC

Protocol

We may relate the MOC-using-TOC protocol and MOC one, by using two crite-
ria: functional behavior and security features. We may use a variant proposed in
[7] of the CCS process algebra of R. Milner to formally describe the behaviour of
the components involved in the protocol, i.e. the smart-card (S), the Cryptoki
(C) and the match module of the Cryptoki (M).

The functional behavior of the MOC-using-TOC is clearly an extension of
the MOC one. Indeed, the steps 31 − −32 are added to the MOC ones. The
formal specification of the protocol exactly put in evidence this fact. Indeed,
the specification of the whole Cryptoki consists of the specification C in parallel
with M , i.e. C | M . Note that this is possible since C and M do not need to
communicate each other and they do not need to share the same knowledge to
proceed in the computation. Indeed, the criptoki needs to know the PIN (it could
ask the user to provide it) while the Cryptokimatch does not need it. In particular,
the Cryptokimatch could in turn delegate the match to another (remote) module.

Thus, we may expect that future cryptoki applications that will implement
MOC may easily adapted from the ones that use MOC-using-TOC. For instance,
a MOC-smart-card may decide if performing the steps 31−−32 and so demanding
the verification of the match among the Templatelive and the TemplatestoredAC ,
or to directly perform by itself this match. It may be reasonable to assume
that the smart card will ask for either a MOC-using-TOC protocol or a MOC
one depending on its internal features. The Cryptokimatch will act depending on
this request. In the case of MOC protocol, is will simply avoid to perform steps
31−−32. This is formally described by the fact that the set of possible execution
traces of C is contained in the ones of C | M .

The security features of the MOC protocols are more interesting. The MOC
protocol guarantees a mutual authentication of a smartcard that knows a PIN
with a cryptoki that also knows the PIN and has a certificate. We assume that
the Templatelive is acquired by a secure device and so no-one else the identified
person is able to provide the cryptoki with the fingerprint. (The Templatelive
could be also acquired by a trusted device from the smart-card.) We also assume
that the cryptoki is honest. Then, what it is done is an authentication of the
cryptoki to the smartcard followed by the creation of a session key. This session
key may be used for secure the following connections.

What we are going to check is that whenever the smartcard authenticates
the cryptoki then the cryptoki wanted to be authenticated by the smartcard and
the Templatelive provided by the cryptoki is equal to TemplatestoredAC stored in
the smartcard that authenticates the cryptoki and both the smart-card and the

Cryptoki shares the PIN. From a theoretical point of view, the correctness of the
protocol depends on the secrecy of the PIN and the private key of the criptoki.

Thus, the security property is a form of agreement on the message sent (the
template) among the smartcard and the cryptoki. This may be modeled through
common techniques as the correspondence analysis and tools and techniques as
[5, 10, 7]. In particular, we follow the approach based on non-interference devel-
oped in [7]: The idea is that a system is secure if its observable behavior cannot
be significantly altered by an enemy. Clearly, such a definition relies on the no-
tion of observable behaviour. Indeed, honest agents in the protocol are able to
issue special actions that denote their beliefs on the current status of the com-
putation. For instance, an user A raises an action start(A,B,m) meaning that
it is starting a run of the protocol with B for exchanging the message/template
m. In the following the observable behavior consists only of this kind of actions.

A way to check that the protocol MOC-using-TOC is correct is to show
that MOC is correct and that the security features of the MOC-using-TOC are
simulated/equal to the ones of MOC-using-TOC.

The analysis scenario is the following. Consider an external enemy X, de-
scribed through a process X, which does not hold either the private key of
the Cryptoki or the PIN (but could know the Templatelive). Consider also
that the Cryptoki issues the control action start(C,S,Templatelive) when it
starts a communication with the smart-card for an user that prompts the live
template Templatelive ; moreover assume that the smart-card issue the action
finish(S,C,TemplatestoredAC) whenever it considers it just ended a run of the
protocol by recognizing that an honest Cryptoki that knows the PIN has pro-
vided a live template that matches with the one store in the attribute certificate
TemplatestoredAC .

Note that MOC protocol is such that we have for each enemy X that satisfies
our analysis assumption:

(S | C | X) =Obs traces start(C,S,Templatelive).finish(S,C,TemplatestoredAC)

where Templatelive and TemplatestoredAC match.
We may show that when we are interested in such a property then the MOC

and MOC-using-TOC agree on their observable behavior (that is to say enjoys
the same property):

(S | C | M | X) =Obs traces (S | C | X)

where Obs traces denotes the equalities of set of traces where only the set of
observable actions is taken into account. This analysis may be defined for each
security property of interest.

5 Conclusions

Modern, inexpensive TOC smartcards cannot compute a biometric match as
MOC smartcards. We have developed a protocol which simulates the MOC

strategy through the use of TOC cards. In practice the actual match is dele-
gated to the Cryptoki module of the card host. The computational burden that
the protocol puts on the smartcards amounts to a classical PIN match.

Our protocol achieves the goal of authenticating a user to a smartcard by
means of the user’s biometric information, although the smartcard does not
perform the match. The design we have presented has been fully implemented
using the PKCS#11 standard, which is the most common interface language for
current smartcards.

Acknowledgements

We would like to thank the workshop attendees for the exciting discussion en-
vironment and, in particular, for pointing out a possible weakness of a previous
version of our protocol due to a non appropriate usage of weak secrets.

We are also indebted to Luca Bechelli and Stefano Frassi for valuable sug-
gestions about the PKCS#11 implementation constraints.

References

1. L. Bechelli, S. Bistarelli, and S. Frassi. A protocol for simulating match-on-card
authentication through the use of a template-on-card technology. Working draft.

2. L. Bechelli, S. Bistarelli, F. Martinelli, M. Petrocchi, and A. Vaccarelli. Integrating
biometric techniques with electronic signature for remote authentication. ERCIM
News, (49), 2002.

3. L. Bechelli, S. Bistarelli, and A. Vaccarelli. Biometrics authentication with smart-
card. Technical Report 08-2002, CNR, Istituto di Informatica e Telematica, Pisa,
2002.

4. L. Bechelli, S. Bistarelli, and A. Vaccarelli. Certificati per impronte digitali mem-
orizzati su smartcard. Technical Report 09-2002, CNR, Istituto di Informatica e
Telematica, Pisa, 2002. In Italian.

5. G. Bella. Inductive Verification of Smart Card Protocols. Journal of Computer
Security, (1), 2003. In press.

6. Mike Bond and Piotr Zielinski. Decimalisation table attacks for pin cracking. Tech-
nical Report UCAM-CL-TR-560, University of Cambridge, Computer Laboratory,
feb 2003.

7. R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proc. of FM’99, volume LNCS 1708, pages 794–813. Springer, 1999.

8. N. J. Henderson and P. H. Hartel. Pressure sequence - a novel method of pro-
tecting smart cards. In J. Domingo-Ferrer, D. Chan, and A. Watson, editors, Pro-
ceedings 4th Int. IFIP wg 8.8 Conf. Smart card research and advanced application
(CARDIS), Bristol, UK, pages 241–256. Kluwer, 2000.

9. ”RSA Security Inc.”. Pkcs#11 v2.11: Cryptographic token interface standard.
Technical Report PKCS#11 v2.11 r1, RSA Security Inc., nov 2001. RSA Security
Inc. Public-Key Cryptographic Standard (PKCS).

10. L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols.
Journal of Computer Security, 6:85–128, 1998.

11. B. Struif. Use of biometrics for user verification in electronic signature smartcards.
In Smart Card Programming and Security - Proceedings of the International Con-
ference on Research in Smart Cards (E-smart), Cannes, France, pages 220–228,
sep 2001.

